Inclusion of the electromagnetic field in
Quantum Mechanics
similar to Classical Mechanics
but with interesting consequences

* Maxwell's equations

» Scalar and vector potentials

* Lorentz force

* Transform to Lagrangian

» Then Hamiltonian

* Minimal coupling to charged particles



Maxwell's equations

Gaussian units

V. E(x,t)
V . B(x,t)

V x E(x,t)

V x B(x,t)




Scalar and Vector potential

Quantum applications require replacing
electric and magnetic fields!

B = VxA imples V-B=0
From Faraday Vx<E+12A>:O
c Ot
10
10A
or E = —VCID——a—
c Ot

in terms of vector and scalar potentials.
Homogeneous equations are automatically solved.



Gauge freedom

Remaining equations using V x (Vx A)=V (V-A)-V-?A

10
‘P+-—(V-A) = —4
\% +Cat(V ) 77,0*
1 0%A 1 0P 47
2 . I — ——.*
VA - 5o V(VA.C(%> ~J

To decouple one could choose (gauge freedom)

1 00
V-A+-—=0
_I_c@t

more later... first



Coupling to charged particles

Lorentz F:q{E—I—lfv X B}
C

Rewrite F:q{—VCI)—%%? | %fvx(VxA)}*

Note vx(VxA)=V@w-A)-(wv-V)A
0A dA

and P I(’U'V)A:E

AU witht=qo—%v. A

dt Ov C

So that F= _—vU 1



Check

1
Yields Lorentz from L =T — U = imv2 —qP + %fu . A

| | d0L _JL
Equations of motion 0 op
OL
Generalized momentum  p = 5y = MY + %A

Solve for v and substitute in Hamiltonian
--> Hamiltonian for a charged particle

_ 2 4)?
H:p-v—L:(p 2;;4) - q® *




Include external electromagnetic field in QM
Static electric field: nothing new (position --> operator)

Include static magnetic field with momentum and position

operators _q
(P 1A@)

2m

1
Note velocity operator V= — (p — gA)
m

Note Hamiltonian not "free” particle one

Use A = EaAJ
[ v ‘7] 1 0%
to show that  [v;, v;] = ¢ ah B
o show tha j 5 Cigh Dk ,

Gauge independent! So think in ferms of H = §m\fv\2



Include external electromagnetic field
Include uniform magnetic field

For example b B — B2
ple by (x) = Bz B

m2c

Only nonvanishing commutator Vs, Uy] =1

Write Hamiltonian as |

H:§m(vi+v§+v§)

Pz : : :
but now v- =~ so this corresponds fo free particle motion

parallel to magnetic field (true classically too)

Only consider

1
H = 5 (fuazj +v§)

Operators don't commute but commutator is a complex nhumber!
So...



Harmonic oscillator again...

Motion perpendicular to magnetic field --> harmonic oscillator

m .
Introduce a = e, (Vg + V)
m .
ot = o, (Vg — Tvy)
. qB
with cyclotron frequency W, = —
mc

Straightforward to check [a, aw =1

So Hamiltonian becomes

H = hwc( a+)

and consequently spectrum is (called Landau levels)
E, = hw. (n +1) n=0,1,...



Aharanov-Bohm effect (bound states)

Consider hollow cylindrical shell

rl :t‘2
C—==2A\

T 0y V

Magnetic field inside inner cylinder either on or of f

Charged particle confined between inner and outer radius as well
as top and bottom



Discussion

- Without field:

Wave function vanishes at the radii of the cylinders as well as top and
bottom --> discrete energies

- With field (think of solenoid)

No magnetic field where the particle moves; inside in z-direction and
constant

Spectrum changes because the vector potential is needed in the Hamiltonian
Use Stokes theorem / (VxA) -nda= 7{ A-de
S C

Only z-component of magnetic field so left-hand side becomes

/ (VxA) nda= / BO(r, — p)da = Brri
S S

for any circular loop outside inner cylinder (and centered)

Vector potential in ’rhg direction of Qg and line integral --> 27r

Resultingin A = %qﬁ modifying the Hamiltonian and the spectrum!!
r



Example
* No field
+ Example of radial wave function

* Problem solved in cylindrical coordinates

3 T \/ t v
Figure 2: Radial eigenfunction for n =4 and f =0 | /\

o 2 1 13 [] \fvo/
. Also with field --> \./

Figure 3: Radial eigenfunctions for f =0 and f = 0.4



Quantize electromagnetic field

*Classical free field equations
‘Quantize

‘Photons

*Coupling to charged particles

*One-body operator acting on charged particles and
photons



Maxwell's equations

Gaussian units

V- -E(x,t) = 4dnp(x,t)
V- -B(xz,t) = 0
V x E(x,t) = —EQB( )
T e
VxBat) = ~2B@n+




Scalar and Vector potential

Quantum applications require replacing
electric and magnetic fields!

