muon g - 2 and the *B*-physics anomalies in RPV supersymmetry and the discovery prospect at LHC and future colliders

Fang Xu

Collaborators: Bhupal Dev, Amarjit Soni

Pheno 2021

Washington University in St. Louis

May 25, 2021

Washington University in St. Louis

muon g-2 and the *B*-physics anomalies

May 25, 2021 1 / 15

- The recent experimental results of muon g-2 (from the Fermilab) and the lepton flavor universality violation in rare B-meson decays (from the LHCb etc.) could be the hints of new physics beyond the Standard Model.
- Under the minimal RPV supersymmetric framework, assuming the mass of third generation sfermions lighter than the other two generations (called "RPV3", Altmannshofer, Dev, Soni (PRD 2017))
- muon g-2 and the *B*-physics anomalies could be addressed simultaneously and also could be detected at LHC and beyond.

muon g-2 anomaly

- $\Delta a_{\mu} = a_{\mu}^{\exp} a_{\mu}^{SM} =$ (251±59)×10⁻¹¹ has a significance of 4.2 σ .
- Could be the signal of new physics beyond the SM where some new couplings to muon could be detectable by LHC or future colliders.

B. Abi et al. (PRL 2021)

3

B-physics anomalies

Altmannshofer, Dev, Soni, Sui (PRD 2020)

• $R_{D^{(*)}} = \frac{\text{BR}(B \to D^{(*)} \tau \nu)}{\text{BR}(B \to D^{(*)} \ell \nu)}$ (with $\ell = e, \mu$), $R_{K^{(*)}} = \frac{\text{BR}(B \to K^{(*)} \mu^+ \mu^-)}{\text{BR}(B \to K^{(*)} e^+ e^-)}$ • Also imply the possible new couplings to leptons.

Washington University in St. Louis

э

Explanation of anomalies in RPV3 SUSY

• The LQD and LLE part of the RPV SUSY Lagrangian which contains the λ' and λ couplings respectively and are relevant for the $R_{D^{(*)}}$, $R_{K^{(*)}}$ and $(g-2)_{\mu}$ anomalies.

$$\mathcal{L}_{LQD} = \lambda'_{ijk} (\widetilde{\nu}_{i\mathrm{L}} \overline{d}_{k\mathrm{R}} d_{j\mathrm{L}} + \widetilde{d}_{j\mathrm{L}} \overline{d}_{k\mathrm{R}} \nu_{i\mathrm{L}} + \widetilde{d}^*_{k\mathrm{R}} \overline{\nu}^c_{i\mathrm{L}} d_{j\mathrm{L}} - \widetilde{e}_{i\mathrm{L}} \overline{d}_{k\mathrm{R}} u_{j\mathrm{L}} - \widetilde{u}_{j\mathrm{L}} \overline{d}_{k\mathrm{R}} e_{i\mathrm{L}} - \widetilde{d}^*_{k\mathrm{R}} \overline{e}^c_{i\mathrm{L}} u_{j\mathrm{L}}) + \mathrm{H.c.}$$
(1)

$$\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \left[\widetilde{\nu}_{i\mathrm{L}} \overline{e}_{k\mathrm{R}} e_{j\mathrm{L}} + \widetilde{e}_{j\mathrm{L}} \overline{e}_{k\mathrm{R}} \nu_{i\mathrm{L}} + \widetilde{e}_{k\mathrm{R}}^* \overline{\nu}_{i\mathrm{L}}^c e_{j\mathrm{L}} - (i \leftrightarrow j) \right] + \mathrm{H.c.}$$
(2)

• Following previous discussions (Kim, Kyae, Lee (PLB 2001); Altmannshofer, Dev, Soni, Sui (PRD 2020)), in RPV3 framework, $(g-2)_{\mu}$ correction can be written as:

$$\Delta a_{\mu} = \frac{m_{\mu}^2}{96\pi^2} \sum_{k=1}^3 \left(\frac{2(|\lambda_{32k}|^2 + |\lambda_{3k2}|^2)}{m_{\tilde{\nu}_{\tau}}^2} - \frac{|\lambda_{3k2}|^2}{m_{\tilde{\tau}_{L}}^2} - \frac{|\lambda_{k23}|^2}{m_{\tilde{\tau}_{R}}^2} + \frac{3|\lambda_{2k3}'|^2}{m_{\tilde{b}_{R}}^2} \right) \tag{3}$$

Washington University in St. Louis

Explanation of anomalies in RPV3 SUSY

$(g-2)_{\mu}$ Kim, Kyae, Lee (PLB 2001)

 $R_{D^{(*)}}$ Deshpande, He (EPJC 2017); Altmannshofer, Dev, Soni (PRD 2017) etc.

