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A von Neumann–Smagorinsky turbulent transport model for stratified shear flows
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A simple subgrid turbulent diffusion model based on an analogy to the von Neumann–Richtmyer artificial viscosity
is explored for use in modelling mixing in turbulent stratified shear flow. The model may be more generally
applicable to multicomponent turbulent hydrodynamics and to subgrid turbulent transport of momentum,
composition and energy. As in the case of the von Neumann artificial viscosity and many subgrid-scale models for
large-eddy simulation, the turbulent diffusivity explicitly depends on the grid size and is not based on a quantitative
model of the unresolved turbulence. In order to address the issue that it is often not known a priori when and where a
flow will become turbulent, the turbulent diffusivity is set to zero when the flow is expected to be stable on the basis
of a Richardson/Rayleigh–Taylor stability criterion, in analogy to setting the von Neumann artificial viscosity to
zero in expanding flows. One-dimensional predictions of this model applied to a simple shear flow configuration are
compared to those obtained using a K–e model. The density and velocity profiles predicted by both models are
shown to be very similar.

Keywords: stratified flow; shear flow; turbulence modelling; transport coefficients; turbulent diffusion

1. Introduction

Turbulent diffusion in heterogeneous or multicompo-
nent flows and turbulent heat transport in general is
nearly ubiquitous and of great importance. Direct
numerical simulation of these flows that resolves all
spatiotemporal scales present is likely to long remain
infeasible. The finer scales of heterogeneity are still
large enough that microscopic transport processes
(diffusion, viscosity and conductivity) do not smooth
out the variations in the corresponding physical
variables. It is then important to have a phenomen-
ological, efficient and computationally robust algo-
rithm that well describes the onset and effects of
turbulence on the resolved flow.

When the composition of the fluid is heterogeneous
the most important questions usually concern mixing of
material of different compositions or in different phases
(Dimotakis 2005), rather than turbulent momentum
transfer. A number of two-equation Reynolds-averaged
Navier–Stokes (RANS) turbulent transport models
have been developed, including a K–e model (Gauthier
and Bonnet 1990) and a K–‘ model (Dimonte and
Tipton 2006), as well as extensions of such models
such as the BHR model (Besnard et al. 1992) that
account for all sources driving instability and turbu-
lence (including shear) through their derivation from

the fluid dynamics equations and closure. These models
can be complex to implement because they describe the
evolution of turbulence with non-local and history-
dependent functions of space and time. Alternatively,
the success of the simple von Neumann artificial
viscosity (von Neumann and Richtmyer 1950), still
frequently used in Lagrangian numerical simulations of
compressible flow, suggests that a similarly simple
model of turbulent transport may be useful.

2. General considerations

The elementary Kolmogorov phenomenology (Ten-
nekes and Lumley 1972) indicates an eddy turnover
time tk / k72/3 for eddy size *1/k. Hence if the flow
is turbulent, small eddies turn over much faster than
larger ones. Assuming at least one turnover time for
the largest driving eddies, there will be rapid mixing of
a turbulent region down to its inner turbulence scale.
Turbulent heat transport is analogous. If the Schmidt
number

Sc � n
D
; ð1Þ

or Prandtl number

Pr � n
a
; ð2Þ
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(where n is the kinematic viscosity, D is the diffusivity
of composition and a is the diffusivity of temperature;
the thermal diffusivity that couples these two scalar
fields is customarily ignored) is of order unity or less,
then diffusive mixing or heat transfer on scales smaller
than the inner turbulence scale will be at least as rapid
as the turnover of the smallest eddies, and much more
rapid than that of the driving eddies. This is usually the
case in dilute gases and weakly coupled liquids because
momentum, thermal energy and composition are
substantially carried by the same particles and
Pr ¼ Oð1Þ.

In a plasma, momentum is almost entirely carried
by the ions and energy by the electrons; at high
Reynolds number all of these quantities diffuse on the
inner turbulence scale much faster than the turnover of
the driving eddies. In liquid metals or ionised plasmas,
rapid thermal conduction by electrons or rapid
radiative transfer lead to Pr� 1 and this inequality
holds even more strongly. Only in viscous liquids in
which strong intermolecular forces carry momentum
are Pr, Sc� 1 possible and the efficacy of diffusive heat
transport and mixing on scales smaller than the inner
turbulence scale is problematic.

