

Lepton flavor violation induced by neutral and doubly-charged scalars at future lepton colliders

Yongchao Zhang Washington University in St. Louis

October 25, 2018 International Workshop on Future Linear Colliders (LCWS2018) University of Texas, Arlington

based on

P. S. B. Dev, R. N. Mohapatra & YCZ, PRL120(2018)221804 [1711.08430]

P. S. B. Dev, R. N. Mohapatra & YCZ, 1803.11167, accepted by PRD

contributing to CEPC CDR & CLIC CERN Yellow Book

Outline

- Motivations of the LFV processes
- Beyond SM neutral scalar H at future lepton colliders
 - On-shell production
 - Off-shell production
 - Prospects at ILC and CEPC (CLIC in backup slides)
- Doubly-charged scalar $H^{\pm\pm}$ at future lepton colliders
 - On-shell production through the (LFV) Yukawa couplings
 - Off-shell production
 - Prospects at ILC and CEPC (CLIC in backup slides)
- Conclusion

Why lepton-flavor violation (LFV) at future lepton colliders?

- "Smoking-gun" signal beyond the SM;
- Clean SM background at lepton colliders
- ...Connection to neutrino mass generation (and other pheno)
 - Beyond SM neutral scalar H from e.g. left-right model, sneutrino in RPV SUSY models;
 - ▶ Doubly-charged scalar H^{±±} in type-II seesaw and its extensions like left-right model;
 - ▶ Might also be connected to the heavy neutrino searches, effective 4-fermion interactions, or even DM pheno at future lepton colliders.

Beyond SM neutral scalar *H*@ future lepton colliders

Well-motivated underlying models

• RPV SUSY: sneutrinos ($\tilde{\nu}$) [Aulakh, Mohapatra '82; Hall,Suzuki '84; Ross, Valle '85, Barbier+ '04; Duggan, Evans, Hirschauer '13]

$$\mathcal{L}_{\mathrm{RPV}} = \frac{1}{2} \lambda_{\alpha\beta\gamma} \widehat{\mathcal{L}}_{\alpha} \widehat{\mathcal{L}}_{\beta} \widehat{\mathcal{E}}_{\gamma}^{c}$$

• Left-right symmetric models: the $SU(2)_R$ -breaking scalar H_3 [Dev, Mohapatra, YCZ '16; '16; '17; Maiezza, Senjanović, Vasquez '16]

LFV couplings are generated at tree and loop level

• 2HDM: CP-even or odd (heavy) scalars from the 2nd doublet [Branco+ '11; Crivellin, Heeck, Stoffer '15]

LFV couplings are induced from small deviation from the lepton-specific structure.

• Mirror models: singlet scalar connecting the SM leptons to heavy mirror leptons [Hung '06, '07; Bu, Liao, Liu '08; Chang, Chang, Nugroho+ '16; Hung, Le, Tran+ '17]

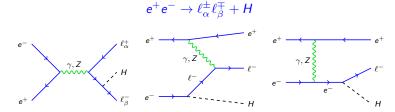
LFV couplings arise from the SM-heavy lepton mixing

Beyond SM neutral Higgs & effective LFV couplings

Model-independent effective LFV couplings of H

$$\mathcal{L}_{Y} = h_{\alpha\beta}\bar{\ell}_{\alpha,L}H\ell_{\beta,R} + \text{H.c.}.$$

For simplicity, we assume $h_{\alpha\beta}$ are real, symmetric, H is CP-even, hadrophobic and the mixing with the SM Higgs h is small.

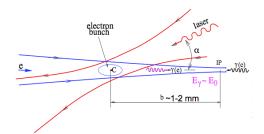

H might originate from a isospin singlet, doublet or triplet, depending on specific underlying models.

