2023
Isotope Engineering for Spin Defects in van der Waals Materials
Ruotian Gong, Xinyi Du, Eli Janzen, Vincent Liu, Zhongyuan Liu, Guanghui He, Bingtian Ye, Tongcang Li, James H. Edgar, Erik A. Henriksen, Chong Zu. Submitted to Nature Materials, 2023; on the arXiv.
Field and temperature tuning of magnetic diode in permalloy honeycomb lattice
George Yumnam, Moudip Nandi, Pousali Ghosh, Amjed Abdullah, Mahmoud Almasri, Erik Henriksen, Deepak K. Singh. Accepted to Materials Today Advances, 2023; also on the arXiv.
Point Defects in Two-Dimensional RuCl3
Wenqi Yang, Linghan Zhu, Yan Lu, Erik Henriksen, Li Yang. Physical Review Materials 7 064004, 2023; also on the arXiv.
Direct visualization of the charge transfer in Graphene/α-RuCl3 heterostructure
Rossi, Antonio; Dettori, Riccardo; Johnson, Cameron; Balgley, Jesse; Thomas, John; Francaviglia, Luca; Schmid, Andreas; Watanabe, Kenji; Taniguchi, Takashi; Cothrine, Matthew; Mandrus, David; Jozwiak, Chris; Bostwick, Aaron; Henriksen, Erik; Weber-Bargioni, Alexander; Rotenberg, Eli. Submitted to Nano Letters; also on the arXiv.
Coherent Dynamics of Strongly Interacting Electronic Spin Defects in Hexagonal Boron Nitride
R. Gong, G. He, X. Gao, P. Ju, Z. Liu, B. Ye, E. A. Henriksen, T. Li, C. Zu, Nature Communications 14, 3299 (2023); also on the arXiv.
2022
Arthur Compton & the Mysteries of Light
E. A. Henriksen, Physics Today 75, 44 (2022).
Ultrasharp lateral p-n junctions in modulation-doped graphene
J. Balgley, J. Butler, S. Biswas, Z. Ge, S. Lagasse, T. Taniguchi, K. Watanabe, M. Cothrine, D. G. Mandrus, J. Velasco Jr., R. Valenti and E. A. Henriksen, Nano Letters 22, 4124 (2022); also on arXiv.
Design and Optimization of Thin-film Tungsten (W)-Diamond Target for Multi-pixel X-ray Sources
Yuewen Tan, Qinghao Chen, Shuang Zhou, E. A. Henriksen, and Tiezhi Zhang, Medical Physics 1-11, (2022).
Nitrogen Plasma Passivated Niobium Resonators for Superconducting Quantum Circuits
K. Zheng, D. Kowsari, N. J. Thobaben, X. Du, X. Song, S. Ran, E. A. Henriksen, D. S. Wisbey, and K. W. Murch. Applied Physics Letters 120, 102601 (2022) also on arXiv.
Helium surface fluctuations investigated with superconducting coplanar waveguide resonator
N. R. Beysengulov, C. A. Mikolas, J. M. Kitzman, J. R. Lane, D. Edmunds, D. G. Rees, E. A. Henriksen, S. A. Lyon, and J. Pollanen, J. Low Temp. Phys 208, 482 (2022); also on arXiv.
2021
Fabrication and surface treatment of electron-beam evaporated niobium for low-loss coplanar waveguide resonators
D. Kowsari, K. Zheng, J. Monroe, N. Thobaben, X. Du, P. Harrington, E. A. Henriksen, D. Wisbey, and K. Murch, Applied Physics Letters 119, 132601 (2021); also on arXiv.
Axion Dark Matter eXperiment: Run 1B Analysis Details
ADMX Collaboration, Phys. Rev. D 103, 032002 (2021); also on arXiv.
Axion Dark Matter eXperiment: Detailed Design and Operations
ADMX Collaboration. Rev. Sci. Inst. 92, 124502 (2021). also on arXiv.
2020
Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor
Y. Wang, J. Balgley, E. Gerber, M. Gray, N. Kumar, X. Lu, J.-Q. Yan, A. Fereidouni, R. Basnet, S. J. Yun, D. Suri, K. Hikari, T. Taniguchi, K. Watanabe, X. Ling, J. Moodera, Y. H. Lee, H. O. H. Churchill, J. Hu, L. Yang, E.-A. Kim, D. G. Mandrus, E. A. Henriksen, K. S. Burch, Nano Letters 20, 8446 (2020), also on arXiv.