In the classical Kolmogorov turbulent cascade, the
inner scale of turbulence is approximated by the
Kolmogorov dissipation scale ‘d � n3=e

� �1=4
, where n

is the kinematic viscosity and e � V3=L is the kinetic
energy dissipation per unit volume of a turbulent flow
with characteristic velocity V at an outer scale L. This
leads to an estimate of the timescale for microscopic
diffusion to produce atomic-scale homogeneity

tdiff �
‘ 2d
D
� Sc

ffiffiffiffiffiffiffi
nL
V3

r
� Scffiffiffiffiffiffi

Re
p t; ð3Þ

where the Reynolds number is Re¼VL/n and the
turnover time is t : L/V. In large Reynolds number
flows, microscopic (diffusive) mixing on length scales
from ‘d down to atomic dimensions is a very rapid
process unless Sc� 1. An analogous result with Sc
replaced by Pr holds for deviations from uniform
temperature.

Only if Sc� 1 may diffusion down to the molecular
or atomic scale be slower than the turbulent turnover
timescale. For example, for ionic solutes in water
typically Sc ¼ Oð300Þ. In viscous liquids, such as pitch
and the Earth’s mantle, the Schmidt number may be
orders of magnitude larger because strong intermole-
cular forces raise the viscosity and lower the diffusivity;
momentum diffuses rapidly but chemical composition
slowly. Viscous fluids may undergo turbulent large
Reynolds number flows if driven strongly enough. In
these cases the existence of turbulence is not sufficient
to guarantee rapid mixing on the atomic scale, and the

atomic-scale mixing time, which determines rates of
chemical reactions, must be evaluated for the para-
meters of interest.

3. Criterion for whether a flow is turbulent

In order to model subgrid diffusion in fluids with Sc91
when small-scale flow features cannot feasibly be
resolved computationally, a criterion to determine
where and when the flow are turbulent, as well as a
model for turbulent mixing, are needed. It is often not
possible to perform an instability analysis because of
the complexity and non-stationary character of the
large-scale flow. The automatic recognition within a
numerical hydrodynamics code that a complex flow is
turbulent and will support a turbulent cascade to large
wave numbers and subgrid scales, much less the
determination of its characteristics, is non-trivial.
This limits the usefulness of even the most sophisti-
cated turbulent transport models.

As the turnover of eddies and microscopic diffusion
on scales �‘d are generally much faster than the
lifetime of the flow, which is generally OðtÞ, determin-
ing whether a flow is turbulent is much more important
than a quantitative estimate of the turbulent diffusion
coefficient itself. Criteria that require decision of
whether a flow is turbulent are not useful in a numerical
simulation in which the structure of the flow is not
known in advance. A simple and automatic turbulence
criterion is required. Without knowing if a flow is
turbulent or not, it is not possible even to decide if a
turbulence model should be used at all.

The model explored here uses a criterion for
turbulent transport based on the Richardson stability
criterion appropriate to large Reynolds number shear
flow, tacitly assuming that instability leads to turbu-
lence. If there is no shear it reverts to the Rayleigh–
Taylor stability criterion for inviscid miscible fluids,
~rr �~rp > 0, generalising the criterion used in a K–‘
model of turbulence produced by Rayleigh–Taylor and
Richtmyer–Meshkov instability (Dimonte and Tipton
2006). An implicit criterion is present in the BHR
model (Besnard et al. 1992) in which the mean velocity
field drives or damps turbulence. While such a criterion
for turbulence is not needed in simulations of flows
(such as unstratified pipe flows) that are known to be
unstable a priori at sufficiently high Reynolds numbers,
it is essential in more complex heterogeneous flows
containing both stable and unstable regions that are
not predictable in advance. The criterion is analogous
to setting the von Neumann artificial viscosity to zero
in rarefying regions.