• Effective Dim-4 couplings \neq Effective 4-fermion couplings like $\frac{1}{\Lambda^2}(\bar{e}e)(\bar{e}\mu)$ [Kabachenko, Pirogov '97; Ferreira, Guedes, Santos '06; Aranda, Flores-Tlalpa, Ramirez-Zavaleta+ '09; Murakami, Tait '14; Cho, Shimo '14]

$$m_H < \sqrt{s} \Rightarrow$$
 on-shell production

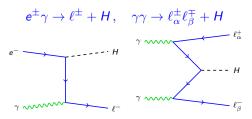
On-shell production of H at lepton colliders

• the e^+e^- process


involving the charged-currents [H decaying into visible particles]

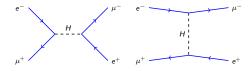
$$e^+e^- \rightarrow \nu_{\alpha}\bar{\nu}_e + H$$
 $e^+ \qquad \qquad \bar{\nu}_e$
 $\ell^- \qquad \qquad \ell^-$

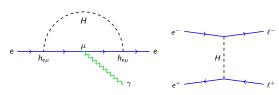
Laser photon in future lepton colliders


- In future lepton colliders, high luminosity photon beams can be obtained by Compton backscattering of low energy, high intensity laser beam off the high energy electron beam [Ginzburg+ '83, '84].
- The effective photon luminosity distribution $(x = \omega/E_e \lesssim 0.83 \text{ the fraction of electron energy carried away by the scattered photon,}$ $\xi = 4\omega_0 E_e/m_e^2)$

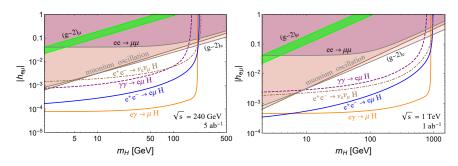
$$f_{\gamma/e}(x) = \frac{1}{D(\xi)} \left[(1-x) + \frac{1}{(1-x)} - \frac{4x}{\xi(1-x)} + \frac{4x^2}{\xi^2(1-x)^2} \right],$$
with $D(\xi) = \left(1 - \frac{4}{\xi} - \frac{8}{\xi^2} \right) \log(1+\xi) + \frac{1}{2} + \frac{8}{\xi} - \frac{1}{2(1+\xi)^2},$

On-shell production of H at lepton colliders


• involving the laser photon(s)

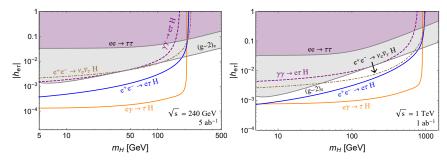

Constraints on the LFV couplings: on-shell

On-shell production amplitudes depend *linearly* on the LFV couplings


• muonium anti-muonium oscillation: $(\bar{\mu}e) \leftrightarrow (\mu\bar{e})$ $(h_{e\mu})$ [Clark, Love '03]

- Electron and muon g-2 ($h_{e\ell}$, $h_{\mu\ell}$) [Lindner, Platscher, Queiroz '16]
- Bhabha scattering, LEP $ee \rightarrow \ell\ell$ data ($h_{e\ell}$) [OPAL '03; L3 '03; DELPHI '05]

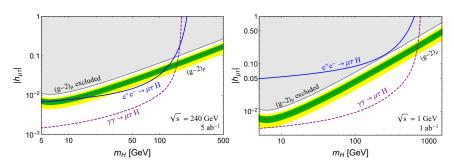
Prospects of *H*: on-shell production



 $\gamma\gamma$ (e\gamma) channel: laser photon collision.

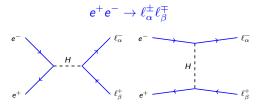
Green bands: muon g-2 anomaly (excluded).

Assuming the dominant decay mode $H o e^{\pm} \mu^{\mp}$.


Prospects of *H*: on-shell production

 $\gamma\gamma$ ($e\gamma$) channel: laser photon collision.

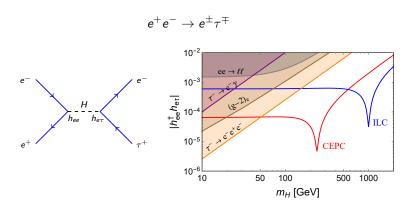
Assuming the dominant decay mode $H o e^\pm au^\mp$.


Prospects of *H*: on-shell production

- $\gamma\gamma$ ($e\gamma$) channel: laser photon collision.
- Assuming the dominant decay mode $H \to \mu^{\pm} \tau^{\mp}$.
- ▶ The muon g-2 discrepancy can be directly tested at CEPC & ILC via the searches $e^+e^-, \gamma\gamma \to \mu\tau + H$.

