Bosons with interactions

* Fermi sea for fermions because of maximum occupation by one
for each sp state

» Bosons can occupy sp states in any number

* Noninteracting ground state: all bosons in lowest sp state
* Macroscopic occupation: BEC

» Study in the presence of nonnegligible interaction

- Boson Hamiltoniand =T +V

+ with T=) {a|T|B)ala

- and tp interaction T
V= 1 ;5 (af| V |79) af C’f@%av
aBy

* with @BV 7o) = (afB| V |vd) + (af| V' |67)



Boson single-particle propagator

+ Definition ihG(a, B;t,t") = (Y| Tlaa, (t)al, (¢)]]€))

* No sign involved with time ordering so
ihG(a, B;7) = (5| 6()ae” T=FTaf 4 f(—r)afeh 507, |UY)
N4+1 Ny
= 0(7) Y e #En T = EOIT (W g W) (W oy (W)

m

+0(—71) Y e En T =BT (Gl | ol [UN Y (U N g, |01

* Energy formulation
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Noninteracting boson propagator
- Noninteracting ground state for T = Zgaaj;aa or Hp

o)) = — (a}) " [0 it}
| 0>—m(ao> 0) with lowest sp energy ¢
- Use al |®Y)Y = VN +1|e)th
ao|®y) = VN|®5)
a#0
al|25) = |a(0)™)
ao |®Y) = 0
* Noninteracting propagator
ihGO (, B;7) = Oape 7527 {0(1)(Nbu,o + 1) + 0(—7) Ny 0}

= Sape 75T {O(7) 4+ Ndao)
* Noncondensate only forward while condensate both
- Ground-state energy EY = (®)| T |®)) = Neg

* Chemical potential pw=FE) —E)"t'=FE't - EY = ¢



Equations of motion

* Same procedure as for fermions leads to

0 8aaH (t) T

i Glan Bt — 1) = 8t — )0+ (050t — 1) P2l Do (1)

ot

() +0(t' = t)al,, (t') 75)

ot
- with first term from

d AN AN d /
SOt —t) =0t —t) = ——0(t' 1)
- and (U] @y (t)aly, (1) — aly (B)aa,, () [T) = 0a,s
» Equation of motion of boson removal operator in Heisenberg
picture maa‘g; () [ (1), H]
1
= > AT ay, (1) + 5 > eV de) al, (Hacy, (tas, (¢)
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Tp propagator
- term with two-body interaction
Py = %mea@ {H(t—t’)aiﬂ (t)acy (Dasy (H)af,, ()

vyde

+0(¢ —t)al, (t)al, (t)ac, (H)as, (t)}
* Involves tp propagator

* In general form
ihGr1(ata, Btg, vy, 0ts) = (VY | Tlap, (tg)any (ta)al,, (ty)af, (t5)] [¥E)
- So sp propagator reads

0 /
ZhaG(CM,ﬁ,t—t)—5t—t 5+ZO‘|T|7 Vaﬁvt_t)

_|_§ Z (ay| V |6€) Grr(6t, et, Bt' ~vtT)

o€

+ As for fermions: first step in hierarchy



Perturbation expansion and problem with Wick

» So far complete equivalence with fermion problem
* But: direct application of Wick's theorem not possible

» Wick: requires normal ordering that leads to vanishing
expectation values in noninteracting ground state

+ Butao [90") = VN [@5' 1), ap |95) = VN + 1|05 )
* shows that this is not possible here for "0" orbital

» Condensate orbital requires special treatment

* Genuine boson perturbation theory: later

* For now: quickly generate boson mean-field equation

» Convert to equivalent fermion problem



Equivalent fermion problem

Hydrogen molecule with two-electron ground state with total S=0
can be factorized as
\If(rlmsl , T2m32) = (I)(’I“l, rg)E(msl ) mSQ)
: : 1
+ with spin part E(m.,,m,,) = — (5m81,+%5m32,—% — S 10

V2

» carrying fermion antisymmetry
» Consequently spatial wave function must be symmetric!

* Requires a wave function for two spinless bosons

* Generalize to an arbitrary number of particles

» Convert N interacting bosons to a fermion problem by adding
(fictitious) quantum number ) that can take on N values



Equivalent N fermion problem

* Each sp boson state «is now N-fold degenerate and generates N
fermion sp states (a),)with A\ =1,...,N

» Take fermion Hamiltonian diagonal in fictitious quantum number
(@Xa| T |BAg) = (] T |5) O, x5

- and (@, BA| V|7 Ay, 0X5) = (@B V |70) dxox, Oz,

» Noninteracting ground state N fermions: closed shell |27) = ﬂ agy 10)
- all referring to lowest sp boson state -

* Ground-state: singlet in the fICTI'l'IOLIS quantum number and

1
factorizes (011, .- anAn|BY) = H(sao WDet[(S M lig=1,.. N

+ Symmetric part: noninteracting boson ground state and
antisymmetric Slater determinant representing closed-shell in )

* Interaction maintains singlet character: factorization remains



Fictitious fermion problem & Hartree-Bose
* Perturbation and diagrams from before but include A summation

