MECHANICS (411)

PROBLEM SET 4 (hand in February 16 at the beginning of class)

- 13) (10 points) At time t = 0, a particle moving in simple harmonic motion has $x = 2\sqrt{3}$, $\dot{x} = 6$, and $\ddot{x} = -18\sqrt{3}$.
 - a) Write an expression for the motion of the form $x = Re(Ae^{i\omega t})$, where A is a complex number.
 - b) Write an expression for the motion of the form $x = A\cos(\omega t \phi)$, where A and ϕ are real.
 - c) Represent $\mathcal{A}e^{i\omega t}$ as a rotating vector in the complex plane. Draw a diagram showing its position at $t=0, t=\pi/18, t=2\pi/9$, and $t=\pi/3$. What is x at each of these times?
- 14) (10 points) A particle of mass m undergoes damped oscillations with damping coefficient β and natural frequency ω_0 ($\omega_0 \gg \beta$). At t = 0, it starts at x = A with $\dot{x} = 0$.
 - a) Calculate the kinetic energy, potential energy, and total energy as functions of time.
 - b) What is the average total energy (averaged over one cycle)? [Hint: Since $\omega_0 \gg \beta$, one may assume that $e^{-\beta t}$ stays relatively constant over one cycle. Then the average energy can be found by averaging only those terms that contain $\omega_1 t$. Answer: $E \cong \frac{1}{2} m \omega_0^2 A^2 e^{-2\beta t}$.]
- 15) (10 points) When a body is suspended from a fixed point by a certain linear spring (i.e. obeying Hooke's law), the natural frequency of its vertical oscillations is found to be ω_1 . When a different linear spring is used, the oscillations have angular frequency ω_2 .
 - a) Find the angular frequency when the two springs are used together in parallel.
 - b) Repeat the calculation when they are used in series.
 - c) Show that the first of these frequencies is at least twice the second.
- 16) (10 points) The position of an overdamped harmonic oscillator is given by Eq.(5.40) in the text.

- a) Find the constants C_1 and C_2 in terms of the initial position x_0 and velocity v_0 .
- b) Plot the resulting x(t) for the two cases that $v_0 = 0$ and $x_0 = 0$.
- c) Show that for $\beta \to 0$ your solution in a) approaches the solution for undamped motion.