An analogous subgrid-scale (SGS) turbulence
model was first proposed by Smagorinsky (1963) for
use in large-eddy simulation (LES) of atmospheric

174 B.M. Johnson et al.

D
ow

nl
oa

de
d 

by
 [

W
as

hi
ng

to
n 

U
ni

ve
rs

ity
 in

 S
t L

ou
is

],
 [

Jo
na

th
an

 I
. K

at
z]

 a
t 0

8:
58

 1
8 

M
ay

 2
01

2 



flows in which small-scale turbulence is numerically
unresolved, and was further discussed elsewhere
(Deardorff 1971, Ramshaw 1979). Many SGS models
have subsequently been developed (Lesieur and Métais
1996, Pullin 2000, Kosović et al. 2002, Lesieur et al.
2005, Sagaut 2006, You and Moin 2007), but none
appear to be universally applicable. The model
considered here is similar in spirt to the von Neumann
artificial viscosity model for dissipation in unresolved
shocks (von Neumann and Richtmyer 1950). We
renounce any attempt to model the SGS turbulence
in detail or on the basis of fundamental principles, just
as von Neumann and Richtmyer (1950) renounced any
attempt to understand the microscopic dissipation
mechanisms and structure of shocks (which also
depend on the particular fluids involved, so that no
single model can be generally valid). Any back-scatter
of turbulent energy to larger scales has only a slight
effect on the rapidity of turbulent mixing. Following
their example, a model is constructed that instead
depends explicitly on the numerical properties of the
LES, while incorporating a criterion for instability and
the presence of turbulence and turbulent diffusivity
that depends on the resolved properties of the flow.

4. Turbulent diffusivity model

Modelling turbulent diffusivity has much in common
with modelling shocks in compressible flows. In each
case the difficulty is posed by subgrid dissipative
processes that cannot be resolved computationally
but are known to be present. The classic solution to
the shock problem (von Neumann and Richtmyer
1950) is to define an ‘artificial viscosity’ that is
explicitly dependent on the grid size (thus broad-
ening a shock to a width of a few resolution
elements) and introducing a nonlinear criterion for
its presence, in essence a switch that turns it on
when the fluid is being compressed and off when
being rarefied (because in thermodynamically stable
systems there are no rarefaction shocks). The
resulting artificial viscosity is strongly nonlinear and
has the unphysical property that it depends on the
computational grid scale (as do most SGS models).
It has been widely adopted because it accurately
reproduces the shock jump conditions, at the expense
of not reproducing the structure of the shock on the
scale of the grid resolution or it’s (much finer and
unresolved) microscopic structure.

An analogous heuristic artificial turbulent diffusiv-
ity for multicomponent flows explored here is

Dt ¼
0 if Ri � 1

4
D2jSijj

3 if Ri < 1
4

(
; ð4Þ

where the local Richardson number is

Ri ¼ 	
~a �~rr0

r0jSijj2 ;
ð5Þ

~a is the local fluid acceleration,

Sij �
1

2

@vi
@xj
þ @vj
@xi

� �
	 1

3
dij

@vk
@xk

; ð6Þ

is the traceless symmetrised strain-rate tensor (Landau
and Lifschitz 1959, Batchelor 2000), jSijj �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
,

the gradient of potential density is defined (only ~rr0 is
meaningful, not r0 itself)

~rr0 � ~rr	 @r
@p

���� ~rp ; ð7Þ

where the partial derivative is evaluated under
thermodynamic conditions (isothermal, isentropic or
intermediate, depending on rates of energy exchange)
appropriate to matter displacements, and D is a
characteristic (filter) length scale (often chosen in
SGS modelling as*2Dx, where Dx is the grid spa-
cing); summation over repeated indices is implied. The
correction (second) term in Equation (7) may be
important when the scale of pressure variation is
comparable to that of density, as in stratified
geophysical and astrophysical flows in chemically
homogeneous fluids (atmosphere, ocean, stars and
fluid planets). In such fluids, large density gradients
may not stablise a shear flow because the fluid is nearly
isentropic and the density gradient is offset by a
pressure gradient; the troposphere is a familiar
example.

This Dt is chosen in analogy to the Smagorinsky
model of large-eddy simulation (see Galperin and
Orszag 1993 for a review). The switch at Ri¼ 1/4 is
chosen because this is the usual Richardson criterion,
here generalised (in accord with the equivalence
principle of relativity) to allow for acceleration parallel
to the density gradient in place of gravity. The form of
Dt follows from dimensional considerations.

