

Bosons with interactions

- Fermi sea for fermions because of maximum occupation by one for each sp state
- Bosons can occupy sp states in any number
- Noninteracting ground state: all bosons in lowest sp state
- Macroscopic occupation: BEC
- Study in the presence of nonnegligible interaction
- Boson Hamiltonian $\hat{H} = \hat{T} + \hat{V}$
- with
$$\hat{T} = \sum_{\alpha\beta} \langle \alpha | T | \beta \rangle a_\alpha^\dagger a_\beta$$
- and tp interaction
$$\hat{V} = \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | V | \gamma\delta \rangle a_\alpha^\dagger a_\beta^\dagger a_\delta a_\gamma$$
- with
$$\langle \alpha\beta | V | \gamma\delta \rangle = (\alpha\beta | V | \gamma\delta) + (\alpha\beta | V | \delta\gamma)$$

Boson single-particle propagator

- **Definition** $i\hbar G(\alpha, \beta; t, t') = \langle \Psi_0^N | \mathcal{T}[a_{\alpha_H}(t)a_{\beta_H}^\dagger(t')] | \Psi_0^N \rangle$
- **No sign involved with time ordering so**

$$\begin{aligned}
 i\hbar G(\alpha, \beta; \tau) &= \langle \Psi_0^N | \theta(\tau) a_\alpha e^{-\frac{i}{\hbar}(\hat{H} - E_0^N)\tau} a_\beta^\dagger + \theta(-\tau) a_\beta^\dagger e^{\frac{i}{\hbar}(\hat{H} - E_0^N)\tau} a_\alpha | \Psi_0^N \rangle \\
 &= \theta(\tau) \sum_m e^{-\frac{i}{\hbar}(E_m^{N+1} - E_0^N)\tau} \langle \Psi_0^N | a_\alpha | \Psi_m^{N+1} \rangle \langle \Psi_m^{N+1} | a_\beta^\dagger | \Psi_0^N \rangle \\
 &\quad + \theta(-\tau) \sum_n e^{\frac{i}{\hbar}(E_n^{N-1} - E_0^N)\tau} \langle \Psi_0^N | a_\beta^\dagger | \Psi_n^{N-1} \rangle \langle \Psi_n^{N-1} | a_\alpha | \Psi_0^N \rangle
 \end{aligned}$$

- **Energy formulation**

$$\begin{aligned}
 G(\alpha, \beta; E) &= \int_{-\infty}^{+\infty} d\tau e^{\frac{i}{\hbar}E\tau} G(\alpha, \beta; \tau) \\
 &= \langle \Psi_0^N | a_\alpha \frac{1}{E - \hat{H} + E_0^N + i\eta} a_\beta^\dagger - a_\beta^\dagger \frac{1}{E + \hat{H} - E_0^N - i\eta} a_\alpha | \Psi_0^N \rangle \\
 &= \sum_m \frac{\langle \Psi_0^N | a_\alpha | \Psi_m^{N+1} \rangle \langle \Psi_m^{N+1} | a_\beta^\dagger | \Psi_0^N \rangle}{E - (E_m^{N+1} - E_0^N) + i\eta} - \sum_n \frac{\langle \Psi_0^N | a_\beta^\dagger | \Psi_n^{N-1} \rangle \langle \Psi_n^{N-1} | a_\alpha | \Psi_0^N \rangle}{E + (E_n^{N-1} - E_0^N) - i\eta}
 \end{aligned}$$

