

Supernova limits on a light CP-even scalar and implications for the KOTO anomaly

Yongchao Zhang Washington University in St. Louis yongchao.zhang@physics.wustl.edu

May 4, 2020 Phenomenology 2020 Symposium

based on P. S. B. Dev, R. N. Mohapatra & YCZ, PRD**101**, 075014 [1911.12334] P. S. B. Dev, R. N. Mohapatra & YCZ, 2005.00490

Supernova limits on light particles

- Supernovae provide a unique environment to produce copiously light hypothetical particles:
 - axion/ALP [Iwamoto '84; Pantziris & Kang '86; Turner '88; Raffelt & Seckel, '88; Mayle, Wilson, Ellis, Olive, Schramm & Steigman '88; Brinkmann & Turner '88; Burrows, Turner & Brinkmann '89; more recent papers...]
 - dark photon [Bjorken, Essig, Schuster, & Toro '09; Dent, Ferrer & Krauss '12; Kazanas, Mohapatra, Nussinov, Teplitz & YCZ '14; ...]
 - sterile neutrino [Kainulainen, Maalampi & Peltoniemi '91; Kuflik, McDermott & Zurek '12...]
 - compact extra dimensions [Hanhart, Phillips, Reddy & Savage '00; Hanhart, Pons, Phillips & Reddy '01...]
 - CP-even scalar [Ishizuka & Yoshimura '90; Diener & Burgess '13; Krnjaic '15; Lee '18; Arndt & Fox (saxion) '02]
- Raffelt criterion: the energy loss due to these exotic particles can not exceed that from neutrino emission [Raffelt criterion '96].

Supernova limits on light CP-even scalar S

• Very limited supernova limits in the literature on light CP-even scalar (compared to axion/ALP & dark photon)

• Motivations:

- natural DM candidate [Silveira & Zee '85; McDonald '94; Burgess, Pospelov & ter Veldhuis '00; Cline, Kainulainen, Scott & Weniger '13]
- dark force mediator [Pospelov, Ritz & Voloshin '07; Kainulainen, Tuominen & Vaskonen '15; Bell, Busoni Sanderson '16; Knapen, Lin & Zurek '17; Matsumoto, Tsai & Tseng '18; Batell, Freitas, Ismail & Mckeen '18]
- baryogenesis [Espinosa & Quiros '93; Profumo, Ramsey-Musolf & Shaughnessy '07; Espinosa, Konstandin & Riva '11; Croon, Howard, Ipek & Tait '19]

Production of S in supernova core

Figure: $N + N + S \rightarrow N + N$

- The couplings of S to SM particles are all from mixing with the SM Higgs.
- Two contributions: SNN coupling + $S\pi\pi$ coupling

$$\begin{split} \mathcal{L} &= \sin\theta S \left[y_{hNN} \overline{N} N + A_{\pi} (\pi^0 \pi^0 + \pi^+ \pi^-) \right] \,, \\ y_{hNN} &\sim 10^{-3} \,, \quad \mathcal{A}_{\pi} \;=\; \frac{2}{9 v_{\rm EW}} \left(m_S^2 + \frac{11}{2} m_{\pi}^2 \right) \sim 10^{-3} m_{\pi} \,, \end{split}$$

• Neglecting the contributions from Se^+e^- and $S\gamma\gamma$ couplings, which are both very small.

Emission rate of S

Energy emission rate per unit volume in the supernova core:

$$Q = \int d\Pi_5 S \sum_{\text{spins}} |\mathcal{M}|^2 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4 - k_5) E_S f_1 f_2 P_{\text{decay}} P_{\text{abs}},$$

- $\mathrm{d}\Pi_5$: 5-body phase space
 - S: symmetry factor for (non-)identical particles
 - non-relativistic Maxwell-Boltzmann distribution decay factor,
 - re-absorption factor due to $N + N + S \rightarrow N + N$ [λ : mean free path (MFP)]

 $P_{\text{decay}} = \exp\{-R_c \Gamma_S\}:$ $P_{\text{abs}} = \exp\{-R_c / \lambda\}:$

 $f(\mathbf{p})$:

Cancellation at the leading order

• To the LO of $m_S^2/m_N E_S$:

$$\begin{split} \mathcal{M}_a + \mathcal{M}_b + \mathcal{M}_c + \mathcal{M}_d &\simeq 0 \,, \\ \mathcal{M}_{a'} + \mathcal{M}_{b'} + \mathcal{M}_{c'} + \mathcal{M}_{d'} &\simeq 0 \,. \end{split}$$

• Expand to the NLO of $m_S^2/m_N E_S$:

$$rac{1}{(p_i \pm k_S)^2 - m_N^2} \simeq rac{1}{\pm 2m_N E_S + m_S^2} \simeq rac{1}{\pm 2m_N E_S} \left[1 \mp rac{m_S^2}{2m_N E_S}
ight]$$

• The contributions of the SNN diagrams to production rate will be suppressed by the ratio of $(m_S/E_S)^4$ in the limit of small m_S .

Comparison of different contributions

Figure:
$$T = 30$$
 MeV, $n_B = 1.2 \times 10^{38} \text{ cm}^{-3}$, $\sin \theta = 10^{-6}$

• \mathcal{I}_A : SNN diagrams:

$$\propto y_{hNN}^2 \left(\frac{m_S}{E_S}\right)^4 \iff \text{ cancellation}$$

• \mathcal{I}_B : $S\pi\pi$ diagrams:

$$\propto \left(\frac{m_N}{v_{\rm EW}}\right)^2 \left[\left(\frac{m_S}{T}\right)^2 \left(\frac{T}{m_N}\right) + \frac{11}{2} \frac{m_\pi^2}{m_N T} \right]^2$$

• \mathcal{I}_C : always in between \mathcal{I}_A and \mathcal{I}_B .