The factor of 1/3 allows for three spatial dimen-
sions (in analogy with the factor 1/3 in the kinetic
theory result D ¼ v‘=3, where ‘ is the mean free path).
If fitting data are available it may be appropriate to
introduce an additional dimensionless multiplicative
factor chosen to match those data. Such data may, for
example, be obtained from a fine-scale but idealised
three-dimensional numerical simulation of turbulent
mixing in an unstratified isochoric (constant and
uniform density) fluid.

The switch is adapted from the Richardson
instability criterion (Turner 1973, Linden 1979, Drazin
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and Reid 2004) in stratified fluids by using in Equation
5 the component of local acceleration 	~a along the
gradient of potential density in place of the stratifying
acceleration of gravity ~g. If a flow is nearly adiabatic
on displacement time scales, this is @r

@pjS, while if it is
nearly isothermal (as will be the case if conductive or
radiative energy transfer to a heat bath is rapid) it is
@r
@pjT. Stratification can stabilise either the Rayleigh–
Taylor or Kelvin–Helmholtz instability.

This criterion ignores the stabilising effect of
viscosity, which is small at large Reynolds numbers
and complicated when both shear and stratification
affect stability. At smaller numerical Reynolds num-
bers (defined by the zone size), numerical viscosity is
significant but is implicit in a numerical code. When
this is the case, SGS turbulence is not manifested
because the numerical viscosity rapidly smooths
velocity gradients; provided Sc ¼ Oð1Þ, molecular
diffusivity is rapid and no turbulent diffusivity model
is required. If Sc� 1 diffusion may be calculated
explicitly and deterministically from the resolved flow
field.

A number of heuristic prescriptions for D in
Equation (4) have been used (Cabot and Moin 1993,
Ferziger 1993, Piomelli 1993). Without detailed experi-
mental data in complex and difficult to diagnose flows,
it is difficult to decide which is most appropriate, and
the best prescription may vary over space and time. We
suggest that D be taken to be the smallest dimension of
a two- or three-dimensional spatial zone. High aspect
ratio zones are generally used only to resolve large
gradients of composition or other variables in the
direction of the smallest side of a zone; these smallest
sides are likely to limit mixing lengths.

Alternative forms of the artificial turbulent diffu-
sivity are possible. For example, a tensor Dij could be
defined by replacing jSijj by Sij in the expression for Dt.
However, if the cascade isotropises the turbulence, as
generally assumed in the absence of a more quantita-
tive model, then Dt should be a scalar. When this
model is applied in an Eulerian simulation, it is
assumed that an interface-preserving algorithm is
used to prevent rapid numerical diffusion of composi-
tion that may be spurious (for example, if the
stratification is stable).

5. Comparison with the predictions of a Reynolds-

averaged Navier–Stokes model

Ideally, the model would be compared with the results
of DNS. Unfortunately, because turbulence is intrinsi-
cally three-dimensional, even if the flow giving rise to it
is one-dimensional, DNS at Reynolds numbers large
enough to make numerical viscosity negligible is not
feasible. For this reason, the effects of turbulence are

modelled by comparing the predictions of the pro-
posed new model to a well-known RANS model.

Here, the predictions of the simplified subgrid
model are compared to those from a standard K–e
model in a one-dimensional simulation of a stratified
shear flow (Johnson and Schilling 2011a,b). The code
used to evolve both models was an implementation of
the ZEUS algorithm (Stone and Norman 1992) widely
used in the astrophysical community. It evolves the
one-dimensional Euler equations using a time explicit
finite-difference method with Van Leer advection,
along with additional terms appropriate to each model.
The fluid quantities vary in the x-direction, with y
being the direction of the shear velocity. An equation
for both the density

dr
dt
¼ @

@x
Dt

@r
@x

� �
; ð8Þ

and the velocity

r
dvy

dt
¼ @

@x
rDt

@vy
@x

� �
ð9Þ

is solved in the simplified model, where
d=dt ¼ @=@tþ vx@=@x, Dt is given in Equation (4)
with D¼Dx¼L/N (L is the size of the computational
domain and N is the number of grid cells in this one-
dimensional calculation), and the magnitude of the
one-component strain-rate tensor is jSijj ¼ j@vy=@xj.