E - _vo_ %4

c Ot
B = VxA

in ferms of vector and scalar potentials.
Homogeneous equations are automatically solved.



Gauge freedom

Remaining equations

1 0
2P + = LAY = —4
\Y +Cat(v ) TP
1 0%A 1 0P 47
2 . 10% _ AT
VA c? Ot? V(V A+C(9t> ¢’

To decouple employ gauge freedom.

Observe: adding gradient of scalar function to
vector potential yields same magnetic field

To keep electric field the same: change scalar
potential accordingly!



Gauge transformation
- Explicitly A = A =A+VA

- With F = -V — —— --> same E&M fields

» Can always find potentials that satisfy V- A+ ——— =0
+ If not: choose A such that

c Ot

1 0’ 1 0P 1 O%A
0=V -A + = —V- - A+ -—— 2A
v +08t v +06t+v c? 02t




Employ this gauge freedom

10
P+ -—(V-A) = —4
Ve + - (V- A) P
1 0°A 10 47
2A . A L U _ T
v c? Ot? v (V c Ot ) ¢’
1 0d
Can choose V- A+ v 0  (Lorentz gauge)
Leads to wave equations
PR 0% P -
Voo whrvolli 47 p
2
VA — Lo°A = —4my




Radiation gauge
1

P+ —(V-A) = —4
Vo + Cat(v ) T
1 0%A 1 0 47
2 . 1 0% _ AT
va c? Ot? V<V A+08t> c?

Alternative: radiation gauge (Coulomb, or
transverse gauge)--> useful for quantizing
free field V-A=0
yields V0 = —4dup

1 0°A 1_0® A4nm

2A _ - .
v c? Ot2 cvﬁt cj




Instantaneous Coulomb

x',t
Yields instantaneous Coulomb potential ®(x,t) =/ d>a’ ";( w’)\
. _

Vector potential --> inhomogeneous wave equation

rhs can be calculated from instantaneous Coulomb potential

Now ho sources = free field g = 1%‘?
C
224 B = VxA
1 .
and VZA =0 = solve in
c?2 Ot?

large box with volume VvV =1L°



Free field solutions

Use periodic BC so expand in plane waves to avoid standing ones

2
Allowed values k, = n,— n, = 0,+1,+2, ...

L
also fory and z
1 : /
Normalization V/ do e!B=F)® — 5,0
1%

1 |
So solution can be writtenas  A(x,t) = NG D Ap(t) e
k

Gauge choice = k- -Ap =0

So for future reference: Ai = Z ekaAka (polarizations)
a=1,2

0% A (t)
ot?

From wave equation + c*k*Ak(t) =0 for each mode



Harmonic solutions

Fourier coefficients oscillate harmonically = wi = ck
So time dependence: Ap(t) = e Ay
Given initial distribution of Ag(t = 0) --> problem solved!

E&M fields real so make vector potential explicitly real

1 k-x * —ik-x
A(x,t) = ﬁ (%:Ak(t)em ‘|‘zk:Ak(t)6 k >

1 * 1k-x
= v 2}; A (t) + A% (1)) e



Fields

1 )
Use Alx.t) = —— Ay (t A* ()] etF®
@) = 5 2 [An0+ A%
Then electric field
1 0A
E(a:,t) — —EE
— eV zk: (—iwy Ag(t) +iw,, A" (1)) e &
/L' .
_ A / —A* / ik-x
o 3 o el
and magnetic field
B(x,t) = VxA
7: )
— Ex [An(t) + A*, ()] eF™
i Ek | Ag(t) L(t)] e



Energy in field

1
General Hep, = =y de (E-E+ B - B)

Use E(m t 26\/7 Z Wi Ak, Aik(@] eik-:c

Note fields are real so

/da:E-E — /dwE-E*
1% 1%

|
—
ol
8
I
O
|
<
<
x>~
N
>
=
|
N
*
Py
=
EY
oy
8

Orthogonality = 1 Z w3 |Ap(t) — A" (1)]



