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Some questions ...

What does a nhucleon do in the nucleus?
Is this a legitimate question?
Speculations ...

What is the dependence on Nand 2?2

Energy scales: As high as a realistic V will take you

A-isobars, pions

Y(r) & V(r) (MeV)

\ ~ Aslow as the first excited state

\ 7
7
\ /
AN

10
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= ALL OF THEM! HOW?
= Time-dependent formulation not surprising



Description of the nuclear many-body problem

Ingredients: Nucleons interacting by "realistic interactions”
Nonrelativistic many-body problem
Method: Green's functions (Propagators)
= amplitudes instead of wave functions
keep track of all nucleons, including the high-momentum ones
Book: Dimitri Van Neck & W.D.

S

Why: Physical insight and useful for all many-body systems
Link between experiment and theory clear
Can include all energy scales
Efficient: generates amplitudes not wave functions

Many-Body Theory Exposed!

Sl C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)
—vw.nscl.msu.edu/~brown/theory-group/lecture-notes.html




Good stuff ...
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< Physics of this picture requires different approach



Outline

What is a propagator

Propagator in the many-body problem
Information contained in propagator
Spectral functions

Relation with experimental data
Experimental results

Outline of perturbation theory



What is a propagator or Green's function?

Time evolution is governed by the Hamiltonian H. For a single
particle the state

—iH(l‘—fo)
otyty=e "

oty )

is indeed a solution of ih%

a,tyt)=H

oLty 1)

Relation between wave function at t+and 1, can then be written as

FF!

L H(—1)

aty)=(Fle " oty = [ dr'(Fle
=il | &P GG st — 1 )W 1)

i
——H(t-t
5 (1=19)

w(r.) = (7 aty)
with the propagator or Green's function defined by

. i —LHG-1) Recall Huygens' principle!
G(I’,I";t—to):—%@”‘e L ’ ‘I"> yg p p



Alternative expressions

—iE'(t—tO)
dE'e " d
. Y —_ —0(t—t)=0(t—t

the Fourier transform of the propagator can be written as

G(F. i E)= T d(t— to)e%E(t_tO)G(?,?';t —1,)0(t — 1,)
-y (Ola:|n)(nla’|0)
- — E—-g,+in
=(0la; 1 —a
E—-—H+in

)

0) with  Hln)=¢,

r

Also  Olas|n)={F|n)=u,()

So numerator yields information on wave functions
and denominator on eigenvalues of H.



How is & calculated?

"Simple” for the case of one particle. Can proceed by splitting

H=H,+V and using the operatoridentity _ 1 _1 1, 1
A-B A A A-B

for the operator G = 1 with A=FE-H,+in
E—-H+in

and B—V 1o obtain & in terms of & and V/

G=G"+G"VG
=G+ GVG” + GVGOVG + -
or in a particular basis
G(a.B:E) =G (0. E) + 2, G (., E)(Y|V|8)G(8.B: E)

)
(o] —L1g) and GO(B;E) = (o) ——

with G(a,B;E) TR ;
—H+1in E-H,+in

B)




Diagrams

Lowest order

{ B G (a, B; E)

: LVAVAVY ) GO (a,v;E) (7| V16) G5, B, E
First order | 15 2,5 G (s B) (7] V 10) GH( )

EA
® 3

o G

([ ] o |

GM = GOL + SN NV
All orders summed by I
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Single-particle propagator in the medium

Definition G(o,Bst—1')=— - <‘PN ‘T (H)ag (¢ ) “PN>

with ﬁl‘ ‘I’év> = Eév“f'év> for the exact ground state
Th Ll

and a, (t)=e" ae’ (Heisenberg picture)

while T orders the operators with larger time on the left including
a sigh change

—iﬁ(t—t') |
age ") particle

G(o,B;t -1 ———{Ht—t i )<‘P5V

i A
——H(t'-1)
a;e L a

N>} hole

0

a

—6(1'- t)e%Eo - )<\P(§V




Fourier transform of & (Lehmann representation)

<\Pév ¥, +1><Tn]j Hag| ¥y > & Particle part
E—(E," —E;)+in
(W |ap [ (Y [, | )

E-(E, —E,")=in

+
a, ag

G(aBE) =2,

m

+2

n

o, < Hole part

Numerator contains information about "wave functions”