» Since )\ is conserved (diagonal in the Hamiltonian) at each vertex,
generates a factor N for each closed fermion loop

* In addition, the summation over occupied fermion states only
refers to the condensate orbital

Hartree-Bose
N

+ Consider HF self-energy S77(y,6) = Y [(vh| V |6h) — (vh| V )]
h=
» with summation over occupied sp (holei state |h) = Z zZ m

+ Boson counterpart: introduce fictitious quantum and’restrict hole
summation to condensate orbital ¢



Hartree-Bose
* So HB self-energy
SHB (YA, 008) = ) [(7Ay: eA] V [6As, €Ae) — (YA, eAe] VA, 6As)]

+ Use (A, eA|V \(?35 cAe) = (ye| V[5¢) 6x xs

(YA eAe| Vi|eAe 0Xs) = (ye| V' |ed) Ox 2. OxsA.
* 50 BPF(YA,,00) = ZME(7,8)0x,
- and summing over \. Yields SHB(~,6) = N (ye| V|6c) — (y¢| V |ed)
» consistent with diagram rules discussed above

- Not-yet determined condensate orbital Ic) => = |u)  from
lowest solution of .

Z {<'Y’ T9) + ZHB(%(S)} 25 = 5cZ§
0



more HB
- Like HF, HB is self-consistent so HB mean field is (general basis)
BHE (v Z{N (Y| V |6v) — (yul V [v6) } 257 2

- the interaction aver'aged over the condensate density (itself
determining the condensate orbital wu’rhz ZP=1 )

. Rewrite S S78(1,0)25 = SC{N (vl V |6v) — (] V |0)} 25525 26
1)

urd

= D N (| V0ov) 2528 x 2§ =3 (vl V [6v) 25728 % 2§

uré uov

* with
Wap(y,6) = (N =1) Y (yul V |ov) 22

* S0 an equivalent form of the HB eigenvalue equation is

Z {AAT0) + Wrp(7,0)} 25 = ez
5



HB ground-state energy

- Use HF results in two dlifferem‘ forms

(HF:) EY = Z(h\T\h>+§Z[(hlhg\V\hlhg)—(hlhglvyhghl)]
h hi,ho
HF) B = S [AITIR + el

- Restricting sum fo condensate orbital and including fake
quantum numbers yields

(HB:) E(])V = ;<CAC|T’C>\C> + %Az; [(€Aeys Ay |V [eAe,, eAey) — (Aeys €Ay | V €Ay, CAG, )]
HB:) B = 53 HeAdTleAd 2]
X
+ After summation .
—1
(HB:) EY = N{c|T]|c)+ ( ) (cc| V |ee)

2
(HB:) E) = g((dT\c)JrsC)



HB in coordinate space
* Put bosons in local external potential (HO) U(r) and employ

(r172| V |1r31s) = 6(1r1 — 73)0(re — 14) V(11 — 732)

* Replace o = rin HB equations and introduce wave function of

condensate orbital ¢.(r) = 2.

. Yields  Wyp(r) = (N — 1) / dr' V(e — ) |é.(r')?

- and HB equation
h _,

g VU 4 Wi ()| 62(r) = 26

2m

+ Ground state
(1,72, ., PN | D)) = ¢e(r1) e (12)..dc(TN)

- and condensate orbital minimizes ( /dr!gbc(r)\z —1) -- not shown

EJP [ arsiio [JW U@+ Y Jar' v —r'>|¢c<r'>|2] be(r)

N 2m 2



Gross-Pitaevskii (GP) equation for dilute systems

* HB can only be applied when the interaction is weak and nonsingular: not the case
in the real world since atom-atom interaction is strongly repulsive when electron
clouds overlap

* Mean-field not appropriate
* Real N-boson wave function will vanish whenever two atoms enter repulsive zone

* Beyond mean field: sum a particular set of diagrams as in free space (as for
fermions) --> ladder diagrams

* Replace bare interaction by effective interaction in the medium
» For very dilute systems no medium effect so can use free 7

- At very low temperatures boson momenta very close to zero so only S-wave
scattering contributes: characterized by one number

* Number is scattering length

- Simple way to incorporate is to replace bare interaction by so-called
pseudopotential of zero range V(r — ') — gé(r — 1')
4wh?a

- Strength related to scattering length 4 =



Scattering theory

*+ Wave must asymptotically look like ( Cy; constant)
wﬁk (7“) — Cgk [COS 5g]€j£(k’l“) — sin 5gk Ilg(k’l“)]

* Free solutions spherical Bessel and Neumann functions with
asymptotic behavior

cos(x — £Z)

sin(x — £7) 5

o) - TR ng(e) SR

+ Standard result from QM: low-energy limit of phase shift
S, ~ K> TH1 + O(K?)]