Energy in field continued

Similarly /V de B-B = / dr B - B*
(exercise) _ _Z kQ\Ak 01 A°, |2
So with /v dwE°E:ZZk2}Ak (2) —A’ik(t)\2
k
1
Energy becomes H., = —/ de (E-E+ B - B)

- SMZ%Q(MM + 1Ak (1))
= ZkaAk Zk2|Ak|

Note: no tfime dependencel



Expand Fourier coefficients along
polarization vectors

Use Ak — Z ekaAka

a=1,2

1 2
-2 Hepm = — k2 A «
ST %a: Aol



Preparation for QUANTIZATION

In order to quantize, intfroduce real canonical variables
)

Qult) = 5= [Axlt) - A(e)
; *
PO = o7 [Aul0) + A3
Invert --> Ag(t) = —icvdn [Qk(t) + kaPk(t)]
So Aol = ar Qb+ o] = ar @ + K]
k k

And thus .....(what else)



Oscillators of course

1 5 2
Hom = o Z k2 |Ag(t)
P2
— Z k?c?Am (Qk -+ —)
wj;
= —Z (Pg +w;Qy)
Expand in polarizations P = Z ekalka Qr = Z ekalka
a=1,2 a=1,2
1
then Hem — 5 Z (Plga T wiQia)

ko



True canonical variables

Qp, P,  are canonical variables

Check Ap(t) = e "t Ay
So Ak(t) — —ikak(t)
and from  Qu(t) = 2;3/% [Ar(t) — AL (1)

(

tfollows Qu(t) = 57 [k Aw(t) — (iw) A4 (0] = Pe(®)

a]{em,

But also Q. L OP,

aHem
0Qk

Similarly for generalized momentum P, = —



And now....
Back to Hamiltonian

Looks like a sum of oscillators --> treat as such!

From canonical classical variables in classical mechanics

#

Quantize by intfroducing commutation relations between
operators!ll (Dirac)

[Pkom Pk’oz’: = 0

[Qkaa Qk’a’: = 0

[Qkom Pk’oz’: — ih(gk,k’éa,a’




Ak

1.
a’ka

with commutators

Photons

Introduce the usual operators

1 .
2hwk (Pka — Zwk@ka)
1 .
2ﬁwk (Pka -+ Z(Ukaoz)
[akoza a’k’oz’] = 0
_a’l]::oﬂ a’;rc’oz’ = 0

I

Aoy Apr oy — 5k,k’5a,o¢’



Each mode HO

Number operator for each mode Nia = al _aga

Then {aszom Nk:’oz’} — akzoza;rc’a’ak’oz’ _ alJrc’oz’a’k/O‘/a’kO‘

— akoza;rc/a/ak:’oz’ — aL/a/akaak’a’
_ T T
— Aol — Qpr o Oka | Ak’ of

— 5kk’ 50404’ Ak
and

[a’};aa Nk’a’} — _5kkz’ 504&’ CLL(X

So enough to work with one mode N =a'a
Eigenkets of this Hermitian operator NV [n) = n|n)
Consider  Nal|n) = [aw + aT] n) = (n+ al |n)

also eigenket with eigenvalue 7 + 1



More

Similarly Naln) = {a]\Af — a} ny = (n—1)a|n)
S0 a'ln) = ciln+1)
alny = c_|n—1)

Normalization from A
n={(n|N|n) = (n|a'aln) >0

Phase choice aln) = /nln—1)

Also a'ln) = Vn+lln+1)
Integers otherwise negative norm appears
aln) = vnln—1)
an—1) = vn—1|n—2)
al2) = V2|1)
all) = V1|0
al0) = 0




Photon states

Operator that adds a photon with momentum hk and
polarization « ;

g
Single photon state
al 10) =10,0,...,0, 1pa; Oucecnnl) = [1ga)
No quantum: vacuum state |0)
Normalized two-photon state (same mode)

1
—ap al 10) =10,0,...,0, 2k, 0.ccevr.) = |280)

\/ikoz

Different modes
a’;rcaak:’ ’O> ‘0707"'707 1ka70“'707 1k‘,’oz’70 °°°°°° > — ‘1ko¢1k‘,’a’> — a’lt:’ ’a;rcoz



Development

General state

_‘_ nk:iocz-
(2h.0)
|nk‘1a1nk52a2nk3a3“'> — H | ’O>
oo Moo
So that
alJcm-az- nklal...nkiai..) — \/nkiai + 1 \nklal...(nkiai -+ 1)>

Photons: quantum excitations of the radiation field since classical
vector potential has been replaced by quantum operator acting on
photon statesl!