 $R_{K^{(st)}}$ Das, Hati, Kumar, Mahajan (PRD 2017); Trifinopoulos (EPJC 2018) etc.

6/15

Washington University in St. Louis

muon g-2 and the *B*-physics anomalies

Parameters and benchmark scenario

• Parameters $(\lambda_{232}, \lambda'_{233}, \lambda'_{223}, \lambda'_{232}, m_{\tilde{b}_{\mathrm{R}}}, m_{\tilde{b}_{\mathrm{L}}}, m_{\tilde{\nu}_{\tau}}, m_{\tilde{\tau}_{\mathrm{L}}})$

- $\lambda_{232} = -\lambda_{322} \neq 0 \Leftarrow$ contribute to muon g 2, other λ_{3ij} couplings cannot be large at the same time due to the constraints of $\tau \rightarrow \mu \mu \mu$, $\tau \rightarrow e \mu \mu$ etc.
- $\lambda'_{2ij} \neq 0 \Leftrightarrow$ include μ and free of $m_{\tilde{\nu}_{\tau}}$, otherwise, λ'_{3ij} combined with λ_{32k} or λ_{3k2} , well measured meson decays $(\overline{d}_i d_j) \rightarrow \mu \ell_k$ or $\tau \rightarrow \mu K$ and $\tau \rightarrow \mu \eta$ decays will prevent λ'_{3ij} to be large.
- $m_{ ilde{ au}_{
 m R}}$ not involved with this choice of couplings.
- $m_{\tilde{t}_{L}}$ can only influence $BR(B_s \to \mu^+ \mu^-)$ and the Wilson coefficients $(C'_9)^{\mu}$ and $(C'_{10})^{\mu}$ that describe the $R_{K^{(*)}}$ anomaly. But we can assume a relatively larger value to eliminate the influence and it is not considered as a parameter.

Parameters and benchmark scenario

• Furthermore, assume

 $(\lambda_{232}, \lambda'_{233} = -\lambda'_{223} = -3\lambda'_{232}, m_{\widetilde{b}_{\rm R}} = m_{\widetilde{b}_{\rm L}}, m_{\widetilde{\nu}_{\tau}}, m_{\widetilde{\tau}_{\rm L}} = 4{\rm TeV})$ then we can plot the anomalies and constraints in the two-dimensional parameter space: $(\lambda'_{233}, m_{\widetilde{b}_{\rm R}})$ and $(\lambda_{232}, m_{\widetilde{\nu}_{\tau}})$

-
$$m_{\widetilde{b}_{\mathrm{B}}} = m_{\widetilde{b}_{\mathrm{L}}}$$
 for simplicity.

- $m_{\tilde{\tau}_{L}}$ has opposite contribution for $(g-2)_{\mu}$. The influence is not important as long as $m_{\tilde{\tau}_{L}} \gtrsim O(1 \text{TeV})$. Here we choose 4 TeV.
- $\lambda'_{233} = -\lambda'_{223} \Leftrightarrow \lambda'_{233}$, λ'_{223} and $m_{\widetilde{b}_{R}}$ are the only parameters that influence $R_{D^{(*)}}$ and $R_{K^{(*)}}$ in our scenario. Assuming $\lambda'_{233} = \epsilon_1 \lambda'_{223}$, we found that $\epsilon_1 \sim (-3, -1)$ will give an overlap region of $R_{D^{(*)}}$ and $R_{K^{(*)}}$. When $|\epsilon_1|$ decrease, the coupling λ'_{233} of the overlap region will also decrease, so we choose $\epsilon_1 = -1$ here. - $\lambda'_{233} = -\lambda'_{223} = -3\lambda'_{232} \Leftrightarrow \lambda'_{233}$, λ'_{223} , λ'_{232} , $m_{\widetilde{b}_{R}}$ and $m_{\widetilde{b}_{L}}$ are relevant for the constraints of $B \to K \nu \overline{\nu}$, $B_s - \overline{B}_s$ mixing and $D^0 \to \mu^+ \mu^-$. Assuming $\lambda'_{233} \approx -\lambda'_{223} = \epsilon_2 \lambda'_{232}$, we found that $\epsilon_2 \sim (-6, -2)$, where $\epsilon_2 = -3$ gives the best fit.

