Record high magnetic ordering temperature in a lanthanide at extreme pressure

J Lim1,2, G Fabbris1,3,4, D Haskel5 and J S Schilling1

1 Department of Physics, Washington University, St. Louis, Missouri 63130, USA
3 Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
E-mail: jss@wuphys.wustl.edu

Abstract. Today’s best permanent magnet materials, SmCo\textsubscript{5} and Nd\textsubscript{2}Fe\textsubscript{14}B, could likely be made significantly more powerful were it not necessary to dilute the strong magnetism of the rare earth ions (Sm, Nd) with the 3\textit{d} transition elements (Fe, Co). Since the rare-earth metals order magnetically at relatively low temperatures $T_0 \leq 292$ K, transition elements must be added to bring T_0 to temperatures well above ambient. Under pressure $T_0(P)$ for the neighboring lanthanides Gd, Tb, and Dy follows a notably nonmonotonic, but nearly identical, dependence to \sim60 GPa. At higher pressures, however, Tb and Dy exhibit highly anomalous behavior, T_0 for Dy soaring to temperatures well above ambient. We suggest that this anomalously high magnetic ordering temperature is an heretofore unrecognized feature of the Kondo lattice state.

Measurements of the magnetic and superconducting properties of matter can now be carried out to multimegabar pressures where the increase in energy (1 - 10 eV/atom) is sufficient to significantly alter these properties and possibly result in novel many-body states of matter. Stable magnetic systems can destabilize under extreme pressure, leading perhaps to surprising new forms of magnetism and/or superconductivity.

Rare-earth elements play a central role in many modern technologies, including permanent magnets, computer memories, and applications requiring giant magnetostriction. The high degree of localization of their magnetic 4\textit{f} electrons results in relatively weak interatomic exchange interactions and low magnetic ordering temperatures, the highest being $T_0 \approx 292$ K for Gd metal \cite{1}. This is unfortunate since the strongest permanent magnets, SmCo\textsubscript{5} and Nd\textsubscript{2}Fe\textsubscript{14}B, require the addition of a substantial concentration of a magnetic transition metal, Co or Fe, in order to raise T_0 to a temperature well above ambient. Unfortunately, this addition dilutes the strong magnetism of the rare-earth component. A significant increase in T_o for rare-earth materials devoid of transition elements could lead to many new applications.

Here we report the results of resistivity studies on the neighboring rare earths Gd, Tb, and Dy to extreme pressures \cite{2, 3}. Above 60 GPa the magnetic ordering temperatures of Tb and Dy show a significant increase, T_0 for Dy soaring to \sim400 K at 157 GPa. We suggest that at extreme pressures, in contrast to Gd, both Tb and Dy enter an anomalous Kondo lattice state that is responsible for the significant increase in T_0. This scenario receives support from the fact

2 Present address: Institute for Shock Physics, Washington State University, Pullman, Washington 99164, USA.

4 Present address: Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA.
that in the pressure region above 60 GPa dilute magnetic impurities of Tb and Dy are able to drastically suppress the superconducting transition temperature of Y.

Resistivity samples are cut from 99.9% pure elements Dy and Gd (Alfa Aesar) and Tb and Y (Ames Lab [4]). The dilute magnetic alloys are prepared by argon arc-melting stoichiometric amounts of Gd, Tb, and Dy dopant with Y. To generate pressures to 1-2 Mbar, a diamond anvil cell (DAC) made of CuBe alloy [5] is fitted with two opposing diamond anvils (1/6-carat, type Ia) with 0.35 mm diameter culets beveled at 7° to 0.18 mm central flats. A Re gasket (6-7 mm diameter, 250 μm thick) is preindented to 30 μm and a 80 μm diameter hole electro-spark drilled through the center. The center section of the preindented gasket surface is filled with a 4:1 cBN-epoxy mixture to insulate the gasket and serve as pressure medium (see Fig. 1). The thin sample (dimensions ~30×30×5 μm³) is then placed on top of four thin Pt leads to allow a four-point dc electrical resistivity measurement. Further details of the non-hydrostatic high pressure resistivity technique are given in a paper by Shimizu et al. [6].

![Figure 1](image_url)

Figure 1. Images at three magnification levels of the non-hydrostatic pressure cell used with an insulated Re gasket mounted on a diamond anvil for four-probe electrical resistivity measurements. Two images at bottom show four (4μm thick) Pt leads before and after a Dy sample is placed on top.

A He-gas-driven membrane allows the pressure to be changed at any temperature above 3 K [7]. Pressure is determined using both ruby fluorescence [8] and Raman spectroscopy from the frequency shift of the diamond vibron [9]. Temperatures as low as 1.3 K can be reached in an Oxford flow cryostat. Further experimental details of the DAC and cryostat are given elsewhere [2, 5, 10, 11].