Noninteracting boson propagator

- Noninteracting ground state for $\hat{T} = \sum_{\alpha} \varepsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}$ or \hat{H}_0
 $|\Phi_0^N\rangle = \frac{1}{\sqrt{N!}} \left(a_0^{\dagger}\right)^N |0\rangle$ with lowest sp energy ε_0
- Use
 - $a_0^{\dagger} |\Phi_0^N\rangle = \sqrt{N+1} |\Phi_0^{N+1}\rangle$
 - $a_0 |\Phi_0^N\rangle = \sqrt{N} |\Phi_0^{N-1}\rangle$
 - $\alpha \neq 0$
 - $a_{\alpha}^{\dagger} |\Phi_0^N\rangle = |\alpha(0)^N\rangle$
 - $a_{\alpha} |\Phi_0^N\rangle = 0$
- Noninteracting propagator
 - $i\hbar G^{(0)}(\alpha, \beta; \tau) = \delta_{\alpha\beta} e^{-\frac{i}{\hbar} \varepsilon_{\alpha} \tau} \{ \theta(\tau)(N\delta_{\alpha,0} + 1) + \theta(-\tau)N\delta_{\alpha,0} \}$
 - $= \delta_{\alpha\beta} e^{-\frac{i}{\hbar} \varepsilon_{\alpha} \tau} \{ \theta(\tau) + N\delta_{\alpha,0} \}$
- Noncondensate only forward while condensate both
- Ground-state energy $E_0^N = \langle \Phi_0^N | \hat{T} | \Phi_0^N \rangle = N\varepsilon_0$
- Chemical potential $\mu = E_0^N - E_0^{N-1} = E_0^{N+1} - E_0^N = \varepsilon_0$

Equations of motion

- Same procedure as for fermions leads to

$$i\hbar \frac{\partial}{\partial t} G(\alpha, \beta; t - t') = \delta(t - t') \delta_{\alpha, \beta} + \langle \Psi_0^N | \theta(t - t') \frac{\partial a_{\alpha_H}(t)}{\partial t} a_{\beta_H}^\dagger(t') + \theta(t' - t) a_{\beta_H}^\dagger(t') \frac{\partial a_{\alpha_H}(t)}{\partial t} | \Psi_0^N \rangle$$

- with first term from

$$\frac{d}{dt} \theta(t - t') = \delta(t - t') = -\frac{d}{dt} \theta(t' - t)$$

- and

$$\langle \Psi_0^N | a_{\alpha_H}(t) a_{\beta_H}^\dagger(t) - a_{\beta_H}^\dagger(t) a_{\alpha_H}(t) | \Psi_0^N \rangle = \delta_{\alpha, \beta}$$

- Equation of motion of boson removal operator in Heisenberg

picture $i\hbar \frac{\partial a_{\alpha_H}(t)}{\partial t} = [a_{\alpha_H}(t), \hat{H}]$

$$= \sum_{\gamma} \langle \alpha | T | \gamma \rangle a_{\gamma_H}(t) + \frac{1}{2} \sum_{\gamma \delta \epsilon} \langle \alpha \gamma | V | \delta \epsilon \rangle a_{\gamma_H}^\dagger(t) a_{\epsilon_H}(t) a_{\delta_H}(t)$$

- Substitute

$$i\hbar \frac{\partial}{\partial t} G(\alpha, \beta; t - t') = \delta(t - t') \delta_{\alpha, \beta} + \sum_{\gamma} \langle \alpha | T | \gamma \rangle G(\gamma, \beta; t - t') + P_2$$

Tp propagator

- term with two-body interaction

$$P_2 = \frac{1}{2i\hbar} \sum_{\gamma\delta\epsilon} \langle \alpha\gamma | V | \delta\epsilon \rangle \left\{ \theta(t - t') a_{\gamma_H}^\dagger(t) a_{\epsilon_H}(t) a_{\delta_H}(t) a_{\beta_H}^\dagger(t') \right. \\ \left. + \theta(t' - t) a_{\beta_H}^\dagger(t') a_{\gamma_H}^\dagger(t) a_{\epsilon_H}(t) a_{\delta_H}(t) \right\}$$

- Involves tp propagator
- In general form

$$i\hbar G_{II}(\alpha t_\alpha, \beta t_\beta, \gamma t_\gamma, \delta t_\delta) = \langle \Psi_0^N | \mathcal{T}[a_{\beta_H}(t_\beta) a_{\alpha_H}(t_\alpha) a_{\gamma_H}^\dagger(t_\gamma) a_{\delta_H}^\dagger(t_\delta)] | \Psi_0^N \rangle$$

- So sp propagator reads

$$i\hbar \frac{\partial}{\partial t} G(\alpha, \beta; t - t') = \delta(t - t') \delta_{\alpha, \beta} + \sum_{\gamma} \langle \alpha | T | \gamma \rangle G(\gamma, \beta; t - t') \\ + \frac{1}{2} \sum_{\gamma\delta\epsilon} \langle \alpha\gamma | V | \delta\epsilon \rangle G_{II}(\delta t, \epsilon t, \beta t', \gamma t^+)$$

