Henriksen Research Group
close encounters of the two-dimensional kind
logo

2019

Optically driven magnetic phase transition of monolayer α-RuCl3
Y. Tan, W. Gao, E. A. Henriksen, J. R. Chelikowsky, & L. Yang, Nano Letters 19, 7673 (2019); retrieve from Nano Letters.
Optical doping of a monolayer of the anti-ferromagnetic Mott insulator α-RuCl3 is predicted to drive a transition to a ferromagnet.

Evidence for charge transfer and proximate magnetism in graphene/α-RuCl3 heterostructures
B. Zhou, J. Balgley, P. Lampen-Kelly, J.-Q. Yan, D. G. Mandrus, and E. A. Henriksen, Phys. Rev. B 100, 165426 (2019); retrieve from PRB or arXiv.
A Mott insulator (and quantum spin liquid candidate!) experiences significant charge transfer when in contact with graphene, and we observe a magnetic proximity effect in the graphene resistivity.

Unexpected hole doping of graphene by osmium adatoms
J. A. Elias and E. A. Henriksen, published in Annalen der Physik special issue on Dynamic Quantum Matter.
A submonolayer coating of osmium adatoms on monolayer graphene results in p-type doping of the graphene, contrary to theoretical expectations and to all other metallic adatoms on graphene studied to date.

An Extended Search for the Invisible Axion with the Axion Dark Matter Experiment
T. Braine et al. submitted to Phys. Rev. Lett. Available on the arXiv

Crystal structure reconstruction in the surface monolayer of the quantum spin liquid candidate α-RuCl3
Z. Dai, J.-X. Yu, B. Zhou, S. Tenney, P. Lampen-Kelley, J. Q. Yan, D. Mandrus, E. A. Henriksen, J. Zang, K. Pohl, & J. T. Sadowski. Submitted to 2D Materials.

Surface vs bulk charge-doping in lithium-decorated ZrTe5 thin film
W. Yu, J. A. Elias, K.-W. Chen, R. Baumbach, T. M. Nenoff, N. A. Modine, W. Pan, & E. A. Henriksen. Submitted to Scientific Reports.

Extraordinary magnetoresistance in encapsulated monolayer graphene devices
Bowen Zhou, T. Taniguchi, K. Watanabe, and E. A. Henriksen. To appear in Phys. Rev. Applied.
Encapsulated graphene devices with a central metallic shunt show a remarkable "extraordinary magnetoresistance effect," with nearly 6 orders of magnitude increase in the resistance.

2018

Digital atomic scale fabrication an inverse Moore's Law - A path to atomically precise manufacturing
John N. Randall, James H. G. Owen, Ehud Fuchs, Joseph Lake, James R. Von Ehr, Josh Ballard, and Erik A. Henriksen, Micro and Nano Engineering 1, 1 (2018); retrieve from MNE.
Opinion piece proposing the development of a digital approach to device fabrication.

Flip-chip gate-tunable acoustoelectric effect in graphene
J. R. Lane, L. Zhang, M. A. Khasawneh, B. N. Zhou, E. A. Henriksen, and J. Pollanen, J. App. Phys. 124, 194302 (2018); retrieve from JAP or arXiv.
The first demonstration of surface acoustic wave measurements of gate-tunable graphene.

Many-particle effects in the cyclotron resonance of encapsulated monolayer graphene
B. Jordan Russell, Boyi Zhou, T. Taniguchi, K. Watanabe, and E. A. Henriksen, Phys. Rev. Lett. 120, 047401 (2018); retrieve from PRL or arXiv.
Precision infrared magneto-spectroscopy of high mobility graphene reveals subtle variations due to correlated electron behavior.

Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3
Boyi Zhou, Yiping Wang, Gavin B. Osterhoudt, Paige Kelley, David Mandrus, Rui He, Kenneth S. Burch, and E. A. Henriksen. J. Phys. Chem. Sol. 128, 291 (2018); retrieve from JPCS or arXiv.
The layered transition metal tri-halide α-RuCl3, a candidate to host the Kitaev quantum spin liquid, is exfoliated down to few- and mono-layer samples for the first time, revealing a structural distortion of the thinnest layers.

