muon g-2 and the B-physics anomalies in RPV supersymmetry and the discovery prospect at LHC and future colliders

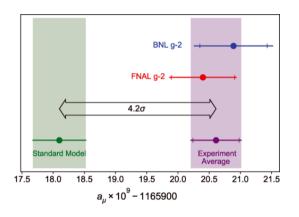
Fang Xu

Collaborators: Bhupal Dev, Amarjit Soni

PPC 2021

Washington University in St. Louis

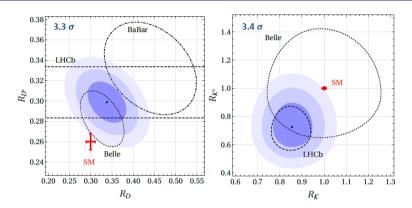
May 20, 2021



Motivation

- The recent experimental results of muon g-2 (from the Fermilab) and the lepton flavor universality violation in rare B-meson decays could be the hints of new physics beyond the Standard Model.
- Under the minimal RPV supersymmetric framework, assuming the mass of third generation sfermions lighter than the other two generations (called "RPV3", proposed in PhysRevD.96.095010 (2017) Altmannshofer, Bhupal Dev, Soni)
- muon g-2 and the B-physics anomalies could be addressed simultaneously and also could be detected at LHC and beyond.

muon g-2 anomaly


- $\Delta a_{\mu} = a_{\mu}^{\rm exp} a_{\mu}^{\rm SM} =$ $(251 \pm 59) \times 10^{-11} \text{ has a significance of } 4.2\sigma.$
- Could be the signal of new physics beyond the SM where some new couplings to muon could be detectable by LHC or future colliders.

B. Abi et al. PhysRevLett.126.141801 (2021)

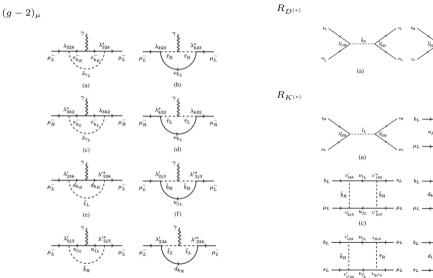
B-physics anomalies

Altmannshofer, Bhupal Dev, Soni, Sui PhysRevD.102.015031

- $\bullet \ R_{D^{(*)}} = \tfrac{\mathrm{BR}(B \to D^{(*)} \tau \nu)}{\mathrm{BR}(B \to D^{(*)} \ell \nu)} \ (\mathrm{with} \ \ell = e, \mu) \text{, } R_{K^{(*)}} = \tfrac{\mathrm{BR}(B \to K^{(*)} \mu^+ \mu^-)}{\mathrm{BR}(B \to K^{(*)} e^+ e^-)}$
- Also imply the possible new couplings to leptons.

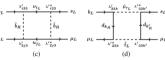
Explanation of anomalies in RPV3 SUSY

• The LQD and LLE part of the RPV SUSY Lagrangian which contains the λ' and λ couplings respectively and are relevant for the $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $(g-2)_{\mu}$ anomalies.


$$\mathcal{L}_{LQD} = \lambda'_{ijk} (\widetilde{\nu}_{iL} \overline{d}_{kR} d_{jL} + \widetilde{d}_{jL} \overline{d}_{kR} \nu_{iL} + \widetilde{d}_{kR}^* \overline{\nu}_{iL}^c d_{jL}
- \widetilde{e}_{iL} \overline{d}_{kR} u_{jL} - \widetilde{u}_{jL} \overline{d}_{kR} e_{iL} - \widetilde{d}_{kR}^* \overline{e}_{iL}^c u_{jL}) + \text{H.c.}$$
(1)

$$\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \left[\widetilde{\nu}_{iL} \overline{e}_{kR} e_{jL} + \widetilde{e}_{jL} \overline{e}_{kR} \nu_{iL} + \widetilde{e}_{kR}^* \overline{\nu}_{iL}^c e_{jL} - (i \leftrightarrow j) \right] + \text{H.c.}$$
 (2)