Off-shell production of H at lepton colliders

• Off-shell production (at resonance when $m_H \simeq \sqrt{s}$) might also be mediated by a (light) gauge boson Z' with LFV couplings [Heeck '16]


Constraints on the LFV couplings: off-shell

Off-shell production amplitudes depend *quadratically* on the LFV couplings

process	current data	constraints $[GeV^{-2}]$
$\mu^- ightarrow e^- e^+ e^-$	$< 10^{-12}$	$ h_{ m ee}^{\dagger}h_{ m e\mu} /m_H^2 < 6.6 imes 10^{-11}$
$ au^- ightarrow e^- e^+ e^-$	$< 2.7 \times 10^{-8}$	$ h_{ee}^{\dagger}h_{e\tau} /m_H^2 < 2.6 \times 10^{-8}$
$ au^- ightarrow \mu^- e^+ e^-$	$< 1.8 imes 10^{-8}$	$ h_{ee}^{\dagger}h_{\mu au} /m_H^2 < 1.5 imes 10^{-8}$
$ au^- ightarrow \mu^+ e^- e^-$	$<1.5 imes10^{-8}$	$ h_{e\mu}^{\dagger}h_{e\tau} /m_H^2 < 1.9 imes 10^{-8}$
$ au^- ightarrow { m e}^- \gamma$	$< 3.3 \times 10^{-8}$	$ h_{ee}^{\dagger}h_{e\tau} /m_H^2 < 1.0 \times 10^{-6}$
$\tau^- \to \mu^- \gamma$	$< 4.4 \times 10^{-8}$	$ h_{e\mu}^{\dagger}h_{e\tau} /m_H^2 < 1.2 imes 10^{-6}$
$(g-2)_{e}$	$< 5.0 \times 10^{-13}$	$ h_{ee}^{\dagger}h_{e au} /m_H^2 < 1.1 imes 10^{-7}$
		$ \ h_{e\mu}^\dagger h_{e au} / m_H^2 < 1.0 imes 10^{-8}$
ee ightarrow ee, au au	$\Lambda > 5.7 \& 6.3 \text{ TeV}$	$h_{ee}^{\dagger} h_{e au} /m_H^2 < 1.4 imes 10^{-7}$
ee $\rightarrow \mu\mu, au au$	$\Lambda > 5.7 \& 7.9 \text{ TeV}$	$ h_{e\mu}^{\dagger}h_{e\tau} /m_H^2 < 1.3 \times 10^{-7}$
		<u> </u>

The $\mu \to 3e$ limit is so strong that the it leaves no hope to see any signal in the $ee \to e\mu$ channel at future lepton colliders.

Prospects of *H*: off-shell production

- ▶ Resonance effect at $m_H \simeq \sqrt{s}$ with width $\Gamma_H = 10$ (30) GeV at CEPC (ILC).
- ▶ The off-shell scalar could be probed well beyond 10 TeV scale for couplings $h_{\alpha\beta}$ of order one.

Prospects of *H*: off-shell production

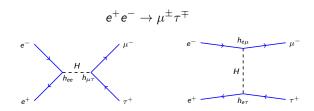
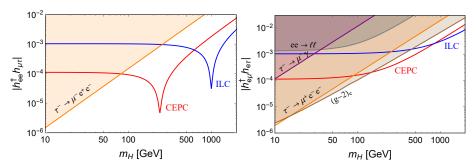



Figure: The s and t channels depend on different $h^{\dagger}h$ couplings.

Doubly-charged scalar $H^{\pm\pm}$ @ future lepton colliders

$H^{\pm\pm}$ at lepton (and hadron) colliders

- The (left- and right-handed) $H^{\pm\pm}$ can be pair produced from the gauge interactions to the γ/Z bosons.
- The Drell-Yan production channels can not be used to measure *directly* the (LFV) Yukawa couplings $f_{\alpha\beta}$ of $H^{\pm\pm}$ to charged leptons, unless $H^{\pm\pm}$ is long-lived.
- The current LHC same-sign dilepton limits depend largely on the branching fractions $\mathrm{BR}(H^{\pm\pm}\to\ell_\alpha^\pm\ell_\beta^\pm)$.

