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Bosons with interactions
• Fermi sea for fermions because of maximum occupation by one 

for each sp state 
• Bosons can occupy sp states in any number 

• Noninteracting ground state: all bosons in lowest sp state 

• Macroscopic occupation: BEC 
• Study in the presence of nonnegligible interaction 

• Boson Hamiltonian 

• with 

• and tp interaction 

• with
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Boson single-particle propagator
• Definition 
• No sign involved with time ordering so 

• Energy formulation
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E�Ĥ+EN
0 +i⇤

a†⇥ � a†⇥
1

E+Ĥ�EN
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Noninteracting boson propagator
• Noninteracting ground state for                           or 

                                                         with lowest sp energy 

• Use 

• Noninteracting propagator 

• Noncondensate only forward while condensate both 

• Ground-state energy 

• Chemical potential
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Equations of motion
• Same procedure as for fermions leads to 

• with first term from 

• and 

• Equation of motion of boson removal operator in Heisenberg 
picture 

• Substitute
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=
�

⇥

��| T |⇥⇥ a⇥H (t) +
1
2

�

⇥⇤⌅

��⇥| V |⇤⌅⇥ a†⇥H
(t)a⌅H (t)a⇤H (t)

i� ⌃

⌃t
G(�,⇥; t � t�) = ⌅(t � t�)⌅�,⇥ +

�

⇤

⇥�| T |⇤⇤G(⇤,⇥; t � t�) + P2



QMPT 540

Tp propagator
• term with two-body interaction 

• Involves tp propagator 
• In general form 

• So sp propagator reads 

• As for fermions: first step in hierarchy
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Perturbation expansion and problem with Wick

• So far complete equivalence with fermion problem 

• But: direct application of Wick’s theorem not possible 

• Wick: requires normal ordering that leads to vanishing 
expectation values in noninteracting ground state 

• But 

• shows that this is not possible here for “0” orbital 

• Condensate orbital requires special treatment 

• Genuine boson perturbation theory: later 
• For now: quickly generate boson mean-field equation 

• Convert to equivalent fermion problem
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Equivalent fermion problem
• Hydrogen molecule with two-electron ground state with total S=0 

can be factorized as 

• with spin part 

• carrying fermion antisymmetry 
• Consequently spatial wave function must be symmetric! 

• Requires a wave function for two spinless bosons 

• Generalize to an arbitrary number of particles 
• Convert N interacting bosons to a fermion problem by adding 

(fictitious) quantum number    that can take on N values
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Equivalent N fermion problem
• Each sp boson state    is now N-fold degenerate and generates N 

fermion sp states          with 
• Take fermion Hamiltonian diagonal in fictitious quantum number 

• and 

• Noninteracting ground state N fermions: closed shell 
• all referring to lowest sp boson state 

• Ground-state: singlet in the fictitious quantum number and 
factorizes 

• Symmetric part: noninteracting boson ground state and 
antisymmetric Slater determinant representing closed-shell in 

• Interaction maintains singlet character: factorization remains
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Fictitious fermion problem & Hartree-Bose
• Perturbation and diagrams from before but include    summation 
• Since    is conserved (diagonal in the Hamiltonian) at each vertex, 

generates a factor N for each closed fermion loop  

• In addition, the summation over occupied fermion states only 
refers to the condensate orbital 

Hartree-Bose 

• Consider HF self-energy 

• with summation over occupied sp (hole) state 

• Boson counterpart: introduce fictitious quantum and restrict hole 
summation to condensate orbital
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Hartree-Bose
• So HB self-energy 

• Use 

• so 
• and summing over       yields 

• consistent with diagram rules discussed above 

• Not-yet determined condensate orbital                         from 
lowest solution of 
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more HB
• Like HF, HB is self-consistent so HB mean field is (general basis) 

• the interaction averaged over the condensate density (itself 
determining the condensate orbital with                    ) 

• Rewrite 

• with 

• So an equivalent form of the HB eigenvalue equation is
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HB ground-state energy
• Use HF results in two different forms 

• Restricting sum to condensate orbital and including fake 
quantum numbers yields 

• After summation
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HB in coordinate space
• Put bosons in local external potential (HO)           and employ 

