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Motivations

HESE:

Throughgoing: 2.92 vs 2.19 ?

● Detected diffuse neutrino fluxes should 
follow a universal spectrum

● This spectrum might not be single 
component

The IceCube Collaboration, Pos(ICRC2017)1005,
The IceCube Collaboration, Pos(ICRC2017)981
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Best Fit Event Spectrum

● Using 2 comp flux to fit both HESE and TG is doable but having 
discrepancy at bins ~ 100 TeV

● 1st comp is not contributing in (111+111) case but contributes in 
(111+477）
    Glashow Resonance 

● Statistically, (111+477) fit is slightly favored than (111+111)
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Sum up contribution
from all DM, galactically 

or extra-galactically 

DM neutrino
 flux+ astro flux

Flavor composition for DM event: (111)
Flavor composition for astro event: (111) and (477)

ReconstructionFitting

 

A.~Atre, T.~Han, S.~Pascoli and B.~Zhang, “The Search for Heavy Majorana Neutrinos”
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Fitting Results

1804.03848 [astro-ph.HE]



  

Best Fit Event Spectrum

2. Power law’s index best fit is 2

3. Statistically, 477 case is slightly better than 111 case.

1.  A DM component with a power law astrophysical component together could fit 
both HESE and TG data, with
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Multi-messenger Method 

Typical case

Muon-damped case

K is the ratio between charged pions and neutral pions

Charged Pions Decay

Neutral Pions Decay

Estimation of photons flux could be made from neutrino flux

Kohta Murase, 1410.3680v2[hep-ph]
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Verifying Best Fits with Photon Constraint

Comparing the photon estimated flux with gamma ray constraints from CASA-MIA, 
MILARGO, FERMI-LAT,  GRAPES, KASCADE, ARGO, HAWC, HESS and 
VERITAS:

111 for both

1. IceCube 1comp fit clearly violates the constraint

2. 2comp astro fit has some tension with the constraint, especially for p γ case

3. DM+1comp fit has more survival chance compared with 2comp astro fit
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Conclusion 

1.  It is possible to use 2 components flux to fit both HESE and TG 
data and we have considered two cases, each with 2 flavor 
compositions:

   a. 2 astrophysical components
   b. DM + 1 astrophysical component

2.  DM+1comp is more favored than 2comp case and, in each 
cases, (477) case is slightly favored than (111). 

3.  For DM+1comp, the astrophysical flux index comes out to be 2.

4.  Compared with photon constraints, DM+1comp case also has 
more room to survive



  

Thank you!



  

Fermionic Dark Matter Decay 

Providing almost monochromatic 
neutrinos

 A.~Atre et al (JHEP ‘09)

Neutrinos from the decay:   Monochromatic parts                    +  further decay      
                                            products from h, Z and W

Mixing factors with different flavors, assumed 
to be the same for all flavors.

Expand 
after SSB



  

Effective Area and Exposure Function
HESE e neutrino effective area HESE muon neutrino effective area

TG Exposure Function

Glashow Peak



  

2 Comp Reconstruction

To simulate the IceCube data detecting process for our 2 comp 
neutrino flux, we need to reconstruct the neutrino flux into 
events.

Decided by 
IceCube 
detector’s 
configuration 
and run time

HESE effective area, sum of cross sections for all 
the particles in the detector, an effective total cross 
section

TG effective exposure function, effective area 
multiplied by time T

E for HESE is the deposited energy while E for TG is the median energy. Both are 
different but connected to real neutrino energy.



  

Best Fit Event Spectrum

2. Power law’s index best fit is 2

3. Statistically, 477 case is slightly better than 111 case.

1.  A DM component with a power law astrophysical component together could fit 
both HESE and TG data, with



  

TG Plots



  

Neutrino Compositions At Source
               pp               pγ

  Typical

  μ  damped

But, these are the ratios at source !!!

     pp       pγ

  Typical (1 : 1 : 1) (1 : 1 : 1)

  μ  damped (4 : 7 : 7) (4 : 7 : 7)

consider

Assuming TBM Mixing, taking 
oscillation into account



  

Propagation of Neutrinos in Vacuum

PMNS Matrix, Similar to CKM matrix in quark mixing

Averaged out for large L

     pp       pγ

  Typical (1 : 1 : 1) (1 : 1 : 1)

  μ  damped (4 : 7 : 7) (4 : 7 : 7)

consider

Assuming TBM Mixing



  

Relation Between Ereal, 
Edep and Emedian

Ereal Edep Erec

Real energy This neutrino 
store this amount 
of energy in the 
facility

Using Edep and 
some technique 
to try to get the 
real energy, but 
this normally is 
different from 
real energy.

E median

Median value of 
Erec

E real typically is linear to Edep and Erec. But for track, Erec could be 
very uncertain since the deposited energy for tracks are typically far less 
than real energy, so relation between E real and Erec is more of an 
estimation. Thus E real and Emedian’s relation is also a rough estimation



  

Constraints From H.E.S.S?
At around TeV level, the constraints from H.E.S.S is 
around 10^-5 E^2 * phi, while the constraints we have 
from Fermi LAT and HAWC is around 10^-6 to 10^-7, 
a better lower constraint than H.E.S.S 



  

Same amount of 3 pions, and they 
have approximately same energy:

1 pion goes to 4 leptons,share share the E

Derivative for Epi2

oscillation

Derivative for Epi2



  

Same amount of 3 pions, and they 
have approximately same energy:

1 pion goes to 4 leptons,share share the E

Derivative for Epi2

oscillation

Derivative for Epi2

2/3

1/3

pi0

pi+

0

+

+

+

0

0

4

Due to only 
pi+,no pi-

+

0
0

2 8

Twice more than Murase’s Formula, I think he tokk 
pi0 and pi+ to have same amount



  

Details of goodness of fit

For binned data, we could take it as Poisson 
distribution:

The likelihood ratio is:

where

We choose the test statistic as:

TS will be a function of theta and thus we could find 
out the region that is statistically favored

To acquire the TS distribution of Mdm 
and tdm, we perform a grid 
calculation:

Mdm=(0.1, 0.2,…,10)PeV

Tdm=10^(1,1.03,1.06,…,3)*10^27 s

       

●  goodness of fit test:

We use this statistical method to provide favored region of the parameters 

= icecube data in ith bin
= total MC events
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