- As for fermions: first step in hierarchy

Perturbation expansion and problem with Wick

- So far complete equivalence with fermion problem
- But: direct application of Wick's theorem not possible
- Wick: requires normal ordering that leads to vanishing expectation values in noninteracting ground state
- But $a_0 |\Phi_0^N\rangle = \sqrt{N} |\Phi_0^{N-1}\rangle$, $a_0^\dagger |\Phi_0^N\rangle = \sqrt{N+1} |\Phi_0^{N+1}\rangle$
- shows that this is not possible here for "0" orbital
- Condensate orbital requires special treatment
- Genuine boson perturbation theory: later
- For now: quickly generate boson mean-field equation
- Convert to equivalent fermion problem

Equivalent fermion problem

Hydrogen molecule with two-electron ground state with total $S=0$ can be factorized as

$$\Psi(\mathbf{r}_1 m_{s_1}, \mathbf{r}_2 m_{s_2}) = \Phi(\mathbf{r}_1, \mathbf{r}_2) \Xi(m_{s_1}, m_{s_2})$$

- with spin part $\Xi(m_{s_1}, m_{s_2}) = \frac{1}{\sqrt{2}} \left(\delta_{m_{s_1}, +\frac{1}{2}} \delta_{m_{s_2}, -\frac{1}{2}} - \delta_{m_{s_1}, -\frac{1}{2}} \delta_{m_{s_2}, +\frac{1}{2}} \right)$
- carrying fermion antisymmetry
- Consequently spatial wave function must be symmetric!
- Requires a wave function for two spinless bosons

- Generalize to an arbitrary number of particles
- Convert N interacting bosons to a fermion problem by adding (fictitious) quantum number λ that can take on N values

Equivalent N fermion problem

- Each sp boson state α is now N-fold degenerate and generates N fermion sp states $(\alpha\lambda_\alpha)$ with $\lambda_\alpha = 1, \dots, N$
- Take fermion Hamiltonian diagonal in fictitious quantum number

$$\langle \alpha\lambda_\alpha | T | \beta\lambda_\beta \rangle = \langle \alpha | T | \beta \rangle \delta_{\lambda_\alpha, \lambda_\beta}$$

- and $(\alpha\lambda_\alpha, \beta\lambda_\beta | V | \gamma\lambda_\gamma, \delta\lambda_\delta) = (\alpha\beta | V | \gamma\delta) \delta_{\lambda_\alpha \lambda_\gamma} \delta_{\lambda_\beta \lambda_\delta}$
- Noninteracting ground state N fermions: closed shell $|\Phi_0^N\rangle = \prod_{\lambda=1}^N a_{0\lambda}^\dagger |0\rangle$
- all referring to lowest sp boson state
- Ground-state: singlet in the fictitious quantum number and factorizes $\langle \alpha_1\lambda_1, \dots, \alpha_N\lambda_N | \Phi_0^N \rangle = \left[\prod_{i=1}^N \delta_{\alpha_i, 0} \right] \frac{1}{\sqrt{N!}} \text{Det}[\delta_{i, \lambda_j}]_{i, j=1, \dots, N}$
- Symmetric part: noninteracting boson ground state and antisymmetric Slater determinant representing closed-shell in λ
- Interaction maintains singlet character: factorization remains

Fictitious fermion problem & Hartree-Bose

- Perturbation and diagrams from before but include λ summation
- Since λ is conserved (diagonal in the Hamiltonian) at each vertex, generates a factor N for each closed fermion loop
- In addition, the summation over occupied fermion states only refers to the condensate orbital

Hartree-Bose

- Consider HF self-energy $\Sigma^{HF}(\gamma, \delta) = \sum_{h=1}^N [(\gamma h | V | \delta h) - (\gamma h | V | h \delta)]$
- with summation over occupied sp (hole) state $|h\rangle = \sum z_\mu^h |\mu\rangle$
- Boson counterpart: introduce fictitious quantum and restrict hole summation to condensate orbital c

Hartree-Bose

- So HB self-energy

$$\Sigma^{HB}(\gamma\lambda_\gamma, \delta\lambda_\delta) = \sum [(\gamma\lambda_\gamma, c\lambda_c | V | \delta\lambda_\delta, c\lambda_c) - (\gamma\lambda_\gamma, c\lambda_c | V | c\lambda_c, \delta\lambda_\delta)]$$