, 1 cvVAamr
Ao = —icVinm [Qka + w_Pka] — |—iwr Qra + Pral
k

1
Wik \/2hwk
|8Th
=  CA/ — Qg
Wk

|8mh
also Ay, = ¢ La};a
Wk

X A/ 2hwk




Vector potential operator

2w hc? 1/2 . ,
A(%,t) — Z ( T ) {akaek()ée%(k-w—wk;t) + a’zaekae—z(k.w_wkt)}
k

ko

Acts on photon states: adds or removes onel
Acts on charged particle at x and t (first quantization)

First rewrite Hamiltonian of free field for further interpretation

No work...



Hamiltonian free field

Number operator for each mode Nga = a]taakza
Hamiltonian operator — Hep = ) huwy (Nka +§) = Y hwgNia

Momentum operator from Poynting vector (exercise)
. 1

P,, = — | &z (ExB—-BxE)
e \V4

= > ik (Rio +4) = D e,
ka ko

Single photon state  He,al |0) = hwy al.  |0)

PemaLa 0) = hk a;fm 0)
So massless!

m2ct = E? — p*c® = hPwi — BPk*c? = iPk*c® — R*k*c? = 0



More on photon states
Characterized also by polarization vector eg,

Transforms as vector --> interpret as 1 unit of intrinsic angular
momentum or spin of the photon

Consider circular polarization vectors
+ 1 .
e = 7 (ek,1 T i€k2)
Rotate by angle 0¢ about propagation axis
€x1 = COS0Q ex1 +S8indp exo = er1 +0¢ eg

€xo = —sin 0p €1 +Cos0p exa = —0¢ €ex1 + €2

. L 1 |
New circular polarization vectors ef’ = F 75 (er Hiery)

1 :
= e T \ﬁéqﬁ (er,2 £+ (—)iek,1)

— e® 3iop el
. +
= (1Fidp) el



Angular momentum

Compare e,:f/ = (1 Fi09) egf)
with € #%[Im) = e "¢ [1m)
= (1 —1mdo) |[Im)
Interpret m=1 = e,(:)
m=-1 = e,(c_)

Quantization axis along k so photons can have helicity 1 or -1
but not O --> no longitudinal photons

No contradiction (no rest frame where photon is at rest)

Photons with good helicity

a,zi (%1,1 + ia};’Q)

L1
NG



Interaction of electrons with photons

Complete Hamiltonian includes interaction of charges and their
coupling to the electromagnetic field

Use radiation gauge
Vector potential in minimal substitution

Hamiltonian for Z electrons in an atom plus radiation field

2. Ze2
z::|—+z|mz_wj|

1<

(pi + A (2, t

H =

'MN

1

1

— Helectrons + Hint + Hem

_ T
— E hwia,, . Oka
ko



Electron and interaction Hamiltonian

Electrons
Z Z
electrons Z Z —|— Z ’wz — mj
i=1 i—1 i<
Coupling
z e 2
Hz'nt — zz: [_2771(: (pz A<337,7 ) + A(Cﬂz,t) . pz) -+ chz A(.’,BZ, t) . A(w“ t)]
with s
27Thc2) / | |
Az, t) = {a L Cpg e B Timwkt) +al e ae_z(k'wz’—wk;t)}
@)=Y (D) {omees ! e

. LA §pin — T ) A
No spin yet. Add by hand H — Z si [V x Az, t)],_,

int
1=1

as before from E = —u- B



Towards transitions between atomic levels

Solve electron Hamiltonian (approximately)
Hartree-Fock method for example
Ground state: occupy lowest HF orbits
Treat atoms in IPM with e.g. in second quantization
Helectrons = Z Ent a;gmgmsaTLEmgms
nlmemg
Free electromagnetic field solved
Transitions between |atom) |photons) states --> coupling
Usually emission or absorption of one photon

Use second quantization for electrons as well



Second quantized
Using transversality Di - A(a%;, t) — A(Cl%', t) ' Pi

Remember
2mhc? 1/2 . ,
A(Q’)Z,t) — Z ( T ) {akaekael(k-mi—wkt) + a’iaekae_z(k.wi_wkt)}
k
ko
then
2 € 2mh 1/2 i(k-x—wpt) T
Hint = o Z Z wk—V €ko - {(5\ € P A3~y Ok
By ka