The equations solved in the K–e model are
(Gauthier and Bonnet 1990)

�r
d~vy
dt
¼ @

@x
mt
@~vy
@x

� �
; ð10Þ

dK

dt
¼ @~vy

@x

� �2

	 1

sr �r2
@�r
@x

@�p

@x
þ 4

3

@~vx
@x

� �2
" #

nt

	 2

3

@~vx
@x

K	 eþ 1

�r
@

@x

mt
sK

@K

@x

� �
; ð11Þ

de
dt
¼ e

K
Ce1

@~vy
@x

� �2

	 Ce0

sr �r2
@�r
@x

@�p

@x
þ 4

3

@~vx
@x

� �2
" #

nt

	 2

3

@~vx
@x

e	 Ce2
e2

K
þ 1

�r
@

@x

mt
se

@e
@x

� �
; ð12Þ

where

nt ¼
mt
�r
¼ Cm

K2

e
ð13Þ

is the turbulent viscosity, K is the turbulent kinetic
energy, e is the turbulent kinetic energy dissipation
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rate, �p ¼ �rR ~T is the mean pressure (R is the universal
gas constant), ~T is the mean temperature, and sr, sK,
se, Cei and Cm are positive dimensionless coefficients.
An overbar denotes a Reynolds average and a tilde
denotes a Favre average (density-weighted Reynolds
average ~f ¼ rf=�r), each over the turbulent region.

The density and shear velocity were initialised with
smoothly-varying profiles that transition between high
and low constant values at the boundaries of the
computational domain:

rðxÞ ¼ rL þ rH 	 rLð Þs x	 L=2

x0

� �
; ð14Þ

vyðxÞ ¼ 	
McL
2
þMcL s

x	 L=2

x0

� �
; ð15Þ

where the light and heavy fluids have density rL
and rH, respectively, the function

sðzÞ � 1

1þ e	z
ð16Þ

smoothly interpolates between zero and one, cL is the
sound speed in the low-density fluid, and M is the
Mach number in the low-density fluid. The pressure
was initialised to hydrostatic equilibrium with a body
force gr:

pðxÞ ¼ pL þ g

�
rL x	 L

2

� �
þ rH 	 rLð Þx0


 ln 1þ e
x	L=2
x0

	 
�
; ð17Þ

where pL ¼ c2LrL=g. The particular values chosen for
the calculations were rL¼ 1, rH¼ 2, CL¼ 10, g¼ 5/3,
M¼ 0.1 (so that the flow was nearly incompressible),
L¼ 1, x0¼ 0.5L, and N¼ 100. Based on the Richard-
son criterion, this profile is unstable for 0:434L9
x9 0:6L. The coefficients of the K–e model were set to
Cm ¼ 0.09, Ce0¼ 1.1, Ce1¼ 1.44, Ce2¼ 1.92 and sK¼
se¼ sU¼ 0.7. Most of these coefficient values are
standard and based upon comparison to experiment
(Chen and Jaw 1998, Pope 2000, Durbin and Petterson
Reif 2001). A value of sr ¼ 0.427 was used to obtain
growth for a Richardson number less than 0.25, and
the initial conditions were set to K0¼ 1074

and e0¼ 1075.
Figures 1 and 2 show profiles from evolving the

initial profiles described above until the density and
shear velocity have diffused by approximately the same
amount. The times of comparison are arbitrary
because the time at which diffusion becomes important
in a K–e model is dependent upon the assumed initial
turbulence level, and the diffusion time scale in the

simple von Neumann–Smagorinsky model is a func-
tion of the numerical resolution.

The simplified model provides reasonable results
that are quite similar to those from the more complex,

Figure 1. Profiles of vy for the unstable profile described in
the text normalised by McL. The solid line is the initial
profile, the dashed line is the final result from the von
Neumann–Smagorinsky transport model and the dotted line
is the final result from the K–e model.