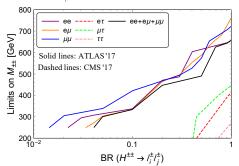
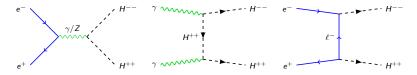


Figure: LHC dilepton limits on the right-handed $H^{\pm\pm}$.

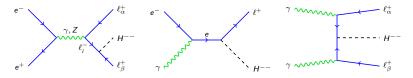

19 / 25

On-shell Production of $H^{\pm\pm}$ at lepton colliders through the (LFV) Yukawa couplings $f_{\alpha\beta}$

Model-independent effective couplings of (right-handed) $H^{\pm\pm}$

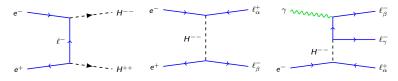
$$\mathcal{L}_{Y} = f_{\alpha\beta}H^{++}\overline{\ell_{\alpha}^{C}}\ell_{\beta} + \text{H.c.}$$

 Pair production through the gauge and Yukawa couplings [Chakrabarti+, hep-ph/9804297]

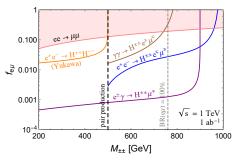


The Drell-Yan processes dominate the pair production if the Yukawa couplings $f_{e\ell}$ are very small.

On/off-shell production of $H^{\pm\pm}$ at lepton colliders

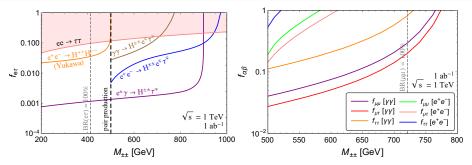

• Single production through the Yukawa couplings

[Kuze & Sirois, hep-ex/0211048; Barenboim, Huitu, Maalampi & Raidal, hep-ph/9611362; Lusignoli & Petrarca, PLB**226**, 397; Yue & Zhao, hep-ph/0701017; Godfrey, Kalyniak, Romanenko, hep-ph/0108258; hep-ph/0207240; Rizzo, PRD**25**, 1355; Yue, Zhao & Ma, 0706.0232]



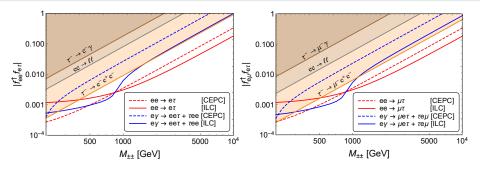
Off-shell production

[Godfrey, Kalyniak, Romanenko, hep-ph/0108258; hep-ph/0207240; Rizzo, PRD25, 1355


Prospects of $H^{\pm\pm}$ @ ILC 1TeV: single production

- Assuming the dominant decay mode $H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}$.
- ▶ Below $\sqrt{s}/2 \simeq 500$ GeV, the process $e^+e^- \to H^{\pm\pm}\ell_\alpha^\mp\ell_\beta^\mp$ is dominated by the Drell-Yan pair production $e^+e^- \to H^{++}H^{--}$ with the subsequent decay $H^{\mp\mp} \to \ell_\alpha^\mp\ell_\beta^\mp$.
- ▶ The electron and muon g-2 limits are highly suppressed by the charge lepton masses and are not shown in the plot.

CLIC could probe higher mass ranges.


Prospects of $H^{\pm\pm}$ @ ILC 1TeV: single production

- Assuming the dominant decay mode $H^{\pm\pm} o e^\pm au^\pm$ (left), $\ell^\pm_lpha\ell^\pm_eta$ (right).
- ▶ Below $\sqrt{s}/2 \simeq 500$ GeV, the process $e^+e^- \to H^{\pm\pm}\ell_\alpha^\mp\ell_\beta^\mp$ is dominated by the Drell-Yan pair production $e^+e^- \to H^{++}H^{--}$ with the subsequent decay $H^{\mp\mp} \to \ell_\alpha^\mp\ell_\beta^\mp$.
- ▶ The electron and muon g-2 limits are highly suppressed by the charge lepton masses and are not shown in the plots.

