
E&M

Inclusion of the electromagnetic field in  
Quantum Mechanics 

similar to Classical Mechanics  
but with interesting consequences

• Maxwell’s equations 
• Scalar and vector potentials 

• Lorentz force 

• Transform to Lagrangian 
• Then Hamiltonian 

• Minimal coupling to charged particles
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Scalar and Vector potential
Quantum applications require replacing 
electric and magnetic fields! 
                          implies 

From Faraday 

so 

or

in terms of vector and scalar potentials. 
Homogeneous equations are automatically solved.
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Gauge freedom

Remaining equations using

To decouple one could choose (gauge freedom) 

more later… first
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Coupling to charged particles

Lorentz 

Rewrite 

Note 
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Check
Yields Lorentz from 

Equations of motion 

Generalized momentum 

Solve for v and substitute in Hamiltonian 
--> Hamiltonian for a charged particle
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E&M

Include external electromagnetic field in QM
• Static electric field: nothing new (position --> operator) 

• Include static magnetic field with momentum and position 
operators 

• Note velocity operator 

• Note Hamiltonian not “free” particle one 

• Use 

• to show that 

• Gauge independent! So think in terms of
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Include external electromagnetic field
• Include uniform magnetic field 

• For example by 

• Only nonvanishing commutator 
• Write Hamiltonian as 

• but now                  so this corresponds to free particle motion 
parallel to magnetic field (true classically too) 

• Only consider 

• Operators don’t commute but commutator is a complex number!  

• So...
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Harmonic oscillator again...
• Motion perpendicular to magnetic field --> harmonic oscillator 

• Introduce 

• with cyclotron frequency 

• Straightforward to check 

• So Hamiltonian becomes 

• and consequently spectrum is (called Landau levels)
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Aharanov-Bohm effect (bound states)
• Consider hollow cylindrical shell 

• Magnetic field inside inner cylinder either on or off 

• Charged particle confined between inner and outer radius as well 
as top and bottom
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Discussion
• Without field: 

– Wave function vanishes at the radii of the cylinders as well as top and 
bottom --> discrete energies 

• With field (think of solenoid) 
– No magnetic field where the particle moves; inside in z-direction and 

constant  

– Spectrum changes because the vector potential is needed in the Hamiltonian 

– Use Stokes theorem 

– Only z-component of magnetic field so left-hand side becomes  

– for any circular loop outside inner cylinder (and centered) 

– Vector potential in the direction of       and line integral --> 

– Resulting in                        modifying the Hamiltonian and the spectrum!!
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Example
• No field 

• Example of radial wave function 

• Problem solved in cylindrical coordinates 

•                        Also with field -->
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Quantize electromagnetic field

•Classical free field equations 
•Quantize 

•Photons 

•Coupling to charged particles 
•One-body operator acting on charged particles and 
photons
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Scalar and Vector potential

Quantum applications require replacing 
electric and magnetic fields!

in terms of vector and scalar potentials. 
Homogeneous equations are automatically solved.
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Gauge freedom
Remaining equations

To decouple employ gauge freedom. 
Observe: adding gradient of scalar function to 
vector potential yields same magnetic field 
To keep electric field the same: change scalar 
potential accordingly!
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Gauge transformation
• Explicitly 

• With                                                  --> same E&M fields 

• Can always find potentials that satisfy 
• If not: choose      such that

A ) A0 = A+r�

⇥ ) ⇥0 = ⇥� 1

c

��

�t

E = �r�� 1

c

�A

�t
B = r⇥A

r ·A+
1

c

��

�t
= 0

⇤

0 = r ·A0 +
1

c

�⇥0

�t
= r ·A+

1

c

�⇥

�t
+r2�� 1

c2
�2�

�2t



r ·A+
1

c

��

�t
= 0

r2�+
1

c

⇤

⇤t
(r ·A) = �4�⇥

r2A� 1

c2
⇤2A

⇤t2
�r

✓
r ·A+

1

c

⇤�

⇤t

◆
= �4�

c
j

E&M

Employ this gauge freedom

Can choose                                          (Lorentz gauge) 

Leads to wave equations
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Radiation gauge