In Fig. 2 the electrical resistance $R(T)$ of Dy is plotted versus temperature at 8 different pressures to 157 GPa; for $P > 2.1$ GPa the data have been shifted vertically so as not to cross.
Figure 2. Resistance versus temperature for Dy at eight different pressures. Except at 2.1 GPa, the curves are shifted vertically for clarity. Red lines with small positive slope give temperature dependence of phonon resistance. See Refs. [2, 3] for details.

Figure 3. Magnetic ordering temperature T_o of Dy [2], Tb [3], and Gd [2] versus pressure. (+) earlier studies to \sim8 GPa on Dy [13] and Tb [16]. References for crystal structures at top of graphs Dy [13], Tb [14], Gd [19]; vertical dashed line gives pressure where 5-6% volume collapse occurs. In all plots the extended solid line through data points is guide to the eye.
The magnetic ordering temperature T_o is defined by the kink in the $R(T)$ dependence clearly seen near 170 K at 2.1 GPa, the lowest pressure of the experiment. At higher pressures this kink broadens somewhat into a knee due to pressure gradients across the sample, but remains clearly visible to 107 GPa. We define T_o by the intersection point of two straight lines, as illustrated for the data at 76 GPa in Fig. 2. The observed kink/knee is due to the suppression of spin-disorder scattering upon cooling as magnetic ordering begins to set in at T_o [12]. For pressures above 107 GPa the knee in $R(T)$ is no longer visible, signalling that T_o for Dy has shifted above 300 K. Similar resistivity data have also been obtained for Tb [3] and Gd [2].

In Fig. 3 T_o is plotted to Mbar pressures for Dy, Tb, and Gd. The results are in reasonable agreement both with earlier results to \sim8 GPa on Dy [13] and Tb [14] as well as resistivity studies on Dy to 69 GPa [15]. The pressure dependence $T_o(P)$ is seen to be highly non-monotonic, presumably in response to changes in crystal structure (see top of graphs). It is notable that to \sim50 GPa the $T_o(P)$-dependences are nearly identical for all three rare earths. Above 60 GPa, however, the dependences begin to differ markedly: whereas in Gd T_o increases only slowly, $T_o(P)$ in Dy displays a rapid increase that continues unabated to the highest pressure obtained 157 GPa. Above 60 GPa $T_o(P)$ for Tb first decreases but then begins to increase rapidly. One should note that above 60 GPa the compressibility of rare earths is approximately 10-times less than that at ambient pressure [13, 14]. Plotted versus relative volume, the increase in T_o for Dy above 80 GPa is far more rapid than the initial decrease at ambient pressure; in fact, on such a plot $T_o(P)$ extrapolates to \sim400 K at 157 GPa [2].

We now address the question as to the mechanism(s) responsible for the highly non-monotonic dependence of the magnetic ordering temperature T_o of Dy, Tb, and Gd on pressure. The striking similarities in $T_o(P)$ to \sim60 GPa for all three point to a common mechanism. The magnetic ordering of these metals at ambient pressure is well explained [16] by a conduction-band-driven indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction [17]. Within this model the magnetic ordering temperature scales with the local moment, the magnetic susceptibility of the conduction band, and the square of the exchange interaction J between the $4f$ local moment and the conduction electrons. In fact, Fleming and Liu [18] show that the initial decrease in T_o with pressure for Dy, Tb, and Gd is a direct consequence of shifts in the valence band. Furthermore, Dy [13], Tb [14], and Gd [19] undergo a very similar set of structural phase transitions driven by increasing $5d$ electron occupation with pressure [20]. Thus changes in the susceptibility of the conduction band associated with the multiple structural phase transitions are the likely cause for the highly non-monotonic dependences $T_o(P)$ shared by Dy, Tb, and Gd to \sim60 GPa.

For pressures above \sim60 GPa, however, the pressure dependences of $T_o(P)$ for Dy, Tb, and Gd are seen to differ significantly, as pointed out above. Since their structural phase diagrams are so similar, these significant differences in $T_o(P)$ almost certainly do not originate from shifts in the energy bands but likely signal differing changes in the magnetic state of these rare earths. A long-standing strategy [21, 22] to probe the magnetic state of a given ion is to alloy the magnetic ion in dilute concentration with a superconductor and determine to what extent the superconducting transition temperature is suppressed ΔT_c. As seen in the inset in Fig. 4, the pressure dependence $T_c(P)$ for Y(0.5 at.% Gd) is seen to faithfully track that for Y to the maximum pressure 126 GPa [23]. This gives evidence that over this pressure range Gd remains a conventional magnetically stable lanthanide. The absence of magnetic instabilities in Gd, even at extreme pressures, is not surprising since the magnetic state of Gd with its half-filled $4f^7$ shell is the most stable of all elements, its $4f^7$ level lying \sim 9 eV below the Fermi level [24].