• Following the discussions in PhysRevD.102.015031 Altmannshofer, Bhupal Dev, Soni, Sui, in RPV3 framework, $(g-2)_{\mu}$ correction can be written as:


$$\Delta a_{\mu} = \frac{m_{\mu}^2}{96\pi^2} \sum_{k=1}^{3} \left(\frac{2(|\lambda_{32k}|^2 + |\lambda_{3k2}|^2)}{m_{\widetilde{\nu}_{\tau}}^2} - \frac{|\lambda_{3k2}|^2}{m_{\widetilde{\tau}_{\rm L}}^2} - \frac{|\lambda_{k23}|^2}{m_{\widetilde{\tau}_{\rm R}}^2} + \frac{3|\lambda_{2k3}'|^2}{m_{\widetilde{b}_{\rm R}}^2} \right)$$
(3)

Explanation of anomalies in RPV3 SUSY

Parameters and benchmark scenario

- $\bullet \ \ \mathsf{Parameters} \ (\lambda_{232}, \lambda'_{233}, \lambda'_{223}, \lambda'_{232}, m_{\widetilde{b}_{\mathrm{R}}}, m_{\widetilde{b}_{\mathrm{L}}}, m_{\widetilde{\nu}_{\tau}}, m_{\widetilde{\tau}_{\mathrm{L}}})$
 - $\lambda_{232} = -\lambda_{322} \neq 0 \Leftarrow$ contribute to muon g-2, other λ_{3ij} couplings cannot be large at the same time due to the constraints of $\tau \to \mu\mu\mu$, $\tau \to e\mu\mu$ etc.
 - $\lambda'_{2ij} \neq 0 \Leftarrow \text{include } \mu \text{ and free of } m_{\widetilde{\nu}_{\tau}}$, otherwise, λ'_{3ij} combined with λ_{32k} or λ_{3k2} , well measured meson decays $(\overline{d}_i d_j) \to \mu \ell_k$ or $\tau \to \mu K$ and $\tau \to \mu \eta$ decays will prevent λ'_{3ij} to be large.
 - $m_{\widetilde{ au}_{\mathrm{R}}}$ not involved with this choice of couplings.
 - $m_{\widetilde{t}_{\rm L}}$ can only influence ${
 m BR}(B_s \to \mu^+ \mu^-)$ and the Wilson coefficients $(C_9')^\mu$ and $(C_{10}')^\mu$ that describe the $R_{K^{(*)}}$ anomaly. But we can assume a relatively larger value to eliminate the influence and it is not considered as a parameter.

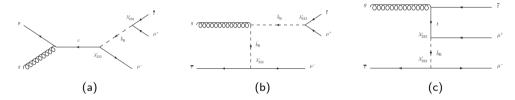
Parameters and benchmark scenario

- Furthermore, assume $(\lambda_{232},\lambda'_{233}=-\lambda'_{223}=-3\lambda'_{232},m_{\widetilde{b}_{\rm R}}=m_{\widetilde{b}_{\rm L}},m_{\widetilde{\nu}_{\tau}},m_{\widetilde{\tau}_{\rm L}}=4{\rm TeV}) \mbox{ then we can plot the anomalies and constraints in the two-dimensional parameter space: } (\lambda'_{233},m_{\widetilde{b}_{\rm R}}) \mbox{ and } (\lambda_{232},m_{\widetilde{\nu}_{\tau}})$
 - $m_{\widetilde{b}_{\mathrm{B}}} = m_{\widetilde{b}_{\mathrm{T}}}$ for simplicity.
 - $m_{\widetilde{\tau}_{\rm L}}$ has opposite contribution for $(g-2)_{\mu}$. The influence is not important as long as $m_{\widetilde{\tau}_{\rm L}} \gtrsim O(1{
 m TeV})$. Here we choose 4 TeV.
 - $\lambda'_{233} = -\lambda'_{223} \Leftarrow \lambda'_{233}$, λ'_{223} and $m_{\widetilde{b}_{\mathrm{R}}}$ are the only parameters that influence $R_{D^{(*)}}$ and $R_{K^{(*)}}$ in our scenario. Assuming $\lambda'_{233} = \epsilon_1 \lambda'_{223}$, we found that $\epsilon_1 \sim (-3, -1)$ will give an overlap region of $R_{D^{(*)}}$ and $R_{K^{(*)}}$. When $|\epsilon_1|$ decrease, the coupling λ'_{233} of the overlap region will also decrease, so we choose $\epsilon_1 = -1$ here.
 - $\lambda_{233}^{'}=-\lambda_{223}^{'}=-3\lambda_{232}^{'}\Leftarrow\lambda_{233}^{'}$, $\lambda_{223}^{'}$, $\lambda_{232}^{'}$, $m_{\widetilde{b}_{\mathrm{R}}}$ and $m_{\widetilde{b}_{\mathrm{L}}}$ are relevant for the constraints of $B\to K\nu\overline{\nu}$, $B_s-\overline{B}_s$ mixing and $D^0\to\mu^+\mu^-$. Assuming $\lambda_{233}^{'}\approx-\lambda_{223}^{'}=\epsilon_2\lambda_{232}^{'}$, we found that $\epsilon_2\sim(-6,-2)$, where $\epsilon_2=-3$ gives the best fit.