CLIC could probe higher mass ranges.

Prospects of $H^{\pm\pm}$ @ CEPC & ILC: off-shell production

- Suppressed by the three-body phase space, the sensitivities in the $e\gamma$ processes are comparatively much weaker.
- As in the neutral scalar case, the limit from $\mu \to eee$ are so stringent that it has precluded the $H^{\pm\pm}$ -mediated signal $ee \to e\mu$ at CEPC & ILC.
- ► The effective cutoff scale $\Lambda \simeq M_{\pm\pm}/|f|$ can be probed at CEPC & ILC 1TeV up to few 10 TeV (even higher at CLIC).
- ▶ The sensitivities for more flavor combinations α , β , γ in $e^{\pm}\gamma \to \ell_{\alpha}^{\mp}\ell_{\beta}^{\pm}\ell_{\gamma}^{\pm}$ can be found in our paper 1803.11167.

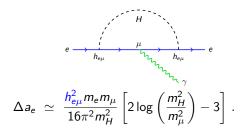
Conclusion


- A large variety of well-motivated models accommodate a beyond SM neutral scalar H and/or doubly-charged scalar $H^{\pm\pm}$, with LFV couplings to the SM charged leptons.
- These LFV couplings can be studied in a *model-independent* way at future lepton colliders, which strengthens the physics case for future lepton colliders.
- The neutral scalar H can be produced on-shell via $e^{\pm}\gamma \to \ell^{\pm} + H$ and $e^{+}e^{-}, \gamma\gamma \to \ell^{\pm}_{\alpha}\ell^{\mp}_{\beta} + H$ or off-shell via $e^{+}e^{-} \to \ell^{\pm}_{\alpha}\ell^{\mp}_{\beta}$.
- The doubly-charged scalar $H^{\pm\pm}$ can be (doubly & singly) on-shell and off-shell produced from the (LFV) Yukawa couplings to the charged leptons.
- It is promising that future lepton colliders could probe a broad region of mass and coupling parameters for both H and $H^{\pm\pm}$, which go well beyond the existing low-energy LFV constraints like au o eee.
- The neutral scalar explanation of the muon g-2 anomaly can be directly tested at future lepton colliders in the $e^+e^-, \gamma\gamma \to \mu^\pm\tau^\mp + H$ processes.

Thank you for your attention!

On-shell production amplitudes depend *linearly* on the LFV couplings

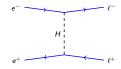
• muonium anti-muonium oscillation: $(\bar{\mu}e) \leftrightarrow (\mu\bar{e}) \ (h_{e\mu})$


Oscillation probablity [Clark, Love '03]

$$\mathcal{P} = \frac{2(\Delta M)^2}{\Gamma_{\mu}^2 + 4(\Delta M)^2}$$

with the H-induced mass splitting

$$\Delta M = \frac{2\alpha_{\rm EM}^3 h_{\rm e\mu}^2 \mu^3}{\pi m_H^2}, \quad \mu = \frac{m_{\rm e} m_{\mu}}{m_{\rm e} + m_{\mu}}$$


• Electron and muon g-2 ($h_{e\ell}$, $h_{\mu\ell}$) [Lindner, Platscher, Queiroz '16]

The value of $h_{e\mu}$ to explain $(g-2)_{\mu}$ discrepancy is excluded by the $(g-2)_{e}$ constraint.

$$\Delta a_{\mu} \equiv \Delta a_{\mu}^{\mathrm{exp}} - \Delta a_{\mu}^{\mathrm{th}} = (2.87 \pm 0.80) imes 10^{-9}$$

• Bhabha scattering, LEP $ee \rightarrow \ell\ell$ data $(h_{e\ell})$ [OPAL '03; L3 '03; DELPHI '05]

Effective 4-fermion interaction

$$\frac{h_{e\ell}^2}{m_H^2}(\bar{e}\ell)(\bar{e}\ell) \xrightarrow{\text{Fierz transf.}} \frac{1}{\Lambda^2}(\bar{e}\gamma_\mu e)(\bar{\ell}\gamma^\mu \ell)$$