ADV E VEV

Simulations

• Consider the processes $pp \to \bar{t}\mu^+\mu^-$ ($pp \to t\mu^+\mu^-$ is similar but with a larger background cross-section)

• Background:

X	14 TeV	$M_{\mu^+\mu^-} > 0.15~{ m TeV}$	27 TeV	$M_{\mu^+\mu^-} > 0.15~{ m TeV}$	100 TeV	$M_{\mu^{+}\mu^{-}} > 0.15 \; {\rm TeV}$
j	0.381	3.35×10^{-3}	1.06	1.05×10^{-2}	5.83	7.11×10^{-2}
b	4.23×10^{-3}	3.64×10^{-5}	9.47×10^{-3}	9.85×10^{-5}	3.84×10^{-2}	3.92×10^{-4}
$W^+ \rightarrow jj$	3.76×10^{-3}	2.75×10^{-5}	1.49×10^{-2}	1.33×10^{-4}	0.133	1.58×10^{-3}
$W^+ \rightarrow e^+ \nu_e$	6.38×10^{-4}	5.68×10^{-6}	2.53×10^{-3}	2.68×10^{-5}	2.24×10^{-2}	2.28×10^{-4}
$W^+ \to \mu^+ \nu_\mu$	6.15×10^{-3}	2.67×10^{-3}	2.64×10^{-2}	1.12×10^{-2}	0.242	0.120
$W^+ \to \tau^+ \nu_{\tau}$	6.34×10^{-4}	6.09×10^{-6}	2.52×10^{-3}	3.08×10^{-5}	2.25×10^{-2}	2.81×10^{-4}
Total	0.396	6.10×10^{-3}	1.12	2.20×10^{-2}	6.29	0.194

Table 1: $pp \rightarrow \overline{t}\mu^+\mu^- X$ cross sections (fb)

 $^{a} \ p_{\rm T}^{j,b,l} < 20 \ {\rm GeV}, \ E_{\rm T}^{\rm miss} < 20 \ {\rm GeV}$ $^{b} \ p_{\rm T}^{t,\mu} > 20 \ {\rm GeV}, \ \mid \eta^{t,\mu} \mid < 2.5$

► < ∃ ►</p>

Simulations

• Signal:

- Only λ'_{233} , λ'_{223} and $m_{\tilde{b}_{\rm R}}$ contribute to the process $pp \to \bar{t}\mu^+\mu^-$. And what can be probed are actually these parameters, a projection of the scenario.
- Assume the luminosity $\mathscr{L} = 3000 \text{ fb}^{-1}$. $\sqrt{s} = 14 \text{ TeV}, 27 \text{ TeV}, 100 \text{ TeV}$.

• Signal significance
$$N = \frac{S}{\sqrt{S+B}}$$

Invariant mass distribution

• Invariant mass $M_{\mu^+\mu^-}$ distributions at $\sqrt{s} = 14 \text{ TeV}, 27 \text{ TeV}, 100 \text{ TeV}$

• We have used $\lambda'_{233} = -\lambda'_{223} = 1.3$, $m_{\tilde{b}_R} = 5$ TeV for the signal process. • $p_T^{t,\mu} > 20$ GeV, $|\eta^{t,\mu}| < 2.5$, $\Delta R^{\mu\mu} > 0.4$ and $\Delta R^{t\mu} > 0.4$ for the minimal trigger cuts of $\bar{t}\mu^+\mu^-$

Anomalies and constraints in the parameter space

Washington University in St. Louis

muon g-2 and the *B*-physics anomalies

May 25, 2021 12 / 15

Anomalies and constraints in the parameter space

- The figure on the left corresponds to the black star in the figure on the right and vice versa.
- The invariant mass distributions are calculated at the value of black star in the figure on the left.
- Since many anomalies and constraints are independent of $(\lambda_{232}, m_{\tilde{\nu}_{\tau}})$, they become just numbers instead of curves in the figure on the right.