- Use $(\gamma\lambda_\gamma c\lambda_c | V | \delta\lambda_\delta c\lambda_c) = (\gamma c | V | \delta c) \delta_{\lambda_\gamma \lambda_\delta}$

$$(\gamma\lambda_\gamma c\lambda_c | V | c\lambda_c \delta\lambda_\delta) = (\gamma c | V | c\delta) \delta_{\lambda_\gamma \lambda_c} \delta_{\lambda_\delta \lambda_c}$$

- so $\Sigma^{HB}(\gamma\lambda_\gamma, \delta\lambda_\delta) = \Sigma^{HB}(\gamma, \delta) \delta_{\lambda_\gamma, \lambda_\delta}$

- and summing over λ_c yields $\Sigma^{HB}(\gamma, \delta) = N (\gamma c | V | \delta c) - (\gamma c | V | c\delta)$

- consistent with diagram rules discussed above

- Not-yet determined condensate orbital $|c\rangle = \sum_\mu z_\mu^c |\mu\rangle$ from lowest solution of

$$\sum_\delta \{ \langle \gamma | T | \delta \rangle + \Sigma^{HB}(\gamma, \delta) \} z_\delta^c = \varepsilon_c z_\gamma^c$$

more HB

- Like HF, HB is self-consistent so HB mean field is (general basis)

$$\Sigma^{HB}(\gamma, \delta) = \sum_{\mu\nu} \{N(\gamma\mu|V|\delta\nu) - (\gamma\mu|V|\nu\delta)\} z_\mu^{c*} z_\nu^c$$

- the interaction averaged over the condensate density (itself determining the condensate orbital with $\sum |z_\mu^c|^2 = 1$)

$$\begin{aligned} \sum_{\delta} \Sigma^{HB}(\gamma, \delta) z_{\delta}^c &= \sum_{\mu\nu\delta} \{N(\gamma\mu|V|\delta\nu) - (\gamma\mu|V|\nu\delta)\} z_\mu^{c*} z_\nu^c z_{\delta}^c \\ &= \sum_{\mu\nu\delta} N(\gamma\mu|V|\delta\nu) z_\mu^{c*} z_\nu^c \times z_{\delta}^c - \sum_{\mu\delta\nu} (\gamma\mu|V|\delta\nu) z_\mu^{c*} z_\nu^c \times z_{\delta}^c \\ &= \sum_{\delta} W_{HB}(\gamma, \delta) z_{\delta}^c \end{aligned}$$

- with

$$W_{HB}(\gamma, \delta) = (N - 1) \sum_{\mu\nu} (\gamma\mu|V|\delta\nu) z_\mu^{c*} z_\nu^c$$

- So an equivalent form of the HB eigenvalue equation is

$$\sum_{\delta} \{\langle \gamma | T | \delta \rangle + W_{HB}(\gamma, \delta)\} z_{\delta}^c = \varepsilon_c z_{\gamma}^c$$

HB ground-state energy

- Use HF results in two different forms

$$(\text{HF:}) \quad E_0^N = \sum_h \langle h | T | h \rangle + \frac{1}{2} \sum_{h_1, h_2} [(h_1 h_2 | V | h_1 h_2) - (h_1 h_2 | V | h_2 h_1)]$$

$$(\text{HF:}) \quad E_0^N = \frac{1}{2} \sum_h [\langle h | T | h \rangle + \varepsilon_h]$$

- Restricting sum to condensate orbital and including fake quantum numbers yields

$$(\text{HB:}) \quad E_0^N = \sum_{\lambda_c} \langle c \lambda_c | T | c \lambda_c \rangle + \frac{1}{2} \sum_{\lambda_{c_1}, \lambda_{c_2}} [(c \lambda_{c_1}, c \lambda_{c_2} | V | c \lambda_{c_1}, c \lambda_{c_2}) - (c \lambda_{c_1}, c \lambda_{c_2} | V | c \lambda_{c_2}, c \lambda_{c_1})]$$

$$(\text{HB:}) \quad E_0^N = \frac{1}{2} \sum_{\lambda_c} [\langle c \lambda_c | T | c \lambda_c \rangle + \varepsilon_{c \lambda_c}]$$