• S decays mostly into e^+e^- or $\mu^+\mu^-$ (for $m_S\gtrsim 2m_\mu)$

• Not include $S \to \pi^+\pi^-$, $\pi^0\pi^0$ as S decays so fast for $m_S \gtrsim 2m_\pi$ that it can not escape from the core.

Re-absorption of S

• Re-absorption of S via the process

$$N + N + S \rightarrow N + N$$

• Inverse MFP [Giannotti & Nesti '05; Burrows, Ressell & Turner '90]:

$$\begin{split} \lambda^{-1}(E_S) &\equiv \frac{1}{2E_S} \frac{d\mathcal{N}_S(-k_S)}{d\Pi_S} \\ &= \frac{1}{2E_S} \int d\Pi_4 \mathcal{S} \sum_{\text{spins}} |\mathcal{M}'|^2 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4 + k_S) f_1 f_2 \,, \end{split}$$

• Effective energy-independent inverse MFP [Ishizuka & Yoshimura '90]:

$$\langle \lambda^{-1} \rangle \equiv \frac{\int \mathrm{d}E_S \frac{E_S^3}{e^{E_S/T} - 1} \lambda^{-1}(E_S)}{\int \mathrm{d}E_S \frac{E_S^3}{e^{E_S/T} - 1}} = \frac{\int \mathrm{d}x \frac{x^3}{e^x - 1} \lambda^{-1}(x)}{\int \mathrm{d}x \frac{x^3}{e^x - 1}} \,.$$

Figure: T = 30 MeV, $n_B = 1.2 \times 10^{38}$ cm⁻³

Supernova luminosity limits on S

Figure: T = 30 MeV, $n_B = 1.2 \times 10^{38}$ cm⁻³, $R_c = 10$ km

- Purple (orange) regions: luminosity limit of $5(3) \times 10^{53}$ erg/sec;
- Limit from Krnjaic ['15]: not consider the cancellation & the $S\pi\pi$ diagrams;
- The supernova limits can be improved at IceCube-DeepCore, Hype-K & DUNE;
- More limits from neutron star mergers [Harris, Fortin, Sinha & Alford '20]

Yongchao Zhang (Wustl)

Complementarity to other limits

- Meson decay: FCNC decays $K \to \pi + X$, $B \to K(\pi) + X$, with X = ee, $\mu\mu$, $\gamma\gamma$, missing energy;
- DUNE could probe the supernova excluded regions $m_S \gtrsim 100$ MeV [Berryman, de Gouvêa, Fox, Kayser, Kelly & Raaf '19; Dev, Mohapatra & YCZ '19 PRD].

"KOTO anomaly"

• The SM prediction:

$$\mathrm{BR}({\it K_L} \rightarrow \pi^0 \nu \bar{\nu})_{\rm SM} = \left(3.4 \pm 0.6\right) \times 10^{-11}$$

• 3 "signal events" are observed at KOTO: [Kitahara, Okui, Perez, Soreq & Tobioka '19 PRL]

$$\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})_{\mathrm{KOTO}} = 2.1^{+2.0(+4.1)}_{-1.1(-1.7)} \times 10^{-9}$$

CAUTION [Shinohara, Talk given at KAON2019]:

The 3 events are beyond the reasonable expectation. The KOTO collaboration is checking the events, detector status, and background estimations. The KOTO collaboration did **NOT** claim the observed events as signals, or give any numbers on the branching ratio or physics results.

If the 3 events are a signal of BSM...

- heavy mediators (effective operators)
- long-lived light mediators or dark particles
- light mediator decaying off-axis into photons

....

Kitahara, Okui, Perez, Soreq & Tobioka '19 PRL; Egana-Ugrinovic, Homiller, and Meade '19; Dev, Mohapatra & YCZ '19 PRD; Fabbrichesi† & Gabrielli '19; Liu, McGinnis, Wagner & Wang '20; Cline, Puel & Toma '20; Jho, Lee, Park, Park & Tseng '20; Camalich, Pospelov, Vuong, Ziegler & Zupan '20; He, Ma, Tandean, Valencia '20; Ziegler, Zupan, Zwicky '20

[see also the talks by J. Liu, S. Homiller & B. Lehmann]

One simplest explanation: light long-lived scalar S

• Limits from (LLP = long-lived particle):

E949 ['09] :
$$K^+ \to \pi^+ + LLP$$
, NA62 ['19] : $K^+ \to \pi^+ \nu \bar{\nu}$,
koto ['18] : $K_L \to \pi^0 \nu \bar{\nu}$, charm ['85] : $K \to \pi + LLP$

• The supernova limits are roughly two orders of magnitude lower than the KOTO signal region.

Yongchao Zhang (Wustl)

Conclusion

- We have performed the first full calculation of supernova limits on the light CP-even scalar S.
- Different from the axion/ALP and dark photon cases, there is a cancellation for the production of *S*.
- We have taken into consideration the decay and re-absorption of S in the supernova core.
- Depending on the scalar mass up to the $2m_{\pi}$, the mixing angle of S with the SM Higgs is excluded in the range of 3.5×10^{-7} to 2.5×10^{-5} .
- The light scalar S is a good explanation for the "KOTO anomaly".

Thank you very much!