+ (Bl e kEmet) p ) a}avala}
and 1/2
2 Ssnin € 27Th .
mrt = S (Z) ik xew)
By ko

{<5’ ei(kz-w—wkt) S ”y> a%avaka -+ <6‘ e_i(k-aj—wkt) S h/> CLECLWQLQ}

neglect term with vector potential squared



Next step

Use standard time-dependent perturbation theory for transitions
of the type

|A) [nka) = |A;Nkga) = |B;nga £ 1)

Do only lowest order (otherwise squared term must be included)

Validity

present results for "slow" particles
not good for interaction with modes hw > mec? (--> pair creation)
can be eliminated by cut-off: sumonly |k| < k. with Aick. = hw. < mc?

should still be large with respect to transition frequency of particles so

hwy < hw, < mc”
Hydrogen: hwy ~ a’me® ~1H
hw. ~ «me?
mec®  ~ 0.5 MeV o = €~ =



Apply time-dependent perturbation theory

Results from TDPT

Constant potential

Transition rate from Fermi's Golden Rule

_27T

wisg) = 5 p(Ep) (FIV [

No change when Fock space formulation is used

Except: "potential” now includes e~ Wt op e'?

Soinsteadof k= F; -» E; = E; + hw for removing a photon
(absorption)
--> Ef = E; — hw for adding a photon

(emission) 5

2T A ,
Corresponding Golden Rule becomes — w;_,[f] = —+ ‘(f\ H, . \z>‘ pf

With H,, no longer including time dependence



Emission of a photon
We want to describe transitions of the kind
[A; ke = 0) = [Binga = 1)

So we need a transition rate of the kind

2 .
Wy = % <BBnka — 1’ Hfgnt Asnpge = O>

2
‘ Phw,d$
Density of states --> # of allowed states in interval hw + d(fw), iw

for photon emitted into solid angle df2
: L
First evaluate (note dn, = Z—dkx )
TC

(# of states < hw) = Z

= /dnx/dny/dnz with |k| < w/c

d’k = (QV)B /dk k* d
™




Density of states

Required density of states is then obtained from

(# of states < h(w + dw)) — (F# of states < hw) = prw.an dhw

Vv (w+dw)/ 5 \%4 w/ 5
= W/o dk k dQ_(27r)3/0 dk k* dS)
\% wtdw g, W'\ 2 %4 1 (w 3|t
- <27r>3d”/w = (‘) = ™3 (‘)
Vo w?
= (2W)3%dhw ds)
Vo w?
Therefore _ 70

Phw,dQ = (27T)3 73
Initial state |A)|0) = |7)
with (Helectrons + Hem) ‘Z> = FEa ’7/>

Final state |B> |1k)\> — |f>
with (Helectrons =+ Hem) |f> (EB + hwk) |f>

such that EA — EB -+ hwk



Corresponding rate

Insert density of states

2V w,% 2
= 4o ‘ )
Wda — h (27_‘_)3 hC3 <f| nt | >
Keep in mmd
=3[ = ewa - { (B¢ ply) ala,an.
By kK«

+(Ble™™ " ply) a}aava;l/a}

Only second term contributes
Single-particle matrix elements require evaluation

Also matrix element connecting initial and final atomic state plus
photon involving a%a,ya;,a



Rate continued

So right now
2
o Vw2 e® [2rh -
v =T g (1) D2 \ﬁe’”'{ (B p 1) (Blialahasalo4)}
By k'«
Typical transition: optical ~ eV --> fuwy, (green --> 2 eV)
Atomic dimension: ~ 107" m
1 —10
So fr'om hwk = kr = %’r‘ ~ eV 10 - ~ 10—4

he 1.24 x 10~% eV m

therefore e~k ® =1—gk - x=1
Electric dipole (E1) approximation
Photon matrix element (1xx|al. [0) = Sxr/dra

Consider alkali atom in IPM



Atom

Alkali atom: one particle outside closed shell

|A)Y = [Inlmymg; ®g) = ajwmems D)
Transition to final state
|B)Y = [n'l'mym’; ®y) = aT,E,me D)
Evaluate
(Blafay|A) = (ol twermmrabayaly,, .. 1®0)
= (@0l (85 — ahawemgm ) (3 = 0l ) 120)

= 6050nn
not unexpected..