Anomaly/Constraint	Quantities in Figure(h)	Experimental value/limit	
$R_{D^{(*)}}$	$\frac{R_{_D(*)}}{R_{_D(*)}^{\rm SM}} = 1.05$	1.15 ± 0.04	
$R_{K^{(*)}}$	$(C_9)^{\mu} = -(C_{10})^{\mu} = -0.23$	-0.35 ± 0.08	
$D^0 o \mu^+ \mu^-$	$BR(D^0 \to \mu^+ \mu^-) = 2.8 \times 10^{-10}$	$< 7.6 imes 10^{-9}$ (95% CL)	
$B \to K^{(*)} \nu \overline{\nu}$	$R_{B \to K^{(*)}\nu\overline{\nu}} = \frac{\mathrm{BR}(B \to K^{(*)}\nu\overline{\nu})}{\mathrm{BR}_{\mathrm{SM}}(B \to K^{(*)}\nu\overline{\nu})} = 4.6$	< 5.2 (95% CL)	
$B_s - \overline{B}_s$ mixing	$\Delta M_{B_s} = (20.12 \pm 1.7) \text{ ps}^{-1}$	$(17.757 \pm 0.021) \text{ ps}^{-1}$	

Washington University in St. Louis

Discussions

- The red, green and blue lines are the signal significance N = 2 curves at the center of mass energy $\sqrt{s} = 14$ TeV, 27 TeV and 100 TeV separately, before (solid lines) and after (dashed lines) applying the cut $M_{\mu^+\mu^-} > 0.15$ TeV.
- All the region above these curves corresponds to the signal significance N > 2. These curves bend downward because of the off-shell contribution of $pp \rightarrow \bar{t}\mu^+\mu^-$
- The yellow shaded region is the overlap of $(g-2)_{\mu}$, $R_{D^{(*)}}$ and $R_{K^{(*)}}$ favored region at 3σ level.
- This region is detectable when $\sqrt{s} > 27 \text{ TeV}$ at signal significance N = 2 level. It is the best scenario we can find for the detection purpose. Changing the value of $|\epsilon_1|$ could move the yellow shaded region to the upper left direction, but the detection curves will also move to the left faster than the yellow shaded region.
- We also put a future $B \to K^{(*)} \nu \overline{\nu}$ constraint line $(R_{B \to K^{(*)} \nu \overline{\nu}} = 1)$ that can exclude the yellow shaded region.

Summary

- $m_{\tilde{b}_{R}} \sim 3 12 \text{ TeV} (|\lambda'_{233}| \sim 0.9 2.5), m_{\tilde{\nu}_{\tau}} \sim 0.7 0.9 \text{ TeV} (|\lambda_{232}| \gtrsim 2.7) \Rightarrow$ The first term in Eq(3) gives the main contribution of Δa_{μ} . The third term cannot be large due to the constraint of $B \to K^{(*)} \nu \overline{\nu}$ as one can see from Fig(g).
- The lower bound of $m_{\tilde{\nu}_{\tau}}$ comes from the 4-lepton search of ATLAS (ATLAS-CONF-2021-011). The 4-lepton signal in our scenario comes from the pair production of $\tilde{\nu}_{\tau}$ (+ jet) with $\tilde{\nu}_{\tau} \rightarrow \mu^{+}\mu^{-}$, and we have also used the cut $M_{\mu\mu} > 0.4 \text{ TeV}.$
- The red solid line in the figure on the right corresponds to the signal significance N = 2 when the $\sqrt{s} = 14$ TeV.
- Considering the 4-lepton signals, the whole $(g-2)_{\mu}$ favored region is detectable $(R_{D^{(*)}} \text{ and } R_{K^{(*)}} \text{ are satisfied automatically since they are just numbers) at 14 TeV. This is a very distinctive and spectacular signal in our RPV3 scenario, although we cannot see much information about couplings.$

Supplementary Material

Backup

Washington University in St. Louis

May 25, 2021 15 / 15

3

メロト スポト メヨト メヨ

4-lepton signal

3

ъ

- We have used $M_{\mu\mu} > 400 \text{ GeV}$, $p_{\text{T}}^{\mu} > 25 \text{ GeV}$, $|\eta^{\mu}| < 2.47$, $p_{\text{T}}^{j} > 20 \text{ GeV}$, $|\eta^{j}| < 2.5$, $\Delta R^{\mu\mu} > 0.4$ and $\Delta R^{j\mu} > 0.4$ same as the values mentioned in ATLAS-CONF-2021-011.
- $\sqrt{s} = 13$ TeV for the purple line and $\sqrt{s} = 14$ TeV for the red line in Figure(h).
- We have assumed the mass of the lightest neutralino is 100 GeV for the calculation of the branching ratio of $\tilde{\nu}_{\tau}$. But the $BR(\tilde{\nu}_{\tau} \rightarrow \mu \overline{\mu})$ is larger than 95% in our scenario when $|\lambda_{232}| > 1.2$