We discover that a single layer of the transition metal trihalide α-RuCl3 can be used to cleanly and controllably introduce charge carriers into graphene (as well as other materials including EuS and WSe2). The high mobility of the graphene can be maintained at very high charge carrier densities; and the charge transfer can even take place across few-nm-thick insulating layers of hexagonal boron nitride!
Broken symmetries and Kohn's theorem in graphene cyclotron resonance
Jordan Pack, B. Jordan Russell, Yashika Kapoor, Jesse Balgley, Jeff Ahlers, T. Taniguchi, K. Watanabe, and E. A. Henriksen. Physical Review X, 10, 041006 (2020); also on arXiv.
Full lifting of the four-fold symmetry of graphene Landau levels is seen in the magnetoplasmon spectrum via infrared cyclotron resonance. The evolution of the cyclotron resonance, from one to four and back to two peaks, can be clearly followed as the Landau level filling factor is varied, showing in close detail just how the gaps open up near integer filling factors!
Extraordinary magnetoresistance in encapsulated monolayer graphene devices
Bowen Zhou, T. Taniguchi, K. Watanabe, and E. A. Henriksen. Applied Physics Letters 116, 053102 (2020); also on arXiv.
Encapsulated graphene devices with a central metallic shunt show a remarkable "extraordinary magnetoresistance effect," with nearly 6 orders of magnitude increase in the resistance.
Unexpected hole doping of graphene by osmium adatoms
J. A. Elias and E. A. Henriksen, Annalen der Physik 532, 1900294, (2020); also on arXiv.
A submonolayer coating of osmium adatoms on monolayer graphene results in p-type doping of the graphene, contrary to theoretical expectations and to all other metallic adatoms on graphene studied to date.
Electronic transport properties of a lithium-decorated ZrTe5 thin film
W. Yu, J. A. Elias, K.-W. Chen, R. Baumbach, T. M. Nenoff, N. A. Modine, W. Pan, & E. A. Henriksen, Scientific Reports 10, 3537 (2020).
An Extended Search for the Invisible Axion with the Axion Dark Matter Experiment
T. Braine et al. Phys. Rev. Lett. 124, 101303 (2020); also on arXiv.
Crystal structure reconstruction in the surface monolayer of the quantum spin liquid candidate α-RuCl3 2019 Optically driven magnetic phase transition of monolayer α-RuCl3 Evidence for charge transfer and proximate magnetism in graphene/α-RuCl3 heterostructures Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3 2018 Digital atomic scale fabrication an inverse Moore's Law - A path to atomically precise manufacturing Flip-chip gate-tunable acoustoelectric effect in graphene Many-particle effects in the cyclotron resonance of encapsulated monolayer graphene 2017 Electronic transport and scattering times in tungsten-decorated graphene 2015 Transport in indium-decorated graphene 2012 Quantum Hall effect and semimetallic behavior in dual-gated ABA trilayer graphene 2010 Measurement of the electronic compressibility of bilayer graphene Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy 2009 Optical phonon mixing in bilayer graphene with a broken inversion symmetry Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy 2008 Observation of anomalous phonon softening in bilayer graphene Dirac charge dynamics in graphene by infrared spectroscopy 2007 Cyclotron resonance in bilayer graphene Infrared spectroscopy of Landau levels in graphene 2006 Disorder-mediated splitting of the cyclotron resonance line of two-dimensional electron systems Splitting of the cyclotron resonance in two-dimensional electron systems 2005 Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor 2000 Quantized thermal conductance: measurements in nanostructures Measurement of the quantum of thermal conductance
Z. Dai, J.-X. Yu, B. Zhou, S. Tenney, P. Lampen-Kelley, J. Q. Yan, D. Mandrus, E. A. Henriksen, J. Zang, K. Pohl, & J. T. Sadowski, 2D Materials 7, 035004 (2020).
Low-energy diffraction studies from the surface of of the anti-ferromagnetic Mott insulator α-RuCl3 shows an inversion-symmetry-breaking in the surface layer, possibly due to Cl vacancies.
Y. Tan, W. Gao, E. A. Henriksen, J. R. Chelikowsky, & L. Yang, Nano Letters 19, 7673 (2019); also on arXiv.
Optical doping of a monolayer of the anti-ferromagnetic Mott insulator α-RuCl3 is predicted to drive a transition to a ferromagnetic state.
B. Zhou, J. Balgley, P. Lampen-Kelly, J.-Q. Yan, D. G. Mandrus, and E. A. Henriksen, Phys. Rev. B 100, 165426 (2019); also on arXiv.
