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Some questions ...
What does a nucleon do in the nucleus?
Is this a legitimate question?
Speculations ...
How strong is the dependence on N and Z?

Energy scales: As high as a realistic Vi will take you
A-1sobars, pions

As low as the first excited state

= ALL OF THEM! HOW?
= Time-dependent formulation not surprising




How?

Method:

Why:

(Text)Book:

Review:

Green’s functions (Propagators)
Feynman diagrams

Physical insight and useful for all many-body systems

Link between experiment and theory clear

Can include all energy scales

Efficient with information; generates amplitudes not wave functions

Willem H Dickhoff & Dimitri Van Neck
“Many-Body Theory Exposed!”
Propagator description of quantum mechanics in many-body systems

World Scientific (2005)

WHD & Carlo Barbieri
Prog. Part. Nucl. Phys. 52, 377-496 (2004)



Outline

e  What is a propagator

e  Propagator in the many-body problem
e Information contained in propagator

e  Spectral functions

e Relation with experimental data

e  Experimental results

Qutline of perturbation theory



What 1s a propagator or Green’s function?

Time evolution 1s governed by the Hamiltonian H. For a single
particle the state
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Relation between wave function at ¢ and #, can then be written as
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with the propagator or Green’s function defined by
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P Recall Huygens’ principle!




Alternative expressions
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So numerator yields information on wave functions
and denominator on eigenvalues of H.



How 1s G calculated?

“Simple” for the case of one particle. Can proceed by splitting
H=H,+V and using the operator identity 11 1
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Diagrams
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Single-particle propagator in the medium

Definition Gla,Bt 1) = —%<‘I{§V ‘T[aaH(t)a;H (t')] ! >

with I > -E; “Pév > for the exact ground state
Ly .y ) )

and ay, (r)=e" ae " (Heisenberg picture)

while T orders the operators with larger time on the left including
a sign change
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Fourier transform of G (Lehmann representation)
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Numerator contains information about “wave functions™
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Spectral functions

Probability density for the removal of a particle with quantum
numbers represented by a from the ground state, while leaving

the remaining system at an energy EY'=E) - E

Si(eE)= Y|

. = N N-1
for energies £ =& =Ej -k,

a |w? >‘26(E ~(E) - Ejj‘l))

Relation of “hole” spectral function to propagator

1
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Relation with experimental data

Direct knockout reaction:

Transfer a large amount of momentum and energy to a bound N-particle system
leaving an ejected fast particle and a bound N-1 system. By observing the momentum
of the ejected particle one can reconstruct the hole spectral function.

Initial state |¥,) = ‘lIfév > Final state ‘lI’f> = a;|wY -1>

AL +
External probe transfers momentum P (q) - E a3 ;g

Transition matrix element <\Pf
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(Plane Wave) Impulse Approximation = ejected particle absorbs g

Cross section from Fermi’s
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Basic idea of ¢ P
(e,2e) or (e.ep) qm%}mmn

Target atom or nucleus

SE-E,-E,)
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Simplest case: (p.¥,
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Realistic case : distorted waves / more realistic
description of knocked out particle



Atoms studied with the (e,2e) reaction
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And so on for other atoms ...
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Helium
in Phys. Rev. A8, 2494 (1973)
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Hydrogen 1s wave function
“seen” experimentally
Phys. Lett. 86A, 139 (1981)
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Spectroscopic factors in atoms
For a bound final N-1 state the spectroscopic factor is given by § = f df)K‘I{iV B ‘aﬁ“l‘év >‘2

For H and He the 1s electron spectroscopic factor is 1
For Ne the valence 2p electron has $=0.92 with two additional fragments,
each carrying 0.04, at higher energy.
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(e,ep) cross sections for closed-shell nuclel
NIKHEEF data, L. Lapikas, Nucl. Phys. A553, 297¢ (1993)
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Except ....
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Spectroscopic factor

E. Quint, Ph.D.thesis NIKHEF, 1988

and ...
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Quasihole strength or
spectroscopic factor Z(2s,,,) =0.65

n(2s ,,) =0.75
from elastic electron scattering

Strong fragmentation
deeply-bound states
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Many-body perturbation theory for G

e [dentify solvable problem by considering ﬁo ~T+U
where U i1s a suitable auxiliary potential.

* Develop expansion in ﬁl -V-U

 Employs time-evolution, Heisenberg, Schrodinger, and
interaction picture of quantum mechanics.

* Once established, this expansion (expressed in Feynman diagrams)
1s organized 1n such a way that nonperturbative results can be
obtained leading to the Dyson equation. The Dyson equation
describes sp motion in the medium under the influence of the
self-energy which is an energy-dependent complex sp potential.

e Further insight into the proper description of sp motion in the
medium 1s obtained by studying the relation between sp and
two-particle propagation. This allows the selection of appropriate
choices of the relevant ingredients for the system under study.