2017

Electronic transport and scattering times in tungsten-decorated graphene
J. A. Elias and E. A. Henriksen, Phys. Rev. B 95, 075405 (2017); retrieve from PRB or arXiv.
By depositing a dilute coating of W atoms on graphene we seek to induce a spin-orbit coupling; surprisingly, none is found!

2015

Transport in indium-decorated graphene
U. Chandni, E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 91, 245402 (2015); retrieve from PRB or arXiv.
By depositing a dilute coating of In atoms on graphene we seek to induce a spin-orbit coupling; surprisingly, none is found!

2012

Quantum Hall effect and semimetallic behavior in dual-gated ABA trilayer graphene
E. A. Henriksen, D. Nandi and J. P. Eisenstein, Phys. Rev. X. 2, 011004 (2012); retrieve from PRX or arXiv.
(with Commentary): Mirror-symmetry-breaking of gated ABA-trilayer graphene is discovered via measurements of the quantum Hall effect.

2010

Measurement of the electronic compressibility of bilayer graphene
E. A. Henriksen and J. P. Eisenstein, Phys. Rev. B 82, 041412(R) (2010); retrieve from PRB Rapid or arXiv.
A gap in the band structure of bilayer graphene is seen by measurements of the density of states.

Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy
E. A. Henriksen, P. Cadden-Zimansky, Z. Jiang, Z. Q. Li, L.-C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim and H. L. Stormer, Phys. Rev. Lett. 104, 067404 (2010); retrieve from PRL or arXiv.
A gap opening in the N=0 Landau level of graphene is ascribed to electron interactions.

2009

Optical phonon mixing in bilayer graphene with a broken inversion symmetry
J. Yan, T. Villarson, E. A. Henriksen, P. Kim and A. Pinczuk, Phys. Rev. B 80, 241417(R) (2009); retrieve from PRB.

Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy
Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer and D. N. Basov, Phys. Rev. Lett. 102, 037403 (2009); retrieve from PRL or arXiv.

2008

Observation of anomalous phonon softening in bilayer graphene
J. Yan, E. A. Henriksen, P. Kim and A. Pinczuk, Phys. Rev. Lett. 101, 136804 (2008), retrieve from PRL or arXiv.

Dirac charge dynamics in graphene by infrared spectroscopy
Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer and D. N. Basov, Nature Phys. 4, 532 (2008); retrieve from Nature Phys. or arXiv.

2007

Cyclotron resonance in bilayer graphene
E. A. Henriksen, Z. Jiang, L. C. Tung, M. E. Schwartz, M. Takita, Y.-J. Wang, P. Kim and H. L. Stormer, Phys. Rev. Lett. 100, 087403 (2007), retrieve from PRL or arXiv.

Infrared spectroscopy of Landau levels in graphene
Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim and H. L. Stormer, Phys. Rev. Lett. 98, 197403 (2007); retrieve from PRL or arXiv.

2006

Disorder-mediated splitting of the cyclotron resonance line of two-dimensional electron systems
E. A. Henriksen, S. Syed, Y.-J. Wang, H. L. Stormer, L. N. Pfeiffer and K. W. West, Phys. Rev. B 73, 241309(R) (2006), retrieve from PRB or arXiv.

Splitting of the cyclotron resonance in two-dimensional electron systems
E. A. Henriksen, S. Syed, Y.-J. Wang, M. J. Manfra, L. N. Pfeiffer, K. W. West and H. L. Stormer, Physica E 34, 318 (2006).

2005

Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor
E. A. Henriksen, S. Syed, Y. Ahmadian, M. J. Manfra, K. W. Baldwin, A. M. Sergent, R. J. Molnar and H. L. Stormer, Appl. Phys. Lett. 86, 252108 (2005); retrieve from APL or arXiv.

2000

Quantized thermal conductance: measurements in nanostructures
K. Schwab, W. Fon, E. Henriksen, J. M. Worlock and M. L. Roukes, Physica B 280, 458 (2000).

Measurement of the quantum of thermal conductance
K. C. Schwab, E. A. Henriksen, J. M. Worlock and M. L. Roukes, Nature 404, 974-977 (2000); retrieve from Nature.
First observation of the quantum of thermal conductance; see commentary in the News & Views.