- After summation

$$(\text{HB:}) \quad E_0^N = N \langle c | T | c \rangle + \frac{N(N-1)}{2} (cc | V | cc)$$

$$(\text{HB:}) \quad E_0^N = \frac{N}{2} (\langle c | T | c \rangle + \varepsilon_c)$$

HB in coordinate space

- Put bosons in local external potential (HO) $U(\mathbf{r})$ and employ
$$(\mathbf{r}_1 \mathbf{r}_2 | V | \mathbf{r}_3 \mathbf{r}_4) = \delta(\mathbf{r}_1 - \mathbf{r}_3) \delta(\mathbf{r}_2 - \mathbf{r}_4) V(\mathbf{r}_1 - \mathbf{r}_2)$$
- Replace $\alpha \equiv \mathbf{r}$ in HB equations and introduce wave function of condensate orbital $\phi_c(\mathbf{r}) \equiv z_r^c$

- Yields $W_{HB}(\mathbf{r}) = (N - 1) \int d\mathbf{r}' V(\mathbf{r} - \mathbf{r}') |\phi_c(\mathbf{r}')|^2$

- and HB equation

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + U(\mathbf{r}) + W_{HB}(\mathbf{r}) \right] \phi_c(\mathbf{r}) = \varepsilon_c \phi_c(\mathbf{r})$$

- Ground state

$$\langle \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N | \Phi_0^N \rangle = \phi_c(\mathbf{r}_1) \phi_c(\mathbf{r}_2) \dots \phi_c(\mathbf{r}_N)$$

- and condensate orbital minimizes ($\int d\mathbf{r} |\phi_c(\mathbf{r})|^2 = 1$) -- not shown

$$\frac{E_0^{HB}}{N} = \int d\mathbf{r} \phi_c^*(\mathbf{r}) \left[-\frac{\hbar^2 \nabla^2}{2m} + U(\mathbf{r}) + \frac{(N-1)}{2} \int d\mathbf{r}' V(\mathbf{r} - \mathbf{r}') |\phi_c(\mathbf{r}')|^2 \right] \phi_c(\mathbf{r})$$

Gross-Pitaevskii (GP) equation for dilute systems

- HB can only be applied when the interaction is weak and nonsingular: not the case in the real world since atom-atom interaction is strongly repulsive when electron clouds overlap
- Mean-field not appropriate
- Real N-boson wave function will vanish whenever two atoms enter repulsive zone
- Beyond mean field: sum a particular set of diagrams as in free space (as for fermions) --> ladder diagrams
- Replace bare interaction by effective interaction in the medium
- For very dilute systems no medium effect so can use free T
- At very low temperatures boson momenta very close to zero so only S-wave scattering contributes: characterized by one number
- Number is scattering length
- Simple way to incorporate is to replace bare interaction by so-called pseudopotential of zero range $V(r - r') \rightarrow g\delta(r - r')$
- Strength related to scattering length $g = \frac{4\pi\hbar^2 a}{m}$

Scattering theory

- Wave must asymptotically look like ($C_{\ell k}$ constant)

$$\psi_{\ell k}(r) \rightarrow C_{\ell k} [\cos \delta_{\ell k} j_{\ell}(kr) - \sin \delta_{\ell k} n_{\ell}(kr)]$$

- Free solutions spherical Bessel and Neumann functions with asymptotic behavior

$$j_{\ell}(x) \rightarrow \frac{\sin(x - \ell \frac{\pi}{2})}{x}, \quad n_{\ell}(x) \rightarrow -\frac{\cos(x - \ell \frac{\pi}{2})}{x}$$

- Standard result from QM: low-energy limit of phase shift

$$\delta_{\ell k} \sim k^{2\ell+1} [1 + \mathcal{O}(k^2)]$$

- so only S-wave $\ell = 0$ survives

- Scattering length defined as $-\frac{1}{a} = \lim_{k \rightarrow 0} k \cot \delta_{0k}$ completely characterizes the (effective) interaction at low energy