A Mott insulator (and quantum spin liquid candidate!) experiences significant charge transfer when in contact with graphene, and we observe a magnetic proximity effect in the graphene resistivity.
Boyi Zhou, Yiping Wang, Gavin B. Osterhoudt, Paige Kelley, David Mandrus, Rui He, Kenneth S. Burch, and E. A. Henriksen. J. Phys. Chem. Sol. 128, 291 (2019); also on arXiv.
The layered transition metal trihalide α-RuCl3, a candidate to host the Kitaev quantum spin liquid, is exfoliated down to few- and mono-layer samples for the first time, revealing a structural distortion of the thinnest layers.
John N. Randall, James H. G. Owen, Ehud Fuchs, Joseph Lake, James R. Von Ehr, Josh Ballard, and Erik A. Henriksen, Micro and Nano Engineering 1, 1 (2018).
Opinion piece proposing the development of a digital approach to device fabrication.
J. R. Lane, L. Zhang, M. A. Khasawneh, B. N. Zhou, E. A. Henriksen, and J. Pollanen, J. App. Phys. 124, 194302 (2018); also on arXiv.
The first demonstration of surface acoustic wave measurements of gate-tunable graphene.
B. Jordan Russell, Boyi Zhou, T. Taniguchi, K. Watanabe, and E. A. Henriksen, Phys. Rev. Lett. 120, 047401 (2018); also on arXiv.
Precision infrared magneto-spectroscopy of high mobility graphene reveals subtle variations due to correlated electron behavior.
J. A. Elias and E. A. Henriksen, Phys. Rev. B 95, 075405 (2017); also on arXiv.
By depositing a dilute coating of W atoms on graphene we seek to induce a spin-orbit coupling; surprisingly, none is found!
U. Chandni, E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 91, 245402 (2015); also on arXiv.
By depositing a dilute coating of In atoms on graphene we seek to induce a spin-orbit coupling; surprisingly, none is found!
E. A. Henriksen, D. Nandi and J. P. Eisenstein, Phys. Rev. X. 2, 011004 (2012); also on arXiv.
(with Commentary): Mirror-symmetry-breaking of gated ABA-trilayer graphene is discovered via measurements of the quantum Hall effect.
E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 82, 041412(R) (2010); also on arXiv.
A gap in the band structure of bilayer graphene is seen by measurements of the density of states.
E. A. Henriksen, P. Cadden-Zimansky, Z. Jiang, Z. Q. Li, L.-C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim and H. L. Stormer, Phys. Rev. Lett. 104, 067404 (2010); also on arXiv.
A gap opening in the N=0 Landau level of graphene is ascribed to electron interactions.
J. Yan, T. Villarson, E. A. Henriksen, P. Kim and A. Pinczuk, Phys. Rev. B 80, 241417(R) (2009); retrieve from PRB.
Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer and D. N. Basov, Phys. Rev. Lett. 102, 037403 (2009); also on arXiv.
J. Yan, E. A. Henriksen, P. Kim and A. Pinczuk, Phys. Rev. Lett. 101, 136804 (2008), also on arXiv.
Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer and D. N. Basov, Nature Phys. 4, 532 (2008); also on arXiv.
E. A. Henriksen, Z. Jiang, L. C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim and H. L. Stormer, Phys. Rev. Lett. 100, 087403 (2007), also on arXiv.
Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim and H. L. Stormer, Phys. Rev. Lett. 98, 197403 (2007); also on arXiv.
E. A. Henriksen, S. Syed, Y.-J. Wang, H. L. Stormer, L. N. Pfeiffer and K. W. West, Phys. Rev. B 73, 241309(R) (2006), also on arXiv.
E. A. Henriksen, S. Syed, Y.-J. Wang, M. J. Manfra, L. N. Pfeiffer, K. W. West and H. L. Stormer, Physica E 34, 318 (2006).
E. A. Henriksen, S. Syed, Y. Ahmadian, M. J. Manfra, K. W. Baldwin, A. M. Sergent, R. J. Molnar and H. L. Stormer, Appl. Phys. Lett. 86, 252108 (2005); also on arXiv.
K. Schwab, W. Fon, E. Henriksen, J. M. Worlock and M. L. Roukes, Physica B 280, 458 (2000).
K. C. Schwab, E. A. Henriksen, J. M. Worlock and M. L. Roukes, Nature 404, 974-977 (2000); retrieve from Nature.
First observation of the quantum of thermal conductance; see commentary in the News & Views.