So we also need erx - (n'0'm,m’|p|ntmem,)



Dipole matrix element
Use central field from

3 _ E : T _
Helectrons — End angmemsanﬁmgms = HO ‘nﬁmﬁms> — Ent ‘nﬁmﬁms>

nlmem

to evaluate ey - (0 f'm,m.|p |nfmemy)

First note that [pz, :1:] = —21hp

So p? P
Pl = —ink
2m= | m
5 _
p_ + Vnucleus + ‘/cent’rala £L — _Zhg
2m | m
[HO, iE] — —’th
m
m
Replace p = i— [Hy, x|

h



Matrix element

Then (hence dipole approximation) & note change in parity
.m

err - (n'mym! | plntmems) = epyr - (n'l'mym]| i— (Ho, x| [Infmemy)
m
= ik (n'0'my| x [nlmy) O m: (Enrer — €ne)
— —imwkek,)\ <n'€/m2\ xIr |n€mg> &msmg
2 3
Insert all ingredients wyq = ——2dQ|eg - (0 Cmy| @ [nlmg)|’
21 he?
2 3
€ Wi 2 1 gt 2
= dS) cos® Oy [(n''my | x |nfm
o~ 5 73 A (R Cmg | @ nfmy)|
\ 3 6 Sum over polarization & integrate over all directions
cos®; = sinfcoso
cos®y = sinfsing
Z = sin® 0
A

/dQ sin? @ = 27 / d(cos 0) sin® = 8%




Rate

4 2,3
ke [{(n'0'my | x \némgHQ

3hcs
Note [l | = [zl + [yl + (2 i)

2

Therefore =

2

1 1
= |1r1- 5w a] + i1 e -mla] + 1=
4
= 5 (YR P + 1Y [ + 4 Yo [6) }
4 2
= N (' ml| Yy, [nfme)]
Need ]
DTN . (ﬁmgllu‘ﬁ/m/) ! ol
(n'l'my|rYy, Infmy) = NoTE 20| |rYy||ne)
— /dr r? {/dQ Y;m/ (Q)Ylu(Q)Yemg(Q)} Ryyrpr (1)1 Ry (1)
_ /drr \/47T\/22é+16010’8/0)(€mg1u‘€/m2)
So that
- B 3 2041 ,
(n'0||rYi||nl) = /dr 73 Ry (1) Ry (1) X TP 0102 0)

3 2041
Lo 1/ (01000
ot \ o o T [ £0)



Experimental conditions

» Sum also over all projections mz of final state

pORISEI

4
> o > [ Oml| Y, [ntm)|”
m, e

Ar — (Eme L | £ m) ) 3 (204 1)2 9
3 £ 20+ 1 Tnveme g5 (LOLO1E0)
m,p
W +1 (0 —mhy 1|l —me) 5,  (2041)2 0
10/ 1
Zzeﬂ 20 + 1 nmE o 41 (£010]£0)
m,p
12, ,(010]¢0)
2 3
- So D Wnenry = s e (£010]270)
e ((010[£0) = % for £ = ¢ +1
= —%i—l for ¢/ =¢—1
1
. Lifetime: — =) wa=g, =Aa exponential decay: e *4t = ¢~/

TA

f



Explicit example
Hydrogen atom 2p = 1s transition

1 r —7r/2ag

' ' 2 = -
Radial wave functions 2» maoe

N

2 —r/a
].S = —36 0
Qg
Lifetime ron
he 3c? 5 0 "
T(2p — 1s) = 36—2@1_ =1.6 x 1077 o 0.00 .
k ? 13
. IR
4 -085
using s : Wi
I2 = CL2 — <—) l Paschen '
0 \/6 3 2 B‘al“' Series _340 )
in agreement with experiment ...
Lman
| _YTYYY ne

Excited
states

Ground
state

Energy levels of the hydrogen atom with some of the
transitions between them that give rise to the spectral

linesindicated



General issues related to absorption (emission)
Absorption

- Initial state: assume only one type of photons ka = Nk,

- Atom absorbs 1 photon

* initial state |nka> |A>

- final state nga — 1) |B)
- Hint contribution with Ay SO  Akq |nka> — \/% |nkoz - 1>
“Before"” TDPT -->

A e ([ 2mhngg L2 (oo
(B i ) = £ (202 ) 70 57 e (810240 L) (Bl aba 4
By

- Can obtain equivalent classical result by taking classical vector potential

Aabs (213, t) _ Agbsei(k-a)—wkt)

2mhng 1/2
Aabs — & Qo
0 c < Wi Y ) Ck

- for ngq large; then do minimal substitution




Absorption rate in dipole approximation
TDPT

2

21 €2 2w hng,

_ i
Wislf] = 5 orV ;eka-w\pm (Blagay |A)| 0(Ep — Ea — hwy)

Absorption cross section

Defined --> Energy per unit time absorbed by atom A --> B

energy flux of radiation field

hw wa=p
N hwe/V

Oabs (CU) —

A2 e?

