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Some questions …
What does a nucleon do in the nucleus?

Is this a legitimate question?
Speculations …

What is the dependence on N and Z?

Energy scales: As high as a realistic VNN will take you
…
Δ-isobars, pions
…
As low as the first excited state

⇒ ALL OF THEM! HOW? 
⇒ Time-dependent formulation not surprising
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Description of the nuclear many-body problem
Ingredients:    Nucleons interacting by “realistic interactions”

          Nonrelativistic many-body problem
Method:           Green’s functions (Propagators)

            amplitudes instead of wave functions
           keep track of all nucleons, including the high-momentum ones

Book: Dimitri Van Neck & W.D.

Why: Physical insight and useful for all many-body systems
      Link between experiment and theory clear
      Can include all energy scales
      Efficient: generates amplitudes not wave functions

Review:             W.D. & C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)
Lecture notes:  http://www.nscl.msu.edu/~brown/theory-group/lecture-notes.html
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Good stuff …

⇐ Physics of this picture requires different approach
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Outline

• What is a propagator
• Propagator in the many-body problem
• Information contained in propagator
• Spectral functions
• Relation with experimental data
• Experimental results
• Outline of perturbation theory
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What is a propagator or Green’s function?
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with the propagator or Green’s function defined by
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Alternative expressions

Using
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the Fourier transform of the propagator can be written as

  

 

G(
! 
r ,
! 
r ';E) = d(t ! t

0
)e

i

"
E t! t0( )

G(
! 
r ,
! 
r ';t ! t

0
)

!"

"

# $ t ! t
0( )

=
0 a! 

r 
n n a! 

r '

+
0

E !%
n

+ i&
n

'

= 0 a! 
r 

1

E ! H + i&
a! 

r '

+
0 with

 

H n = !
n
n

Also   

 

0 a! 
r 

n =
! 
r n = u

n

! 
r ( )

So numerator yields information on wave functions 
and denominator on eigenvalues of H.

)



Green’s functions I 9

How is G calculated?
“Simple” for the case of one particle. Can proceed by splitting
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Diagrams
Lowest order

First order

All orders summed by
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Single-particle propagator in the medium

  

 

G !,";t # t'( ) = #
i

!
$
0

N
T a!

H

t( )a"
H

+
(t ')[ ] $0

NDefinition

with

 

ˆ H !
0

N
= E

0

N
!

0

N for the exact ground state

and
  

 

a
!

H

t( ) = e

i

!

ˆ H t

a
!
e
"

i

!

ˆ H t

while T orders the operators with larger time on the left including
a sign change 

  

 

G !,";t # t'( ) = #
i

!
{$ t # t '( )e

i

!
E0

N
t# t '( )

%
0

N
a!e

#
i

!

ˆ H t# t '( )
a"

+ %
0

N

#$ t'#t( )e
i

!
E0

N
t '# t( )

%
0

N
a"

+
e
#

i

!

ˆ H t '# t( )
a! %

0

N }

particle

hole

(Heisenberg picture)



Green’s functions I 12

Fourier transform of G (Lehmann representation)
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⇐ Particle part

⇐ Hole part
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Spectral functions
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Relation with experimental data
Direct knockout reaction: 
Transfer a large amount of momentum and energy to a bound N-particle system 
leaving an ejected fast particle and a bound N-1 system. By observing the momentum
of the ejected particle one can reconstruct the hole spectral function.
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Cross section from Fermi’s Golden Rule
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Basic idea of
(e,2e) or
(e,e´p)

Simplest case:

Realistic case :   distorted waves / more realistic
      description of knocked out particle
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Hydrogen 1s wave function
“seen” experimentally
Phys. Lett. 86A, 139 (1981)

And so on for other atoms …

Helium
in Phys. Rev. A8, 2494 (1973)

Atoms studied with the (e,2e) reaction
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Spectroscopic factors in atoms
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#For a bound final N-1 state the spectroscopic factor is given by 

For H and He the 1s electron spectroscopic factor is 1
For Ne the valence 2p electron has S=0.92 with two additional fragments, 
each carrying 0.04, at higher energy.

Argon
3p and 3s
strength

Closed-shell
atoms

n(α) = 0 or 1 
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(e,e´p) cross sections for closed-shell nuclei
NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Except ….
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RemovalRemoval
probability forprobability for
valence protonsvalence protons

fromfrom
NIKHEF dataNIKHEF data

Note:
We have seen mostly
data for removal of
valence protons
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and … E. Quint, Ph.D.thesis NIKHEF, 1988

Quasihole strength or
spectroscopic factor Z(2s1/2) =0.65

n(2s 1/2) = 0.75
from elastic electron scattering

Intermediate

Strong fragmentation of
deeply-bound states
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Many-body perturbation theory for G
• Identify solvable problem by considering
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where U is a suitable auxiliary potential.

• Develop expansion in 
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• Employs time-evolution, Heisenberg, Schrödinger, and 
   interaction picture of quantum mechanics.
• Once established, this expansion (expressed in Feynman diagrams)
   is organized in such a way that nonperturbative results can be
   obtained leading to the Dyson equation. The Dyson equation
   describes sp motion in the medium under the influence of the
   self-energy which is an energy-dependent complex sp potential.
• Further insight into the proper description of sp motion in the
   medium is obtained by studying the relation between sp and
   two-particle propagation. This allows the selection of appropriate
   choices of the relevant ingredients for the system under study.
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How to calculate G?
Rearrange Hamiltonian
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when U is a one-body potential like a Woods-Saxon or HO potential.
Corresponding sp propagator (replace H by H0)
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Perturbation expansion using G(0) and H1

Use “interaction picture”
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Can be calculated order by order using diagrams and Wick’s theorem.
Yields expressions involving G(0) and matrix elements 
of the two-body interaction V (and the auxiliary potential U)

Simple diagram rules in time formulation. 

For practical calculations use energy formulation. Diagrams
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Diagram rules in energy formulation
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Examples of diagrams
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More diagrams
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Diagram organization
Sum of all diagrams can be written as 
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Introducing some self-energy diagrams

First order

One of the second order diagrams
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The irreducible self-energy
The following self-energy diagram is reducible (previous two
were irreducible), i.e. can be obtained from lower order self-energy
terms by iterating with G(0)

Sum of all irreducible diagrams is denoted by Σ*.
All diagrams can then be obtained by summing
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Towards the Dyson equation

Can be summed by
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Dyson equation
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Looks like the propagator equation for a single particle

with the irreducible self-energy acting as the in-medium 
(complex) potential.
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Homework
 Recover the time-independent Schrödinger equation
 for bound states from
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• Calculate  

 

lim
E!"

n

E #"
n( ) G = G

(0)
+ G

(0)
VG[ ]

with

 

H n = !
n
n and

 

!
n

< 0