Alternative: radiation gauge (Coulomb, or 
transverse gauge)--> useful for quantizing 
free field 
yields
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Instantaneous Coulomb
Yields instantaneous Coulomb potential 

Vector potential --> inhomogeneous wave equation 
rhs can be calculated from instantaneous Coulomb potential

Now no sources ⇒ free field 

and       ⇒ solve in  
large box with volume
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Free field solutions
Use periodic BC so expand in plane waves to avoid standing ones 
Allowed values                                                                                                                                
also for y and z

Normalization 

So solution can be written as

Gauge choice ⇒  

So for future reference:                                          (polarizations)    
     

From wave equation                                               for each mode
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Harmonic solutions
Fourier coefficients oscillate harmonically  ⇒

So time dependence:  

Given initial distribution of                     --> problem solved! 

E&M fields real so make vector potential explicitly real
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Fields
Use 

Then electric field 

and magnetic field

A(x, t) =
1

2
p
V

X

k

⇥
Ak(t) +A⇥

�k(t)
⇤
eik·x



E&M

Energy in field
General 

Use 

Note fields are real so 
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Energy in field continued
Similarly 

(exercise) 

So with 

Energy becomes 

Note: no time dependence!

Z

V
dx B ·B =

Z

V
dx B ·B⇤

=
1

4

X

k

k2
��Ak(t) +A⇤

�k(t)
��2

Z

V
dx E ·E =

1

4

X

k

k2
��Ak(t)�A⇤

�k(t)
��2

Hem =
1

8�

Z

V
dx (E ·E +B ·B)

=
1

8�

1

4

X

k

2k2
⇣
|Ak(t)|2 + |A�k(t)|2

⌘

=
1

8�

X

k

k2 |Ak(t)|2 =
1

8�

X

k

k2 |Ak|2



E&M

Expand Fourier coefficients along 
polarization vectors
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Preparation for QUANTIZATION
In order to quantize, introduce real canonical variables 

Invert --> 

So 

And thus …..(what else) 
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Oscillators of course
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                  are canonical variables                        

Check 

So 

and from 
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Similarly for generalized momentum 

Q̇k = Pk =
�Hem

�Pk

Qk, Pk

Ak(t) = e�i�ktAk

Qk(t) =
i

2c
p
4�

[Ak(t)�A⇤
k(t)]



E&M

And now….
• Back to Hamiltonian 

• Looks like a sum of oscillators --> treat as such! 

• From canonical classical variables in classical mechanics 

• Quantize by introducing commutation relations between 
operators!!! (Dirac)
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Photons
Introduce the usual operators 

with commutators
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Each mode HO

Number operator for each mode 
Then 

and 

So enough to work with one mode 
Eigenkets of this Hermitian operator 

Consider 

also eigenket with eigenvalue
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More
• Similarly 

• So 

• Normalization from 

• Phase choice 
• Also 

• Integers otherwise negative norm appears
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Photon states
• Operator that adds a photon with momentum         and 

polarization 

• Single photon state 

• No quantum: vacuum state 

• Normalized two-photon state (same mode) 

• Different modes
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Development
• General state 

• So that 

• Photons: quantum excitations of the radiation field since classical 
vector potential has been replaced by quantum operator acting on 
photon states! 

•                               also
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Vector potential operator

Acts on photon states: adds or removes one! 

Acts on charged particle at x and t (first quantization) 

First rewrite Hamiltonian of free field for further interpretation 

No work...
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Hamiltonian free field

Number operator for each mode 
Hamiltonian operator 

Momentum operator from Poynting vector (exercise) 

Single photon state 

So massless!
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More on photon states
• Characterized also by polarization vector 

• Transforms as vector --> interpret as 1 unit of intrinsic angular 
momentum or spin of the photon 

• Consider circular polarization vectors 

• Rotate by angle         about propagation axis 

• New circular polarization vectors
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Angular momentum
• Compare 

• With 

• Interpret 

• Quantization axis along        so photons can have helicity 1 or -1 
but not 0 --> no longitudinal photons 

• No contradiction (no rest frame where photon is at rest) 