* so only S-wave /=0 survives

1
+ Scattering length defined as —— = lim kcotdor ~ completely

a k—0
characterizes the (effective) interaction at low energy



Values for atomic collisions

* a=2.75 nm for 23Na

* a=5.77 nm for 8Rb

* a=145 nm for 7Li

* a~-23 nm for 8Rb

* a=3.45 nm for 133Cs

» Positive scattering lengths lead to stable condensates
* Negative scattering lengths lead to collapse

* Tuning scattering length is sometimes possible by applying a
magnetic field and exploiting atomic hyperfine structure

+ Experimentally confirmed



7 -matrix
» Two-particle problem: replacem in all equations of Ch.6 by m /2
* Low-energy limit from integral equation forT

(K T(E)|k) = (K'|[V*|k) +/002lq (K V )G (q; B) (9| T (B)|k)

» with propagator for free relative particle

1
GO(q: E) =
P = o EE

* Define half-on- shell T-matrix (energy equals energy initial state)
L~ / h2/€2

(K| T k) = (W THE = =) |k)

» Corresponding integral equation

+oo ARV 7!
1) L IRV m o (K[ VT ) (al T7 |k)
WIT ) = WV IR + 35 [ deg it
» Diagonal element r'ela’red2 to phase shift
(T Iy =~

- mrk

Zégk

e'??ksin Oy



Low-energy limit

* From behavior of phase shifts in this limit

- 2h2
(k| T k) — ., 80,0, for k — 0

mir

- 2h?
<k,’ T ‘k> — %afse,o

- also for

» expansion for small momenta should yield the same constant

* In plane-wave basis (/|7 |k) = > KO | T |ktm) Yo (K'Y, ()

Imtb’m/’

2+ 1
. o = ST R S Pulw)
» using rotational invariance ; 4

(K 0'm!| T |km) = 64006 mr (K| TE|E)

» So plane-wave half-on-shell matrix element isotropic
N 2
K| T k) — o

2m2m

a



Contact force

» Corresponding effective interaction in coordinate space from
o [ dky,  dky dk,  dk)
(T1T2’T|’P1"’2) — / (27)3/2 (2#)3/2 (271.)3/2 (277)3/2

Introducing K =k +ky, K' =kj+kj; k=

ei(kl"rl—l—kg"r‘g—k/l"r’i—’43/2-1“;) <k/1k:/2| ,j— ’k1k2>
ki—ky , Kk —K

2 2
and employing momentum conservation (ki k5|7 |kiks) = 6(K — K') (K'| T |k)

k/

Substitution of low-energy limit then yields
4mh?a

(rifr§|7~’|r1r2) — 6(r1 —ry)o(ry — rh)o(ry — 7o)

Form of local zero-range interaction

~

T(’I“l — ’I"Q) — g5(’l"l — 7“2)

2
m

So previous assertions are justified




Gross-Pitaevskii (GP) equation

- Dilute system: average interparticle spacing p~'/3 large
compared to magnitude of scattering length, or plal’> <<'1

* Previous discussion suggests that HB mean-field can be applied in
dilute case: replace V (even if strong) with the pseudo potential

- HB potential then becomes Wgy(r) = g(N — 1)|¢.(r)|* ~ gN|d.(r)|?
g 2
. HB equation |—1-v?+ U(r)] B(r) + gN|6e(1)26e(r) = pbelr)

+ Looks like nonlinear Schrédinger equation and is referred to as
the time-independent Gross-Pitaevskii equation
- Condensate orbital also minimizes (with [ dr|¢.(r)]* =1)

P _ h? 2 > gN 4
ES?/N = [ar (G Vo) + U)iou(r)? + % 0.

+ Time-dependent GP equation
[_Lv2 + U(r;t)] be(r;t) + gN|pe(r, t)|2¢c(r;t) _ ’iﬁ%qbc(r;t)

2m

* GP and GP(t) all that is heeded to explain most data BEC



Confined bosons in harmonic traps
» Confining potential well approximated by HO

U(r) = %(wixQ + wsyQ + w?z?)

» usually with cylindrical symmetry (cigar or pancake)

* Include interaction at the GP level

+ Effect can be large even when the system is dilute

+ Estimate: assume condensate wave function approximately HO
ground state ¢ooo(r) (see Ch. b)

- Central density of condensate p(0) = N|¢.(0)* ~ N(

meO>3/2 B N
mh
+ Typical values: 103<N<106¢, |a|~10-m, aHo~10-°m so 107¢ < plaf®* < 107?

w2,

* So very dilute

: : : 4h?
- Consider mean-field potential Wy p(0) = gN|¢.(0)]* ~ N !

a3, m+/m




BEC in traps at the GP level

: h?
* Compare with HO energy scale  hw,, = —
* Ratio proportional fo u = Naa’ e
HO

* Measure of strength of interaction effects
- For quoted values 1 < |u| < 10°

+ So expect large deviations of GP w.r.t. noninteracting profile

+ Example u~125
a = 2.75 nm and a,,=1.76 um
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* Column density »o(z) = /dyp(O, Y, %)
+ 8x10423Na atoms
g Tr'C(p w, = wy = 2050 rad/s and w, = 170 rad/s

» Reduction of 12 w.r.t. HO only
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