Values for atomic collisions

- $a = 2.75$ nm for ^{23}Na
- $a = 5.77$ nm for ^{87}Rb
- $a = 1.45$ nm for ^7Li
- $a \sim -23$ nm for ^{85}Rb
- $a = 3.45$ nm for ^{133}Cs
- Positive scattering lengths lead to stable condensates
- Negative scattering lengths lead to collapse
- Tuning scattering length is sometimes possible by applying a magnetic field and exploiting atomic hyperfine structure
- Experimentally confirmed

T-matrix

- Two-particle problem: replace m in all equations of Ch.6 by $m/2$
- Low-energy limit from integral equation for \mathcal{T}

$$\langle k' | \mathcal{T}^\ell(E) | k \rangle = \langle k' | V^\ell | k \rangle + \int_0^\infty dq \ q^2 \langle k' | V^\ell | q \rangle G^{(0)}(q; E) \langle q | \mathcal{T}^\ell(E) | k \rangle$$

- with propagator for free relative particle

$$G^{(0)}(q; E) = \frac{1}{E - \frac{\hbar^2 q^2}{m} + i\eta}$$

- Define half-on-shell T-matrix (energy equals energy initial state)

$$\langle k' | \tilde{\mathcal{T}}^\ell | k \rangle = \langle k' | \mathcal{T}^\ell(E = \frac{\hbar^2 k^2}{m}) | k \rangle$$

- Corresponding integral equation

$$\langle k' | \tilde{\mathcal{T}}^\ell | k \rangle = \langle k' | V^\ell | k \rangle + \frac{m}{\hbar^2} \int_0^{+\infty} dq \ q^2 \frac{\langle k' | V^\ell | q \rangle \langle q | \tilde{\mathcal{T}}^\ell | k \rangle}{k^2 - q^2 + i\eta}$$

- Diagonal element related to phase shift

$$\langle k | \tilde{\mathcal{T}}^\ell | k \rangle = -\frac{2\hbar^2}{m\pi k} e^{i\delta_{\ell k}} \sin \delta_{\ell k}$$

Low-energy limit

- From behavior of phase shifts in this limit

$$\langle k | \tilde{T}^\ell | k \rangle \rightarrow \frac{2\hbar^2}{m\pi} a \delta_{\ell,0}, \quad \text{for } k \rightarrow 0$$

- also for

$$\langle k' | \tilde{T}^\ell | k \rangle \rightarrow \frac{2\hbar^2}{m\pi} a \delta_{\ell,0}$$

- expansion for small momenta should yield the same constant

- In plane-wave basis
$$\begin{aligned} \langle k' | \tilde{T} | k \rangle &= \sum_{\ell m \ell' m'} \langle k' \ell' m' | \tilde{T} | k \ell m \rangle Y_{\ell' m'}(\hat{k}') Y_{\ell m}^*(\hat{k}) \\ &= \sum_{\ell} \langle k' | \tilde{T}^\ell | k \rangle \frac{2\ell + 1}{4\pi} P_\ell(\omega) \end{aligned}$$

- using rotational invariance
$$\langle k' \ell' m' | \tilde{T} | k \ell m \rangle = \delta_{\ell, \ell'} \delta_{m, m'} \langle k' | \tilde{T}^\ell | k \rangle$$

- So plane-wave half-on-shell matrix element isotropic

$$\langle k' | \tilde{T} | k \rangle \rightarrow \frac{\hbar^2}{2\pi^2 m} a$$

Contact force

- Corresponding effective interaction in coordinate space from

$$(r'_1 r'_2 | \tilde{T} | r_1 r_2) = \int \frac{dk_1}{(2\pi)^{3/2}} \frac{dk_2}{(2\pi)^{3/2}} \frac{dk'_1}{(2\pi)^{3/2}} \frac{dk'_2}{(2\pi)^{3/2}} e^{i(k_1 \cdot r_1 + k_2 \cdot r_2 - k'_1 \cdot r'_1 - k'_2 \cdot r'_2)} \langle k'_1 k'_2 | \tilde{T} | k_1 k_2 \rangle$$

- Introducing $K = k_1 + k_2$, $K' = k'_1 + k'_2$; $k = \frac{k_1 - k_2}{2}$, $k' = \frac{k'_1 - k'_2}{2}$
- and employing momentum conservation $(k'_1 k'_2 | \tilde{T} | k_1 k_2) = \delta(K - K') \langle k' | \tilde{T} | k \rangle$
- Substitution of low-energy limit then yields

$$(r'_1 r'_2 | \tilde{T} | r_1 r_2) = \frac{4\pi\hbar^2 a}{m} \delta(r_1 - r'_1) \delta(r_2 - r'_2) \delta(r_1 - r_2)$$