• Photons with good helicity
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Interaction of electrons with photons
• Complete Hamiltonian includes interaction of charges and their 

coupling to the electromagnetic field 

• Use radiation gauge 

• Vector potential in minimal substitution 
• Hamiltonian for Z electrons in an atom plus radiation field
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Electron and interaction Hamiltonian

Electrons 

Coupling 

with 

No spin yet. Add by hand 

as before from
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Towards transitions between atomic levels

• Solve electron Hamiltonian (approximately) 

• Hartree-Fock method for example 

• Ground state: occupy lowest HF orbits 
• Treat atoms in IPM with e.g. in second quantization 

• Free electromagnetic field solved 

• Transitions between                                states --> coupling 

• Usually emission or absorption of one photon 
• Use second quantization for electrons as well
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Second quantized
Using transversality 

Remember 

then 

and 

neglect term with vector potential squared

pi ·A(xi, t) = A(xi, t) · pi

A(xi, t) =
X

k�
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Ĥspin
int =

e

m

X

⇥⇤

X

k�

✓
2⇤~
⌅kV

◆1/2

(ik � ek�)

·
n
⇥�| ei(k·x�⌅kt) s |⇥⇤ a†⇥a⇤ak� + ⇥�| e�i(k·x�⌅kt) s |⇥⇤ a†⇥a⇤a

†
k�

o
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Next step
• Use standard time-dependent perturbation theory for transitions 

of the type 

• Do only lowest order (otherwise squared term must be included) 

• Validity 
– present results for “slow” particles 

– not good for interaction with modes                            (--> pair creation) 

– can be eliminated by cut-off: sum only                   with 

– should still be large with respect to transition frequency of particles so 

– Hydrogen:  

–                                                                                   

~� � mc2

|k| � kc ~ckc = ~�c ⌧ mc2

� =
e2

~c ' 1

137

|A⇤ |nk↵⇤ � |A;nk↵⇤ ⇥ |B;nk↵ ± 1⇤

~⇥0 ⇠ �2mc2 ' 1H

~⇥c ⇠ � mc2

mc2 ⇠ 0.5 MeV

~�0 ⌧ ~�c ⌧ mc2
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Apply time-dependent perturbation theory
• Results from TDPT 

• Constant potential 
– Transition rate from Fermi’s Golden Rule 

– No change when Fock space formulation is used 

– Except: “potential” now includes                   or 

– So instead of                        -->                                 for removing a photon         
(absorption) 

–                                              -->                                 for adding a photon 
(emission) 

– Corresponding Golden Rule becomes 

– With             no longer including time dependence

wi![f ] =
2�

~ ⇥(Ef ) |�f |V |i⇥|2

e�i�t ei�t

Ef = Ei Ef = Ei + ~�

Ef = Ei � ~�

wi![f ] =
2�

~

����f | Ĥ 0
int |i⇥

���
2
⇥f

Ĥ
0
int
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Emission of a photon
• We want to describe transitions of the kind 

• So we need a transition rate of the kind 

• Density of states  --> # of allowed states in interval                 
for photon emitted into solid angle 

• First evaluate                                               (note                      ) 

|A;nk↵ = 0⇥ � |B;nk↵ = 1⇥

wd� =
2�

~

����B;nk� = 1| Ĥ 0
int |A;nk� = 0⇥
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Z
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Z
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Density of states
• Required density of states is then obtained from 

• Therefore 

• Initial state 
• with 

• Final state 
• with 

• such that

⇥~�,d� =
V

(2�)3
⇤2

~c3 d�

|A� |0� = |i�
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Ĥelectrons + Ĥem
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Corresponding rate
• Insert density of states 

• Keep in mind 

• Only second term contributes 

• Single-particle matrix elements require evaluation 
• Also matrix element connecting initial and final atomic state plus 

photon involving

wd� =
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~
V

(2�)3
⇥2
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Rate continued
• So right now 

• Typical transition: optical ~ eV -->                      (green --> 2 eV) 

• Atomic dimension: ~ 

• So from 

• therefore 

• Electric dipole (E1) approximation 
• Photon matrix element  

• Consider alkali atom in IPM

wd� =
2⇤

~
V
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Atom
• Alkali atom: one particle outside closed shell 