If $m_H \lesssim \sqrt{s}$, the LEP limits on the cut-off scale Λ do not apply, and we have to consider the kinetic dependence

$$rac{1}{m_H^2} o rac{1}{q^2 - m_H^2} \simeq rac{1}{-s\cos\theta/2 - m_H^2}$$

Off-shell production amplitudes depend quadratically on the LFV couplings

• 3-body LFV decays of muon and tauon, e.g. [Sher, Yuan '91]

$$\Gamma(au^-
ightarrow e^+ e^- e^-) \simeq rac{1}{\delta} rac{|h_{
m ee}^\dagger h_{e au}|^2 m_ au^5}{3072 \pi^3 m_H^4} \,, \quad (\delta=2)$$

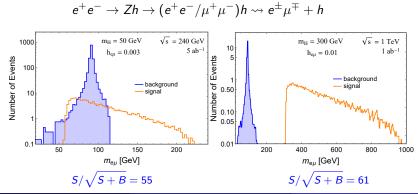
• 2-body LFV decays of muon and tauon, e.g. [Harnik, Kopp, Zupan '12]

$$\Gamma(au o e\gamma) = rac{lpha_{
m EM} m_ au^5}{64\pi^4} \left(|c_L|^2 + |c_R|^2
ight) \,, \quad c_L = c_R \simeq rac{h_{
m ee}^\dagger h_{
m e au}}{24 m_H^2} \,.$$

• $h_{ee,\,e\mu,\,e au}$ contribute to $(g-2)_e$ & LEP $ee \to \ell\ell$ data, [DELPHI '05; Hou, Wong '95]

$$\begin{array}{ll} |h_{ee}^{\dagger}h_{e\tau}| & \Rightarrow & ee \rightarrow e\tau \\ |h_{e\mu}^{\dagger}h_{e\tau}| & \Rightarrow & ee \rightarrow \mu\tau \text{ (t-channel)} \end{array}$$

SM backgrounds for on-shell production of H


Main SM backgronds are particle misidentification for

$$e^+e^- \to \ell_{\alpha}^+\ell_{\beta}^- + X$$
, $(\alpha \neq \beta)$

The mis-identification rate is expected to be small, of order 10^{-3}

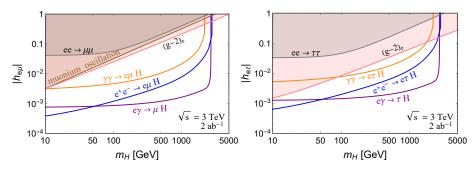
[Milstene, Fisk, Para '06; Hammad, Khalil, Un '16; Yu, Ruan, Boudry+ '17]

Examle:

SM backgrounds for off-shell production of H

Main SM backgrounds:

$$e^+e^- o W^+W^- o \ell_{\alpha}^+\ell_{\beta}^-
u \bar{
u}$$

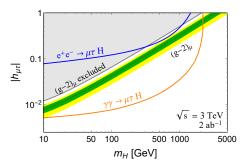

The backgrounds can be well controlled by

[Kabachenko, Pirogov '97; Cho, Shimo '16; Bian, Shu, YCZ '15]

requiring that the constructed energy $E_\ell \simeq \sqrt{s}/2\,,$ kinetic distribution analysis of the backgrounds and signals

CLIC prospects of H and $H^{\pm\pm}$

CLIC prospects of *H*: on-shell production



 $\gamma\gamma$ ($e\gamma$) channel: laser photon collision.

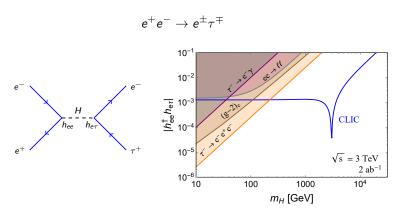
Shaded regions are excluded.

Assuming the dominant decay mode $H o e^\pm \mu^\mp$ (left), $\mathrm{e}^\pm \tau^\mp$ (right).

CLIC prospects of *H*: on-shell production

 $\gamma\gamma$ ($e\gamma$) channel: laser photon collision.

Shaded regions are excluded.


Assuming the dominant decay mode $H \to \mu^{\pm} \tau^{\mp}$.