(¥)"|a,|¥)  and (P | )
while denominator identifies eigenvalues of H for the Nt1 states
Note AW = BN )

has been used for exact N *1 states of H



Spectral functions

Probability density for the removal of a particle with quantum
numbers represented by o from the ground state, while leaving

the remaining system at an energy EV'=EN—E

Si(0sE)=2 (¥

for energies E<g.=E) —E,"

v o(E (B - E))

dy

Relation of “hole" spectral function to propagator

1 1
=P—Find
xtin x+m (x)

1
S, (GE) = ;Im G(a,o;E) based on

Occupation number: n(oc) — j Sh (OC;E) dE = <\Pé\f a(zaa

—00

P >




Relation with experimental data

Direct knockout reaction:

Transfer a large amount of momentum and energy to a bound N-particle system
leaving an ejected fast particle and a bound N-1 system. By observing the momentum
of the ejected particle one can reconstruct the hole spectral function.

Initial state |'¥;)= “Pév> Final state “P >= a; ‘P,,]LV_1>
External probe transfers momentum Eag a; .
Transition matrix element <\Pf /A)(é)“{’> <\£le l‘aa #‘\PN>

(Plane Wave) Impulse Approximation = ejected particle absorbs ¢

Cross section from Fermi's

dore< TN @) ¥ 8(E+ B, E,) =S, (P Ev)

L = - = P N N-1
with pmiss = p—qq and Emzss — % —E= E En




Basic idea of ¢ E
(e,Ze) or N A-1 systerr
(ee”p) 1°

Target atom or nucleus

, - \N-1
Simplest case: <P»‘{’n

2&E—Q—Eﬁ

do o< ‘<‘Pf p.(q)

P@)¥) = (" a; 5[ ¥')

= do, o 2<‘{’(§V

a+
pP—q

N a0 ) O E — (ES - E)7))

Realistic case : distorted waves / more realistic
description of knocked out particle



Atoms studied with the (e,2e) reaction
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Hydrogen 1s wave function
"seen” experimentally
Phys. Lett. 86A, 139 (1981)
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Spectroscopic factors in atoms

For a bound final N-1 state the spectroscopic factor is given by § = J. dﬁK\P’i\/—l ‘a#‘q_,év>
p

For H and He the 1s electron spectroscopic factor is 1
For Ne the valence 2p electron has 5=0.92 with two additional fragments,
each carrying 0.04, at higher energy.
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(e,e’ p) cross sections for closed-shell nuclei
NIKHEF data, L. Lapikds, Nucl. Phys. A553, 297¢ (1993)
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Removal
probability for
valence protons

from
NIKHEF data

Note:
We have seen mostly
data for removal of

valence protons
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E. Quint, Ph.D.thesis NIKHEF, 1988
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Many-body perturbation theory for &

» Identify solvable problem by considering ﬁo —T+U
where U is a suitable auxiliary potential.

- Develop expansion in H=V-U

* Employs time-evolution, Heisenberg, Schrédinger, and
interaction picture of quantum mechanics.

* Once established, this expansion (expressed in Feynman diagrams)
is organized in such a way that nonperturbative results can be
obtained leading to the Dyson equation. The Dyson equation
describes sp motion in the medium under the influence of the
self-energy which is an energy-dependent complex sp potential.

* Further insight into the proper description of sp motion in the
medium is obtained by studying the relation between sp and
two-particle propagation. This allows the selection of appropriate
choices of the relevant ingredients for the system under study.



How to calculate &?
Rearrange Hamiltonian IfI:]A*_I_‘?:(]A*_,_ 0)+(‘7_ﬁ):ﬁo+ Al

Many-body problem with H, can be exactly solved
when U is a one-body potential like a Woods-Saxon or HO potential.

Corresponding sp propagator (replace H by H;)
GO (aB.E) = z<q)]0V ‘aa‘q)nNiHXq)ZH aHCDg> N <CI)ﬁ,V ‘a; Ol ‘1><cI)]nV - ‘aa‘cbgv >
w E-(E)'-Eg)+in T E—(E,—El)-in

{ Ola—F)  O(F -a) }
"LE—-¢g,+in E—-g,—in

using the sp basis associated with H,. Note that f7 4+ (Df)v> _ (Eq>N _|_ga)a;

o))

Hya,| @)= (E,, —¢€,)a,|®} )

So thate.g. §O(E)= lImG(O)(oc,oc;E) =0(E—¢,)0(F - )
T ~ like in atoms

(0

and ()= | dES(E —e,)8(F - ) = 6(F - )



Perturbation expansion using &9 and H,

A —H I A ——H
Use “interaction picture”  H,(f)=e" "H,e ' .