• Transition to final state 

• Evaluate 

• not unexpected… 
• So we also need

|A� = |n�m�ms;�0� = a†n�m�ms
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Dipole matrix element
• Use central field from 

• to evaluate 

• First note that 
• So 

• Replace

ek� · �n0�0m0
⇥m

0
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Matrix element
• Then (hence dipole approximation) & note change in parity 

• Insert all ingredients 

                                   Sum over polarization & integrate over all directions
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Rate
• Therefore 

• Note 

• Need 

• So that
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4e2�3
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E&M

Experimental conditions
• Sum also over all projections          of final state 

• So 

• Lifetime:                                     exponential decay:
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Explicit example
• Hydrogen atom                transition 

• Radial wave functions 

• Lifetime 

• using 

• in agreement with experiment ...
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General issues related to absorption (emission)
• Absorption 

– Initial state: assume only one type of photons 

– Atom absorbs 1 photon 
• initial state 

• final state 

–        contribution with             so 

– “Before” TDPT --> 

– Can obtain equivalent classical result by taking classical vector potential 

– for         large; then do minimal substitution
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Absorption rate in dipole approximation
• TDPT 

Absorption cross section 
• Defined --> Energy per unit time absorbed by atom A --> B              

                              energy flux of radiation field
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Example
• Take photon momentum along z-axis and polarized light --> x-axis 

• As before use 

• Initial state: ground state of closed shell atom 
• Final state: excited state 

• Simple particle-hole state 

• Evaluate 
• So absorption cross section 

• IPM 
•                                                              and 

• thus
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Thomas-Reiche-Kuhn sum rule
• Simple model of absorption cross section: delta spike at every 

allowed combination of  

• Dipole matrix element: see before 

• Consider integral over all possible absorption contributions 

• More general expression
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Evaluate double commutator
• Only kinetic contribution of Hamiltonian survives 

• and therefore 

• Planck’s constant has disappeared --> classical result (Jackson)
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Absorption cross sections in nature
• Atoms
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More
• Big molecules
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and more
• Silicon



E&M

for nuclei
• 197Au nucleus
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and finally
• Proton
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Photoelectric effect (--> beginning 1905)
• Absorb high-energy photon (energy still much less than electron 

rest mass) 

• Must overcome binding of electron 

• Close to threshold Coulomb cannot be neglected for outgoing 
electron 

• At higher energy approximate final electron by plane wave 

• Use absorption cross section but replace delta function by 
appropriate density of final states 

• But don’t make dipole approximation! 
• Initial state 

• Final state 

• Evaluate density of states for plane wave
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|B� = a†kfms
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Density of states
• Wave function 

• As usual                     etc. 

• Energy 

• So 

• Cross section
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Explicit example
• K-shell knockout 

• Then 

• Consider 

• Finally
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General issues related to emission
• Emission 

– Initial state: assume only one type of photons 

– Atom emits 1 photon 
• initial state 

• final state 

–        contribution with             so 

– Induced emission 

– Can obtain equivalent classical result by taking classical vector potential 

– for         large; then do minimal substitution 

– QM: induced and spontaneous emission on the same footing
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E&M

Other applications
• Remember 

• Photon scattering can also be handled with this Hamiltonian 

• Squared vector potential term contributes directly 

• Linear terms in vector potential should be considered 
simultaneously in second order
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E&M

Towards Planck’s radiation law --> 1900
• Consider atoms and radiation field that exchange energy by a 

reversible process                                        such that thermal 
equilibrium is established 

•             population of higher level 

•             population of lower level 
• Equilibrium 

• and also 

• emission 

• absorption
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E&M

Thermal occupation of modes
• Ratio of rates 

• and therefore 

• So thermal occupation 

• Familiar? 

• Onward to Planck!
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E&M

Derivation of Planck
• Consider radiation in a black box / cavity 

• Made of atoms that emit and absorb all types of radiation 

• Use previous results to determine energy density of radiation 
field in angular frequency interval 

• Familiar calculation: count contribution of all states in interval 

• Before 

• Now all angles                         and polarizations --> 2 

• Multiply with energy X population per volume
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E&M

Planck --> 1900 where it all began
• Switch to frequency distribution 

• Planck’s famous radiation law!
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