Dotted brown line: central values of muon g-2 anomaly, green and yellow bands: the 1σ and 2σ regions.

The muon g-2 discrepancy can be directly tested at CLIC via the searches of $\gamma\gamma \to \mu\tau + H$.

35 / 25

CLIC prospects of *H*: off-shell production

Resonance effect at $m_H \simeq \sqrt{s}$ with width $\Gamma_H = 30$ GeV

The off-shell scalar could be probed well beyond 10 TeV scale (or even up to 100 TeV).

CLIC prospects of *H*: off-shell production

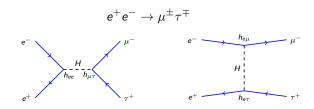
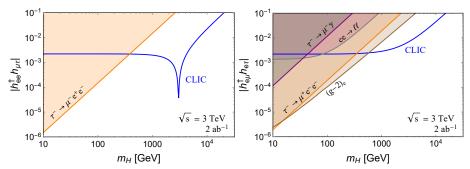
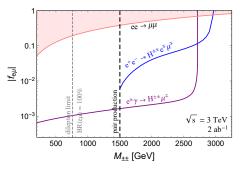
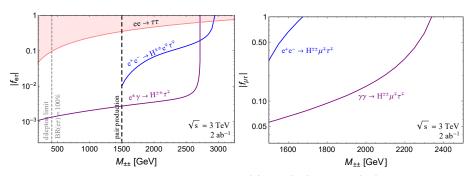




Figure: The s and t channels depend on different $h^{\dagger}h$ couplings.

CLIC prospects of $H^{\pm\pm}$: single production

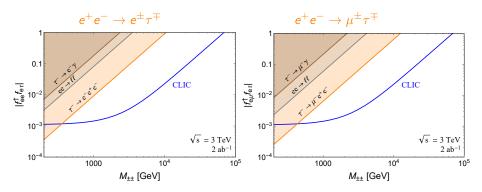

Assuming the dominant decay mode $H^{\pm\pm}
ightarrow e^\pm \mu^\pm.$

Below $\sqrt{s}/2=1.5$ TeV, the process $e^+e^- \to H^{\pm\pm}\ell_{\alpha}^{\mp}\ell_{\beta}^{\mp}$ is dominated by the Drell-Yan pair production $e^+e^- \to H^{++}H^{--}$ with the subsequent decay $H^{\mp\mp} \to \ell_{\alpha}^{\mp}\ell_{\beta}^{\mp}$.

The $\gamma\gamma \to H^{\pm\pm}\ell^\mp_\alpha\ell^\mp_\beta$ sensitivity is weaker than the e^+e^- process.

The electron and muon g-2 limits are highly suppressed by the charge lepton masses and are not shown in the plot.

CLIC prospects of $H^{\pm\pm}$: single production


Assuming the dominant decay mode $H^{\pm\pm} o e^\pm au^\pm$ (left), $\mu^\pm au^\pm$ (right).

Below $\sqrt{s}/2=1.5$ TeV, the process $e^+e^- \to H^{\pm\pm}\ell_{\alpha}^{\mp}\ell_{\beta}^{\mp}$ is dominated by the Drell-Yan pair production $e^+e^- \to H^{++}H^{--}$ with the subsequent decay $H^{\mp\mp} \to \ell_{\alpha}^{\mp}\ell_{\beta}^{\mp}$.

The $\gamma\gamma \to H^{\pm\pm}\ell^\mp_\alpha\ell^\mp_\beta$ sensitivity is weaker than the e^+e^- process.

The electron and muon g-2 limits are highly suppressed by the charge lepton masses and are not shown in the plots.

CLIC prospects of $H^{\pm\pm}$: off-shell production

Suppressed by the three-body phase space, the sensitivities in the $e\gamma$ processes are comparatively much weaker.

As in the neutral scalar case, the limit from $\mu \to eee$ are so stringent that it has precluded the $H^{\pm\pm}$ -mediated signal $ee \to e\mu$ at CLIC.

The effective cutoff scale $\Lambda \simeq M_{\pm\pm}/|f|$ can be probed at CLIC up to few 10 TeV.