Key Terms

1) Precision
a measure of the certainty (\pm), that is how close each measurement is to each other
E.g., height $=182.23 \pm 0.01 \mathrm{~cm}$
2) Accuracy
how close the measured value is to the true or accepted value
3) Random Error
an error in measurement caused by factors that vary from one measurement to another, usually due to limitations of equipment - can be minimized by averaging multiple trials
4) Systematic Error
an error having a nonzero mean, so that its effect is not reduced when observations are averaged, usually due to instrument or method error

Measuring Device Uncertainty

Always report uncertainty to 1 or 2 significant figures

1) Analog Measuring Device
for each end of a ruler $= \pm \frac{1}{2}($ the smallest scale division $)$
2) Digital Device
3) Look in the equipment manual to determine the device resolution for a given setting range
4) If you do not have a manual use
± 1 of the smallest unit displayed
5) Repeated Measurements
6) If repeated measurements yield different values for each measurement then mean $\pm 1 / 2($ Max - Min) or mean \pm std dev (for roughly symmetric data sets)
7) If repeated measurements all yield the same value then mean \pm resolution of the measuring device

Uncertainty Propagation

1) Addition and Subtraction

Length $=L_{1}+L_{2} \quad$ where δL_{1} and δL_{2} are the uncertainties

1) Worst Case Uncertainty

Add the absolute uncertainties
Worst Case Uncertainty in Length $=\delta L=\left|\delta L_{1}\right|+\left|\delta L_{2}\right|$
2) Statistical Uncertainty

Uncertainty in Length $=\delta L=\sqrt{\left(\delta L_{1}\right)^{2}+\left(\delta L_{2}\right)^{2}}$
2) Multiplication and Division Area $=L^{*} W \quad$ where δL and δW are the uncertainties

1) Worst Case Uncertainty

Add absolute fractional or percent fractional uncertainties
Worst Case Fractional Uncertainty in Area $=\frac{\delta A}{A}=\left|\frac{\delta L}{L}\right|+\left|\frac{\delta W}{W}\right|$
2) Statistical Uncertainty

Fractional Uncertainty in Area $=\frac{\delta A}{A}=\sqrt{\left(\frac{\delta L}{L}\right)^{2}+\left(\frac{\delta W}{W}\right)^{2}}$

Uncertainty Propagation in Quadrature (statistical best estimate)

Length $=L_{1}+L_{2} \quad$ where $\pm e_{1}$ and $\pm e_{2}$ are the uncertainties respectively

e1-e2

$$
\begin{aligned}
\sqrt{e_{1}^{2}+e_{2}^{2}} & <e_{1}+e_{2} \\
& >e_{1} \\
& >e_{2}
\end{aligned}
$$

1) Uncertainty in a Function of Several Variables

All measurement quantities must be independent and subject to only random uncertainties
$\delta f(x, y, z)=\sqrt{\left(\frac{\partial f}{\partial x} \delta x\right)^{2}+\left(\frac{\partial f}{\partial y} \delta y\right)^{2}+\left(\frac{\partial f}{\partial z} \delta z\right)^{2}} \quad$ Statistical Uncertainty
$\delta f(x, y, z) \leq\left|\frac{\partial f}{\partial x} \delta x\right|+\left|\frac{\partial f}{\partial y} \delta y\right|+\left|\frac{\partial f}{\partial z} \delta z\right|$

Worst Case Uncertainty

2) Tricks and Shortcuts
3) Multiplication by a Constant
$f(x)=C x \quad$ where C is a constant $\quad \Rightarrow \quad \delta f=\frac{\partial f}{\partial x} \delta x=C \delta x$
When multiplying your measurement by a constant, multiply its uncertainty by the same constant

If measured $x=5.614 \pm 0.006$
then 10 times $x=56.14 \pm 0.06$
2) Addition and Subtraction

$$
f(x, y)= \pm x \pm y \Rightarrow \delta f=\sqrt{\left(\frac{\partial f}{\partial x} \delta x\right)^{2}+\left(\frac{\partial f}{\partial y} \delta y\right)^{2}}=\sqrt{(\delta x)^{2}+(\delta y)^{2}}
$$

3) Multiplication and Division

$$
f(x, y)=x y \Rightarrow \delta f=\sqrt{\left(\frac{\partial f}{\partial x} \delta x\right)^{2}+\left(\frac{\partial f}{\partial y} \delta y\right)^{2}}=\sqrt{(y \delta x)^{2}+(x \delta y)^{2}} \Rightarrow \frac{\delta f}{f}=\sqrt{\left(\frac{\delta x}{x}\right)^{2}+\left(\frac{\delta y}{y}\right)^{2}}
$$

The relative or fractional uncertainties add in quadrature.
4) Powers

$$
f(x)=x^{n} \Rightarrow \delta f=\sqrt{\left(\frac{\partial f}{\partial x} \delta x\right)^{2}}=\sqrt{\left(n x^{n-1} \delta x\right)^{2}} \Rightarrow \frac{\delta f}{f}=\sqrt{\left(\frac{n \delta x}{x}\right)^{2}}=\left|\frac{n \delta x}{x}\right|
$$

3) Example: Kinetic Energy
mass $=10.12 \pm 0.11 \mathrm{~kg}$ and velocity $=2.34 \pm 0.04 \mathrm{~m} / \mathrm{s}$
$K(v)=\frac{1}{2} m v^{2} \Rightarrow \delta K=\sqrt{\left(\frac{\partial K}{\partial m} \delta m\right)^{2}+\left(\frac{\partial K}{\partial v} \delta v\right)^{2}}=\sqrt{\left(\frac{1}{2} v^{2} \delta m\right)^{2}+(m v \delta v)^{2}}$
$\delta K=\sqrt{\left(\frac{1}{2}(2.34 \mathrm{~m} / \mathrm{s})^{2}(0.11 \mathrm{~kg})\right)^{2}+((10.12 \mathrm{~kg})(2.34 \mathrm{~m} / \mathrm{s})(0.04 \mathrm{~m} / \mathrm{s}))^{2}}=0.9939540 \mathrm{~J} \Rightarrow 0.99 \mathrm{~J}$

Scatter Plot with Error Bars

1) Best Fit Straight Line (Linear Regression)
2) Max and Min gradient (slope) lines

Use endpoints and error on each end to fit line for max and min slope of line