— 2w Zeka-<5|PW> <B|a2a7|A> 5(EB—EA—hw)
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Example

Take photon momentum along z-axis and polarized light --> x-axis

As before use  px = % |, Ho
Initial state: ground state of closed shell atom |A) = |®o)

Final state: excited state |B) =a), ./ Gntmem,

ORY
Simple particle-hole state

Evaluate  (Blajay [A) = (@] af,_an. afay [o) = 6, pon_,
So absorption cross section

47-‘-262 / / / 2
"~ hwhe [(nslmymg| [z, Ho| In<tmems)|” §(Ep — Ea — hw)

IPM I_AIO ‘B> = Lp |B> — ﬁ0a2>g/m2mgan<£mgms (I)0> — (5n>€’ —&n_/ + E<I>0) |B>
Hy|A) = E4 |A) = Hy |®g) = Eg, |A) and Holnstmml) = eo_o lnstmjml)

Oabs (W)

Hy Inctmymg) = en_p|nlmymsg)

ThUS A2e? ' 2
Oaps(W) = (Enser — ence) [inslmymg| x |nbmems)|” d(Ens e — Ence — hw)5m;ms

he

2
= Ar’a wy_n_ [(nslmiml] x [nlmem,)|” §(whnon. — W) m.




Thomas-Reiche-Kuhn sum rule

Simple model of absorption cross section: delta spike at every
allowed combination of n-¢ — n /¢

Dipole matrix element: see before

Consider integral over all possible absorption contributions
/dw Oaps(W) = 4ma Z W [{nst/'myml| z |nebmems)|’

n-nc

More general expression
42 Z
/dw Taps(W) = - Z(EB—EA) <B\sz\A>

B 1=1

2

_ 47%0‘ S (Ep — Ea) (A Xz |B) (B| X5 | A)

42
= —— (A XzHXz|A) —3 (A|HXz X7 |A) =4 (A| Xz X7 H |A)}

_ 47;0‘ (Al3 [Xz, [H, X 5] |A)




Evaluate double commutator

Only kinetic contribution of Hamiltonian survives
[XZ’[HvXZH - % lzxz: [Zpijazxk]]
7 J k

_ ' 2
- % ' _xia [pazjaxk]}

= - %a (—Qih)pxj 5jk]

2m £
ijk
vh vh
. ZR?
T om
42y
and therefore do gaps(w) = —— (A]} [Xz, [H, X2]]|A)
4m2e? Zh? e’
= =72
hch  2m e (mc2)

Planck’s constant has disappeared --> classical result (Jackson)



Absorption cross sections in hature
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Figure1l Total photoabsorption cross section of xenon versus photon energy in the vicinity
of the 4d threshold. The solid line is the TDDFT calculations of Zangwill & Soven (23) and
the crosses are the experimental results of Haensel et al. (80).
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Figure 2 The photoabsorption cross section of the chromophore of the green fluorescent
protein calculated by Marques et al. (64) compared with the experimental measurements. The
dashed line corresponds to the neutral chromphore, the dotted line to the anionic, whereas
the crosses and solid curves are the experimental results of Nielsen et al. (86) and Creemers

et al. (87), respectively.



Silicon

and more
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Figure 3 Optical absorption spectrum of silicon. In the figure are represented the
following spectra: experiment (93) (thick dots), RPA (dotted curve), TDDFT using
the ALDA (dot-dashed curve), TDDFT using the RORO kemel (72) (solid curve), and
the results obtamned from the solution of Bethe-Saltpeter equation (dashed curve). Figure
reproduced from Omda et al. (18).



197 Au nucleus

for nuclei
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Figure 6-18 Total photoabsorption cross section for '*”Au. The experimental data are from
S. C. Fultz, R. L. Bramblett, J. T. Caldwell, and N. A. Kerr, Phys. Rev. 127, 1273 (1962). The
solid curve 1s of Breit-Wigner shape with the indicated parameters.