G, ;t_m:_iz(‘lj Lt [ e (0 | 11)- B (e a0y ()] @)

h

Can be calculated order by order using diagrams and Wick's theorem.
Yields expressions involving &% and matrix elements

of the two-body interaction V (and the auxiliary potential U)

Simple diagram rules in time formulation.

For practical calculations use energy formulation. Diagrams



Diagram rules in energy formulation

Rule 1 Draw all topologically distinct (direct) and connected
diagrams with m horizontal interaction lines for V7 (dashed)
and 2m + 1 directed (using arrows) Green’s functions G''°)

Rule 2 Label external points only with sp quantum numbers,

e.g. a and 3
Label each interaction with sp quantum numbers

v

A{(S) — (0.3

V6)

78) = (a8

.,_:__"’ = (af|V
)

For each arrow line one writes

17
E = GO u,v;E)

v

but in such a way that energy is conserved for each V/
Rule 3 Sum (integrate) over all internal sp quantum numbers and
integrate over all m internal energies
For each closed loop an independent energy integration
occurs over the contour C' 1
Rule 4 Include a factor (i/27)™ and (—1)¥ where F
is the number of closed fermion loops
Rule 5 Include a factor of % for each equivalent pair of lines




Examples of diagrams

o)
E = ny(S G(O) (OéaA/; E)
v e , ; ,
5“"9@ E' X =029 (e[ V]|08) fCT %G(O) (0,6 E')
L x GU9(4,5; E)
p
® O
E A
I E’:> D s G(a,v; E)
T X UL TSy AV ) GO 03
Y
(e X GOCGE) Y, fo S (CEIV 160) GO (1, € B)
’_:___' EII
o H x GO)(§,B; F)
FE A




More diagrams

E')

®
. = Zf)«d G(O)(a777 ) X L Zc@ Z/\C [(T 27
Y '
Yo {J%:}A g (ve| V'136) GO (A, ; BN G (8, ¢;
®---—--6 O----- 1"
5 05 C ¢ X e o T (CELV 1A GO (i, & E)
FE A
x G (5, 3; E)
o[
® OV
E = D G(a,7; E)
Lol X (CDPEE [T, T, 0NV ]eb)
E, E2OE1 + By — E
§§ X GO GE)GO (X By + By — E)
E x GON(6,& Ey) (CE|V |6p)
o x GO (6,; E)




Diagram organization
Sum of all diagrams can be written as




Introducing some self-energy diagrams

First order

B = —iY ., (el V106) [, L GO, B

One of the second order diagrams

A

-2 | dE dly e
= (_]‘)Z)% 2_71-1 271-2 Z)\,QO Zg’g,u <A/>\| ‘/ |€9>

x GO (e, (; B)GO(u, \; Ey + Ey — E)
x G(6,& Ey) (CE|V [p)




The irreducible self-energy

The following self-energy diagram is reducible (previous two
were irreducible), i.e. can be obtained from lower order self-energy

terms by iterating with 6©

{)’ )\Q

_____ El ’

. € 0 = (—1)% )ZEQZ,\(;f(ng (YA V [e0) GO (0, \; E")
x GO, GE) g, Jor S (CEIV 161) GO (1, & E)

Sum of all irreducible diagrams is denoted by **.
All diagrams can then be obtained by summing

G(a.BiE)=GO(a.BiE) + Y. GO(0, 7. E)E (1.5, E)GO(8,B.E) +
1Y

diagrammatically ...



Towards the Dyson equation

Can be summed by



Dyson equation ? GO

o o
G & = 04 + @
o o
M
* (5

Looks like the propagator equation for a single particle

G(o.B;E) =GO (a.B.E)+ .G (.1, E)E (1.0, E)G(6.B; E)
vs
with the irreducible self-energy acting as the in-medium
(complex) potential.



Homework

Recover the time-independent Schrodinger equation
for bound states from

G(a.B:E) =G (. B:E)+ D G (.. EXY|V|8)G(S.B:E)

)
in momentum space for a particle without spin

G (o, B;E) '
(a.B;E)=(ct ‘E Hoti \/3> can then be written as
., . 1 iy -, 1
G (p.psE) =(p|——= p)=0(p—p)——=
E—p0p+in E-P +in
2m 2m

Strategy: -+ Introduce complete set of eigenstates of Hin &
* Calculate  lim(E-¢,)[G=G"+G"VG]

with H|n)=g|n) and g, <0