These findings for Y(0.5 at.% Gd) are in sharp contrast to those for Y(1 at.% Dy) shown in Fig. 4. As for T_o, the pressure dependence of ΔT_c is seen to show a sharp increase above 73 GPa, reaching the value $\Delta T_c \approx 9$ K at the highest pressure. Such a dramatic suppression of superconductivity strongly suggests that Kondo pair breaking is involved. This can occur
when the magnetic state of a rare earth nears a magnetic instability, a precursor to a change in valence where an electron jumps out of the 4f orbital into the conduction band. Very recent x-ray absorption near edge structure (XANES) studies confirm that no change in valence occurs in Dy to 115 GPa [25]. As the magnetic 4f level approaches the Fermi level, the exchange interaction with the conduction electrons takes on a negative sign, signalling the onset of strong Kondo resonance phenomena. This enhancement of the magnitude of |J| with pressure causes the magnetic ordering temperature $T_o \propto |J|^2$ to increase until $|J|$ becomes so large that the local magnetic moment begins to be compensated through the exponentially increasing Kondo spin screening, as anticipated in the simple Kondo-lattice or Doniach model [26, 27] illustrated in Fig. 5. This could then lead to an anomalously high value of T_o, such as observed for Dy and Tb at extreme pressure, a value surpassing that possible for normal positive exchange interactions.

Figure 4. Superconducting transition temperature T_c versus pressure for Y(1 at.% Dy) compared to that for Y [2]. Inset shows similar graph for Y(0.5 at.% Gd) [23]. Vertical dashed line marks pressure of volume collapse for Dy at 73 GPa [13] and in inset for Gd at 59 GPa [19]. At top of graph are crystal structures taken on by Y [15]. Extended solid line through data points is guide to the eye.

Figure 5. Magnetic ordering temperature T_o plotted versus the absolute value of the negative exchange parameter $|J|$ according the Doniach model [26, 27]. Since T_o increases only as $|J|^2$, but the Kondo temperature T_K increases exponentially with $|J|$, the latter ultimately dominates and quenches magnetic ordering.

At pressures significantly higher than those in the present experiment, the simple Doniach model in Fig. 5 would lead one to anticipate that T_o for Dy and Tb would pass through a maximum and fall rapidly to 0 K at a quantum critical point [26, 27]. Future experiments will search for this behavior either by a significant expansion of the present pressure range or by identifying a rare earth where the instabilities in the magnetic state occur at lower pressures.

In summary, measurements of the electrical resistivity of Dy, Tb, and Gd to extreme pressures show that the magnetic ordering temperature T_o exhibits a highly non-monotonic pressure dependence, rising dramatically for $P > 80$ GPa to unprecedentedly high values approaching ~ 400 K for Dy with a similarly rapid increase for Tb. It is suggested that these anomalously high values of T_o in Dy and Tb signal that these rare earths have entered an anomalous magnetic
state, one likely related to a Kondo lattice. If so, the anomalously high magnetic ordering temperatures observed here for Dy and Tb would be an heretofore overlooked feature of the Kondo lattice state itself. A search for further lanthanide and actinide systems with anomalously high magnetic ordering temperatures would be of considerable interest and is underway.

If the mechanism(s) responsible for these anomalously high values of T_o under extreme pressure can be clearly identified, one can hope to reproduce these conditions in a suitable compound at ambient pressure. This hope receives some support from the fact that the Curie temperature of the ternary compound CeRh$_3$B$_2$ is 115 K [28], a value exceeding even that of GdRh$_3$B$_2$ and 100-times higher than that anticipated from simple de Gennes scaling, surpassing even that of GdRh$_3$B$_2$. Perhaps Dy under extreme pressure and CeRh$_3$B$_2$ at ambient pressure share a common mechanism for their anomalous magnetic properties.

Acknowledgments
The authors would like to thank T. Matsuoka and K. Shimizu for sharing information on their high-pressure electrical resistivity techniques used in this study. Thanks are due A. Gangopadhyay for his help in preparing the dilute magnetic alloys. This work was supported by the National Science Foundation (NSF) through Grant No. DMR-1104742 and by the Carnegie/DOE Alliance Center (CDAC) through NNSA/DOE Grant No. DE-FG52-08NA28554. Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, under contract No. DE-AC02-06CH11357.

References