• Replace          in HB equations and introduce wave function of 
condensate orbital 

• Yields 
• and HB equation 

• Ground state 

• and condensate orbital minimizes (                   ) -- not shown
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Gross-Pitaevskii (GP) equation for dilute systems
• HB can only be applied when the interaction is weak and nonsingular: not the case 

in the real world since atom-atom interaction is strongly repulsive when electron 
clouds overlap 

• Mean-field not appropriate 

• Real N-boson wave function will vanish whenever two atoms enter repulsive zone 

• Beyond mean field: sum a particular set of diagrams as in free space (as for 
fermions) --> ladder diagrams 

• Replace bare interaction by effective interaction in the medium 

• For very dilute systems no medium effect so can use free 

• At very low temperatures boson momenta very close to zero so only S-wave 
scattering contributes: characterized by one number 

• Number is scattering length 

• Simple way to incorporate is to replace bare interaction by so-called 
pseudopotential of zero range 

• Strength related to scattering length
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Scattering theory
• Wave must asymptotically look like (        constant) 

• Free solutions spherical Bessel and Neumann functions with 
asymptotic behavior 

• Standard result from QM: low-energy limit of phase shift 

• so only S-wave           survives 

• Scattering length defined as                                completely 
characterizes the (effective) interaction at low energy
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Values for atomic collisions
• a = 2.75 nm for 23Na 
• a = 5.77 nm for 87Rb 

• a = 1.45 nm for 7Li 

• a ~ -23 nm for 85Rb 
• a = 3.45 nm for 133Cs 

• Positive scattering lengths lead to stable condensates 

• Negative scattering lengths lead to collapse 
• Tuning scattering length is sometimes possible by applying a 

magnetic field and exploiting atomic hyperfine structure  
• Experimentally confirmed
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-matrix
• Two-particle problem: replace     in all equations of Ch.6 by  
• Low-energy limit from integral equation for 

• with propagator for free relative particle 

• Define half-on-shell   -matrix (energy equals energy initial state) 

• Corresponding integral equation 

• Diagonal element related to phase shift
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Low-energy limit
• From behavior of phase shifts in this limit 

• also for 

• expansion for small momenta should yield the same constant 

• In plane-wave basis 

• using rotational invariance 

• So plane-wave half-on-shell matrix element isotropic
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Contact force
• Corresponding effective interaction in coordinate space from 

• Introducing 

• and employing momentum conservation 
• Substitution of low-energy limit then yields 

• Form of local zero-range interaction 

• with 

• So previous assertions are justified
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Gross-Pitaevskii (GP) equation
• Dilute system: average interparticle spacing            large 

compared to magnitude of scattering length, or 
• Previous discussion suggests that HB mean-field can be applied in 

dilute case: replace V (even if strong) with the pseudo potential 

• HB potential then becomes 

• HB equation 
• Looks like nonlinear Schrödinger equation and is referred to as 

the time-independent Gross-Pitaevskii equation 

• Condensate orbital also minimizes (with                     ) 

• Time-dependent GP equation 

• GP and GP(t) all that is needed to explain most data BEC
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Confined bosons in harmonic traps
• Confining potential well approximated by HO 

• usually with cylindrical symmetry (cigar or pancake) 

• Include interaction at the GP level 
• Effect can be large even when the system is dilute  

• Estimate: assume condensate wave function approximately HO 
ground state               (see Ch. 5) 

• Central density of condensate 

• Typical values: 103<N<106, |a|~10-9m, aHO~10-6m so 
• So very dilute 

• Consider mean-field potential
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BEC in traps at the GP level
• Compare with HO energy scale 
• Ratio proportional to 

• Measure of strength of interaction effects 

• For quoted values 
• So expect large deviations of GP w.r.t. noninteracting profile 

• Example u~125 

• Column density 

• 8x104 23Na atoms 

• Trap 

• Reduction of 12 w.r.t. HO only
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ma2
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a

aHO

1 < |u| < 103

�̄(z) =
�

dy�(0, y, z)

�x = �y = 2050 rad/s and �z = 170 rad/s

a = 2.75 nm and aHO=1.76 µm