Proton

and finally
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Figure 3 The total absorption cross section o7 for the proton. The various lines
represent the MAID results (34) for the total cross section (solid line), one-pion channels
(dashed line), more-pion channels (dash-dotted line), and n channel (dotted line). The
data for the total cross section are from MAMI (35) ( filled circles) and Daresbury (36)
(open circles). The triangles represent the data for the 2 channels (37).



Photoelectric effect (--> beginning 1905)

Absorb high-energy photon (energy still much less than electron
rest mass)

Must overcome binding of electron

Close to threshold Coulomb cannot be neglected for outgoing
electron

At higher energy approximate final electron by plane wave

Use absorption cross section but replace delta function by
appropriate density of final states

But don't make dipole approximation!

Initial state |A) = |DPp)

Final state |B) = af;;fmsan<€mgms

ORY

Evaluate density of states for plane wave



Density of states

Wave function (x|k) =
2
As usual k,, = %nw etfc.
Energy B2)2
Ey=—1
f
2m

1
—c

N

So (# of states < Ef + dEy) — (# of states < Ejy)

ikf-a:
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Explicit example

K-shell knockout Upe = A1

(Bl a};wy |A) = (D] aisakfmsa};% [Po) =~ Ok ym, 5015y
Then ; 12,2
o) T e ik
dQ ~ mlwe ’e’w (ky[e™p|ls)

Consider (ks|e®™®p|ls) = /d3:1:’ (k¢ e™® |x') (/| p|1s)
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Finally — do 32e?k 5 Z° 1
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General issues related to emission

* Emission
- Initial state: assume only one type of photons ka = Nk,
- Atom emits 1 photon
- initial state Mka) |A)
- final state Nk + 1) |B)
- Hjnt contribution with a,,za so a};a ’nkza> = \V/Nga + 1 |nkza + 1>

- Induced emission

e (2rh(nga +1)\ " e T
< (Froetl) > era {8167 o) (Bl |4

(B| H},, |A) =

- Can obtain equivalent classical result by taking classical vector potential

s 2rh(nga + 1) 1/2 .
A — o
0 wkv k

- forngq large; then do minimal substitution

- QM: induced and spontaneous emission on the same footing



Other applications

Remember H,,, =Y [i (pi - A@i,t) + A@ist) - pi) + 5

2mce 2mce

2

A(x;,t) - Az, t)

2

Photon scattering can also be handled with this Hamiltonian

<B;nk/a/ — 1‘ H{ |A;nka — 1>

nt

Squared vector potential ferm contributes directly

Linear terms in vector potential should be considered
simultaneously in second order



Towards Planck's radiation law --> 1900

Consider atoms and radiation field that exchange energy by a
reversible process As~y+ B such that thermal
equilibrium is established

N(A) population of higher level
N(B) population of lower level
Equilibrium  N(B) wi,;* = N(A) wi P

abs
andalso  n(4)  ~Ba/ksT ~huwy /kpT hwp = E4 — E
N(B) e~ EB/kT ¢ S

emission 1/2
. e (2mh(ngq +1 ik
(Bl 14) = & (TR D) TS e (86 p) (Blala, 14
m wiV =
absorption
ag e (2mhnga Ve 1 ik / T
(AL 7 |B) = & (P52 ) T e (916 ply) (4la o 15)

IB/,YI



Thermal occupation of modes

Ratio of rates
‘2

Ao (ke + 1) [ Sy ek (Bl ®= ply) (Blaba, [4)] 0
B—A — o
Wy Nio ZB"Y’ era - (8| %= p|v') (B] a%,a,y/ \A>‘ k

and therefore 27/ _ Temis _  hwy/kpT _ “ka
f N(A) ~ wB=4 € —

1
nkza(T) — chwi /ksT _ 1

So thermal occupation
Familiar?
Onward to Planck!



Derivation of Planck
Consider radiation in a black box / cavity
Made of atoms that emit and absorb all types of radiation

Use previous results to determine energy density of radiation
field in angular frequency interval w + dw, w

Familiar calculation: count contribution of all states in interval

Before (# of states < (w + dw)) — (# of states <w) = p, dw
LV an
(2m)3 ¢3

Now all angles  d{) = 4w  and polarizations --> 2

Multiply with energy X population per volume

1 hw Vo w? hw3 1
Uw) = chw/ksT _ 1V A 2(27T)3 3 — 1203 ohw/kpT _ q




Planck --> 1900 where it all began

- Switch to frequency distribution

dw hw3 1
Uv) = U(w)d—y ~ 2.3 ohw/kpT _ T2
SThys 1

- Planck’'s famous radiation law!