Figure 2. Profiles of r for the unstable profile described in
the text normalised by rL. The solid line is the initial profile,
the dashed line is the final result from the von Neumann–
Smagorinsky transport model and the dotted line is the final
result from the K–e model.
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well-established K–e model. The effects of the turbu-
lence switch in the simplified model are apparent in its
linear (within the previously turbulent region) density
profile in Figure 2 that is determined by the instability
criterion and the velocity profile. It does not show the
curvature of the density profile found by the K–emodel
that is a consequence of the overshoot of turbulence
(and more effective mixing) beyond nominal stability
in the region of steepest initial velocity gradient and
strongest instability. Our local and instantaneous
model cannot include these non-local and non-
instantaneous effects, but they make only small
differences in the final result.

6. Discussion

Turbulent mixing is a long-standing problem and
many models have been introduced. Typically they
involve several adjustable coefficients, and these may
be chosen to give excellent fits in regions of parameter
space for which appropriate data are available. For
example, the BHR model (Besnard et al. 1992, Ulitsky
et al. 2001) contains 10 coefficients chosen to fit a
classic shock tube experiment. With so many para-
meters available the fit is excellent, but that does not
establish its validity when extrapolated outside the
range of conditions to which they were fitted. For
many important problems no data exist in the
parameter range of interest, and a simple model may
be more robust than a sophisticated one. It is also
likely to be simpler to implement and to run faster.

Subgrid turbulent viscosity and heat transport
present problems analogous to that of subgrid
turbulent mixing. Sophisticated models exist, but also
contain several coefficients in the closures of the
moment equations. If Sc is not too large, it may be a
reasonable approximation to use the model proposed
here for Dt and to take nt¼ SctDt, estimating Sct from
numerical simulations like those used to test the model
for Dt, or simply taking the widely adopted value
Sct¼ 0.7 in the absence of such information. Similarly,
it may be reasonable to take at¼Dt.

If atomic-scale diffusion of composition is impor-
tant and Sc�

ffiffiffiffiffiffi
Re
p

, then it is necessary to introduce a
more complete description than uniform mixing to
describe the state of the fluid because turbulence effects
a uniform (on an atomic scale) distribution of
momentum faster than diffusion effects a uniform
distribution of composition. For example, each fluid
element in the turbulently mixed region may be
described as containing fractions fi, proportional to
their contribution to the mass mixed by the turbulence,
of each of the compositions contributing to the
turbulently mixed region. The composition b1, . . . ,bn
of each fraction fi, where the bj denote individual

elements or chemical species, would relax towards
uniform mixing with a characteristic time given by tdiff
from Equation 3. In general, tdiff would depend on
the bj and be different for each j because distinct
species have different microscopic D and Sc.

Acknowledgements

We thank G. Dimonte, P. E. Dimotakis, R. A. Gore, L. G.
Margolin, D. I. Meiron and G. B. Zimmerman for useful
discussions. JIK thanks the Los Alamos National Labora-
tory and the Lawrence Livermore National Laboratory for
hospitality. This work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
and by Los Alamos National Laboratory under contract DE-
AC52-06NA25396.

References

Batchelor, G.K., 2000. An introduction to fluid dynamics.
Cambridge: Cambridge University Press.

Besnard, D.C., et al., 1992. Turbulence transport equations for
variable-density turbulence and their relationship to two-
field models. Los Alamos National Laboratory Report
LA-12303-MS. Los Alamos, NM: Los Alamos National
Laboratory.

Cabot, W. and Moin, P., 1993. Large eddy simulation of
scalar transport with the dynamic sub-grid scale model. In:
B. Galperin and S.A. Orszag, eds. Large eddy simula-
tions of complex engineering and geophysical flows.
Cambridge: Cambridge University Press, 141–158.

Chen, C.-J. and Jaw S.-Y., 1998. Combustion: an interna-
tional series. Fundamentals of turbulence modeling.
London: Taylor and Francis.

Deardorff, J.W., 1971. On the magnitude of the subgrid scale
eddy coefficient. Journal of Computational Physics, 7,
120–133.

Dimonte, G. and Tipton, R., 2006. K–L turbulence model for
the self-similar growth of the Rayleigh-Taylor and
Richtmyer-Meshkov instabilities. Physics of Fluids, 18,
085101.

Dimotakis, P.E., 2005. Turbulent mixing. Annual Review of
Fluid Mechanics, 37, 329–356.

Drazin, P.G. and Reid, W.H., 2004. Hydrodynamic stability.
2nd ed. Cambridge: Cambridge University Press.