- Form of local zero-range interaction

$$\tilde{T}(r_1 - r_2) = g \delta(r_1 - r_2)$$

- with $g = \frac{4\pi\hbar^2 a}{m}$
- So previous assertions are justified

Gross-Pitaevskii (GP) equation

- Dilute system: average interparticle spacing $\rho^{-1/3}$ large compared to magnitude of scattering length, or $\rho|a|^3 \ll 1$
- Previous discussion suggests that HB mean-field can be applied in dilute case: replace V (even if strong) with the pseudo potential
- HB potential then becomes $W_{HB}(\mathbf{r}) = g(N-1)|\phi_c(\mathbf{r})|^2 \approx gN|\phi_c(\mathbf{r})|^2$
- HB equation $\left[-\frac{\hbar^2}{2m} \nabla^2 + U(\mathbf{r}) \right] \phi_c(\mathbf{r}) + gN|\phi_c(\mathbf{r})|^2 \phi_c(\mathbf{r}) = \mu \phi_c(\mathbf{r})$
- Looks like nonlinear Schrödinger equation and is referred to as the time-independent Gross-Pitaevskii equation
- Condensate orbital also minimizes (with $\int d\mathbf{r} |\phi_c(\mathbf{r})|^2 = 1$)
$$E_0^{GP}/N = \int d\mathbf{r} \left(\frac{\hbar^2}{2m} |\nabla \phi_c(\mathbf{r})|^2 + U(\mathbf{r}) |\phi_c(\mathbf{r})|^2 + \frac{gN}{2} |\phi_c(\mathbf{r})|^4 \right)$$
- Time-dependent GP equation
$$\left[-\frac{1}{2m} \nabla^2 + U(\mathbf{r}; t) \right] \phi_c(\mathbf{r}; t) + gN|\phi_c(\mathbf{r}, t)|^2 \phi_c(\mathbf{r}; t) = i\hbar \frac{\partial}{\partial t} \phi_c(\mathbf{r}; t)$$
- GP and GP(t) all that is needed to explain most data BEC

Confined bosons in harmonic traps

- Confining potential well approximated by HO

$$U(r) = \frac{m}{2}(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)$$

- usually with cylindrical symmetry (cigar or pancake)

- Include interaction at the GP level

- Effect can be large even when the system is dilute

- Estimate: assume condensate wave function approximately HO ground state $\phi_{000}(r)$ (see Ch. 5)

- Central density of condensate $\rho(0) = N|\phi_c(0)|^2 \approx N \left(\frac{m\omega_{HO}}{\pi\hbar}\right)^{3/2} = \frac{N}{\pi^{3/2} a_{HO}^3}$

- Typical values: $10^3 < N < 10^6$, $|a| \sim 10^{-9} \text{m}$, $a_{HO} \sim 10^{-6} \text{m}$ so $10^{-6} < \rho|a|^3 < 10^{-3}$

- So very dilute

- Consider mean-field potential $W_{HB}(0) = gN|\phi_c(0)|^2 \approx N \frac{a}{a_{HO}^3} \frac{4\hbar^2}{m\sqrt{\pi}}$

BEC in traps at the GP level

- Compare with HO energy scale $\hbar\omega_{HO} = \frac{\hbar^2}{ma_{HO}^2}$
- Ratio proportional to $u = N \frac{a}{a_{HO}}$
- Measure of strength of interaction effects
- For quoted values $1 < |u| < 10^3$
- So expect large deviations of GP w.r.t. noninteracting profile
- Example $u \sim 125$
 $a = 2.75 \text{ nm}$ and $a_{HO} = 1.76 \mu\text{m}$
- Column density $\bar{\rho}(z) = \int dy \rho(0, y, z)$
- $8 \times 10^{23} \text{ Na atoms}$
- Trap $\omega_x = \omega_y = 2050 \text{ rad/s}$ and $\omega_z = 170 \text{ rad/s}$
- Reduction of 12 w.r.t. HO only