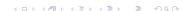
Simulations

- Consider the processes $pp \to \bar{t}\mu^+\mu^-$ ($pp \to t\mu^+\mu^-$ is similar but with a larger background cross-section)
- Background:

Table 1: $pp \to \bar{t}\mu^+\mu^-X$ cross sections (fb)

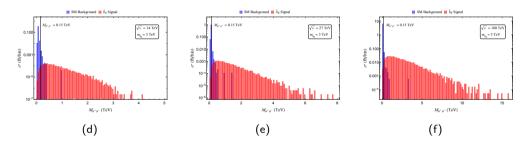

X	14 TeV	$M_{\mu^+\mu^-} > 0.15~{ m TeV}$	27 TeV	$M_{\mu^+\mu^-} > 0.15~{ m TeV}$	100 TeV	$M_{\mu^+\mu^-} > 0.15~{ m TeV}$
\overline{j}	0.381	3.35×10^{-3}	1.06	1.05×10^{-2}	5.83	7.11×10^{-2}
b	4.23×10^{-3}	3.64×10^{-5}	9.47×10^{-3}	9.85×10^{-5}	3.84×10^{-2}	3.92×10^{-4}
$W^+ \rightarrow jj$	3.76×10^{-3}	2.75×10^{-5}	1.49×10^{-2}	1.33×10^{-4}	0.133	1.58×10^{-3}
$W^+ \rightarrow e^+ \nu_e$	6.38×10^{-4}	5.68×10^{-6}	2.53×10^{-3}	2.68×10^{-5}	2.24×10^{-2}	2.28×10^{-4}
$W^+ \to \mu^+ \nu_{\mu}$	6.15×10^{-3}	2.67×10^{-3}	2.64×10^{-2}	1.12×10^{-2}	0.242	0.120
$W^+ \to \tau^+ \nu_{\tau}$	6.34×10^{-4}	6.09×10^{-6}	2.52×10^{-3}	3.08×10^{-5}	2.25×10^{-2}	2.81×10^{-4}
Total	0.396	6.10×10^{-3}	1.12	2.20×10^{-2}	6.29	0.194

$$^{a}\ p_{\rm T}^{j,b,l} < 20\ {\rm GeV},\ E_{\rm T}^{\rm miss} < 20\ {\rm GeV} \\ ^{b}\ p_{\rm T}^{t,\mu} > 20\ {\rm GeV},\ |\ \eta^{t,\mu}| < 2.5$$



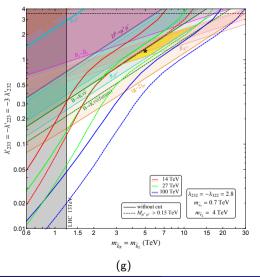
Simulations

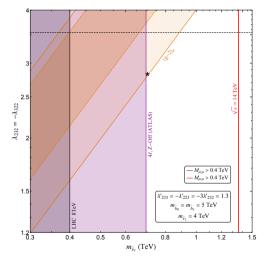
Signal:



- Only λ'_{233} , λ'_{223} and $m_{\widetilde{b}_{\rm R}}$ contribute to the process $pp \to \bar{t}\mu^+\mu^-$. And what can be probed are actually these parameters, a projection of the scenario.
- Assume the luminosity $\mathcal{L} = 3000 \text{ fb}^{-1}$. $\sqrt{s} = 14 \text{ TeV}, 27 \text{ TeV}, 100 \text{ TeV}$.
- Signal significance $N = \frac{S}{\sqrt{S+B}}$.