Durbin, P.A. and Petterson Reif, B.A., 2001. Statistical
theory and modeling for turbulent flows. New York:
Wiley.

Ferziger, J.H., 1993. Sub-grid scale modeling. In: Galperin, B.
and Orszag, S. A., eds. Large eddy simulations of
complex engineering and geophysical flows. Cambridge:
Cambridge University Press, 37–54.

Galperin, B. and Orszag, S.A., eds. 1993. Large eddy
simulations of complex engineering and geophysical flows.
Cambridge: Cambridge University Press.

Gauthier, S. and Bonnet, M., 1990. A k–e model for
turbulent mixing in shock-tube flows induced by
Rayleigh–Taylor instability. Physics of Fluids A 2,
1685–1694.

Johnson, B.M. and Schilling, O., 2011a. Reynolds-averaged
Navier–Stokes model predictions of linear instability. I.
Buoyancy- and shear-driven flows. Journal of Turbulence,
12, 36-1–36-38.

178 B.M. Johnson et al.

D
ow

nl
oa

de
d 

by
 [

W
as

hi
ng

to
n 

U
ni

ve
rs

ity
 in

 S
t L

ou
is

],
 [

Jo
na

th
an

 I
. K

at
z]

 a
t 0

8:
58

 1
8 

M
ay

 2
01

2 



Johnson, B.M. and Schilling, O., 2011b. Reynolds-averaged
Navier–Stokes model predictions of linear instability. II.
Shock-driven flows. Journal of Turbulence, 12, 37-1–37-
31.
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Lesieur, M., Métais, O., and Comte, P., 2005. Large-eddy
simulations of turbulence. Cambridge: Cambridge Uni-
versity Press.

Linden, P.F., 1979. Mixing in stratified fluids. Geophysical
and Astrophysical Fluid Dynamics, 13, 3–23.

Piomelli, U., 1993. In: B. Galperin and S.A. Orszag, eds.
Large eddy simulations of complex engineering and
geophysical flows. Cambridge: Cambridge University
Press, 119–137.

Pope, S.B., 2000. Turbulent flows. Cambridge: Cambridge
University Press.

Pullin, D.I., 2000. A vortex-based model for the subgrid flux
of a passive scalar. Physics of Fluids, 12, 2311–2319.

Ramshaw, J.D., 1979. Alternate interpretation of the subgrid
scale eddy viscosity. Los Alamos National Laboratory
Report LA-7955-MS. Los Alamos, NM: Los Alamos
National Laboratory.

Sagaut, P., 2006. Large eddy simulation for incompressible
flows: an introduction. New York: Springer-Verlag.

Smagorinsky, J., 1963. General circulation experiments with
the primitive equations. Monthly Weather Review, 91,
99–164.

Stone, J.M. and Norman, M.L., 1992. ZEUS-2D: a radiation
magnetohydrodynamics code for astrophysical flows in
two space dimensions. I – The hydrodynamic algorithms
and tests. Astrophysical Journal Supplement 80, 753–790.

Tennekes, H. and Lumley, J.L., 1972. A first course in
turbulence. Cambridge, MA: MIT Press.

Turner, J.S., 1973. Buoyancy effects in fluids. Cambridge:
Cambridge University Press.

Ulitsky, M., et al., 2001. A guide to the BHR turbulence mix
model in CHAD. Los Alamos National Laboratory
Report LA-UR-01-0980. Los Alamos, NM: Los Alamos
National Laboratory.

von Neumann, J. and Richtmyer, R.D., 1950. A method for
the numerical calculation of hydrodynamic shocks.
Journal of Applied Physics, 21, 232–237.

You, D. and Moin, P., 2007. A dynamic global-coefficient
subgrid-scale eddy-viscosity model for large-eddy simu-
lation in complex geometries. Physics of Fluids, 19,
065110.

International Journal of Computational Fluid Dynamics 179

D
ow

nl
oa

de
d 

by
 [

W
as

hi
ng

to
n 

U
ni

ve
rs

ity
 in

 S
t L

ou
is

],
 [

Jo
na

th
an

 I
. K

at
z]

 a
t 0

8:
58

 1
8 

M
ay

 2
01

2 