Invariant mass distribution


• Invariant mass $M_{\mu^+\mu^-}$ distributions at $\sqrt{s}=14~{\rm TeV}, 27~{\rm TeV}, 100~{\rm TeV}$



- We have used $\lambda'_{233}=-\lambda'_{223}=1.3$, $m_{\widetilde{b}_{\rm B}}=5~{\rm TeV}$ for the signal process.
- $p_{\rm T}^{t,\mu}>20$ GeV, $\mid\eta^{t,\mu}\mid<2.5,~\Delta R^{\mu\mu}>0.4$ and $\Delta R^{t\mu}>0.4$ for the minimal trigger cuts of $\bar{t}\mu^+\mu^-$

Anomalies and constraints in the parameter space

Anomalies and constraints in the parameter space

- The figure on the left corresponds to the black star in the figure on the right and vice versa.
- The invariant mass distributions are calculated at the value of black star in the figure on the left.
- Since many anomalies and constraints are independent of $(\lambda_{232}, m_{\tilde{\nu}_{\tau}})$, they become just numbers instead of curves in the figure on the right.

Anomaly/Constraint	Quantities in Figure(h)	Experimental value/limit	
$R_{D^{(*)}}$	$rac{R_{D^{(*)}}}{R_{D^{(*)}}^{ m SM}} = 1.05$	1.15 ± 0.04	
$R_{K^{(*)}}$	$(C_9)^{\mu} = -(C_{10})^{\mu} = -0.23$	-0.35 ± 0.08	
$D^0 \to \mu^+ \mu^-$	BR($D^0 \to \mu^+ \mu^-$) = 2.8 × 10 ⁻¹⁰	$<7.6 imes 10^{-9}$ (95% CL)	
$B \to K^{(*)} \nu \overline{\nu}$	$R_{B\to K^{(*)}\nu\overline{\nu}} = \frac{\text{BR}(B\to K^{(*)}\nu\overline{\nu})}{\text{BR}_{\text{SM}}(B\to K^{(*)}\nu\overline{\nu})} = 4.6$	< 5.2 (95% CL)	
$B_s - \overline{B}_s$ mixing	$\Delta M_{B_s} = (20.12 \pm 1.7) \text{ ps}^{-1}$	$(17.757 \pm 0.021) \text{ ps}^{-1}$	

Discussions

- The red, green and blue lines are the signal significance N=2 curves at the center of mass energy $\sqrt{s}=$ 14 TeV, 27 TeV and 100 TeV separately, before (solid lines) and after (dashed lines) applying the cut $M_{\mu^+\mu^-}>0.15$ TeV.
- All the region above these curves corresponds to the signal significance N>2. These curves bend downward because of the off-shell contribution of $pp\to \bar t \mu^+\mu^-$
- The yellow shaded region is the overlap of $(g-2)_{\mu}$, $R_{D^{(*)}}$ and $R_{K^{(*)}}$ favored region at 3σ level.
- This region is detectable when $\sqrt{s}>27~{\rm TeV}$ at signal significance N=2 level. It is the best scenario we can find for the detection purpose. Changing the value of $|\epsilon_1|$ could move the yellow shaded region to the upper left direction, but the detection curves will also move to the left faster than the yellow shaded region.
- We also put a future $B \to K^{(*)} \nu \overline{\nu}$ constraint line $(R_{B \to K^{(*)} \nu \overline{\nu}} = 1)$ that can exclude the yellow shaded region.

Discussions

- $m_{\widetilde{b}_{\rm R}} \sim 3-12~{\rm TeV}$, $m_{\widetilde{\nu}_{\tau}} \sim 0.7-0.9~{\rm TeV} \Rightarrow$ The first term in Eq(3) gives the main contribution of Δa_{μ} . The third term cannot be large due to the constraint of $B \to K^{(*)} \nu \overline{\nu}$ as one can see from Fig(g).
- The lower bound of $m_{\widetilde{\nu}_{\tau}}$ comes from the 4-lepton search of ATLAS (ATLAS-CONF-2021-011). The 4-lepton signal in our scenario comes from the pair production of $\widetilde{\nu}_{\tau}$ (+ jet) with $\widetilde{\nu}_{\tau} \to \mu^{+}\mu^{-}$, and we have also used the cut $M_{\mu\mu} > 0.4~{\rm TeV}$.
- The red solid line in the figure on the right corresponds to the signal significance N=2 when the $\sqrt{s}=14~{\rm TeV}.$
- The whole $(g-2)_{\mu}$ favored region is detectable at 14 TeV although we cannot see the information of couplings.