

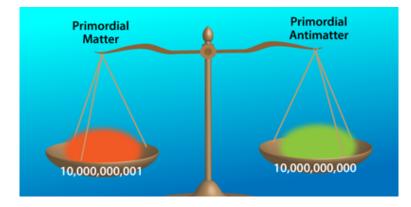
Leptogenesis and Colliders

Bhupal Dev Washington University in St. Louis

ACFI Workshop on Neutrinos at the High Energy Frontier UMass Amherst

July 19, 2017

Matter-Antimatter Asymmetry



$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq 6.1 \times 10^{-10}$$

One number $\longrightarrow \mathsf{BSM}$ Physics

Bhupal Dev (Washington U.)

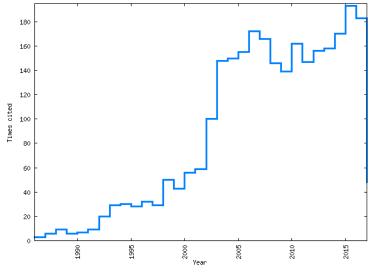
Leptogenesis and Colliders

[Fukugita, Yanagida '86]

A cosmological consequence of the seesaw mechanism.

- Provides a common link between neutrino mass and baryon asymmetry.
- Naturally satisfies all the Sakharov conditions.
 - L violation due to the Majorana nature of heavy RH neutrinos.
 - New source of *CP* violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS *CP* phases).
 - Departure from thermal equilibrium when $\Gamma_N \lesssim H$.
- Freely available: $\not L \rightarrow \not B$ through EW sphaleron interactions.

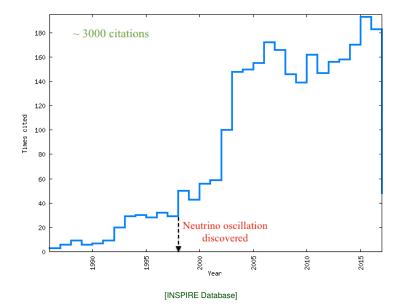
Popularity of Leptogenesis



[INSPIRE Database]

Bhupal Dev (Washington U.)

Popularity of Leptogenesis



Bhupal Dev (Washington U.)

Leptogenesis for Pedestrians

[Buchmüller, Di Bari, Plümacher '05]

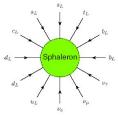
Three basic steps:

Generation of *L* asymmetry by heavy Majorana neutrino decay:

Partial washout of the asymmetry due to inverse decay (and scatterings):

 $N_1 -$

Onversion of the left-over L asymmetry to B asymmetry at $T > T_{sph}$.



Boltzmann Equations

[Buchmüller, Di Bari, Plümacher '02]

$$\begin{array}{lll} \displaystyle \frac{dN_N}{dz} & = & -(D+S)(N_N-N_N^{\rm eq}), \\ \displaystyle \frac{dN_{\Delta L}}{dz} & = & \varepsilon D(N_N-N_N^{\rm eq})-N_{\Delta L}W, \end{array}$$

(where $z = m_{N_1}/T$ and $D, S, W = \Gamma_{D,S,W}/Hz$ for decay, scattering and washout rates.)

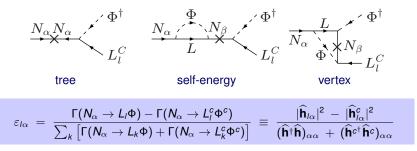
• Final baryon asymmetry:

(

$$\eta^{\Delta B} = \mathbf{d} \cdot \boldsymbol{\varepsilon} \cdot \kappa_{f}$$

• $d \simeq \frac{28}{51} \frac{1}{27} \simeq 0.02$ ($\not L \to \not B$ conversion at T_c + entropy dilution from T_c to $T_{\text{recombination}}$). • $\kappa_f \equiv \kappa(z_f)$ is the final efficiency factor, where

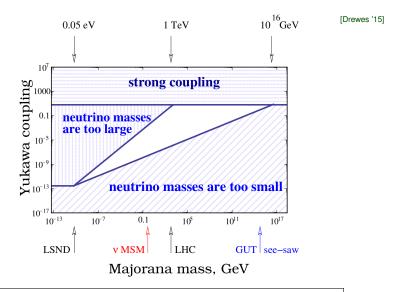
$$\kappa(z) = \int_{z_i}^{z} dz' \frac{D}{D+S} \frac{dN_N}{dz'} e^{-\int_{z'}^{z} dz'' W(z'')}$$



with the one-loop resummed Yukawa couplings [Pilaftsis, Underwood '03]

$$\begin{split} \widehat{\mathbf{h}}_{l\alpha} &= \widehat{h}_{l\alpha} - i \sum_{\beta,\gamma} |\epsilon_{\alpha\beta\gamma}| \widehat{h}_{l\beta} \\ &\times \frac{m_{\alpha}(m_{\alpha}A_{\alpha\beta} + m_{\beta}A_{\beta\alpha}) - iR_{\alpha\gamma}[m_{\alpha}A_{\gamma\beta}(m_{\alpha}A_{\alpha\gamma} + m_{\gamma}A_{\gamma\alpha}) + m_{\beta}A_{\beta\gamma}(m_{\alpha}A_{\gamma\alpha} + m_{\gamma}A_{\alpha\gamma})]}{m_{\alpha}^{2} - m_{\beta}^{2} + 2im_{\alpha}^{2}A_{\beta\beta} + 2i\mathrm{Im}(R_{\alpha\gamma})[m_{\alpha}^{2}|A_{\beta\gamma}|^{2} + m_{\beta}m_{\gamma}\mathrm{Re}(A_{\beta\gamma}^{2})]} , \\ R_{\alpha\beta} &= \frac{m_{\alpha}^{2}}{m_{\alpha}^{2} - m_{\beta}^{2} + 2im_{\alpha}^{2}A_{\beta\beta}} ; \qquad A_{\alpha\beta}(\widehat{h}) = \frac{1}{16\pi} \sum_{\alpha} \widehat{h}_{l\alpha}\widehat{h}_{l\beta}^{*} . \end{split}$$

Testability of Seesaw



In a bottom-up approach, no definite prediction of the seesaw scale.

Bhupal Dev (Washington U.)

Three regions of interest:

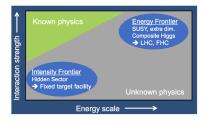
- High scale: $10^9 \text{ GeV} \leq m_N \leq 10^{14} \text{ GeV}$. Can be falsified with an LNV signal at LHC. – see Julia's talk
- Collider-friendly scale: 100 GeV ≤ m_N ≤ few TeV.
 Can be tested in collider and/or low-energy (0νββ, LFV) searches. –this talk
- Low-scale: 1 GeV $\lesssim m_N \lesssim 5$ GeV.

Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Belle-II). –see Jacobo's talk

Three regions of interest:

- GUT/high scale: 10^9 GeV $\leq m_N \leq 10^{14}$ GeV. Can be falsified with an LNV signal at LHC. [Deppisch, Harz, Hirsch '14] – see Julia's talk
- Collider-friendly scale: 100 GeV ≤ m_N ≤ few TeV.
 Can be tested in collider and/or low-energy (0νββ, LFV) searches. –this talk
- Low-scale: 1 GeV $\leq m_N \leq$ 5 GeV.

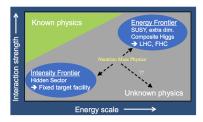
Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Belle-II). –see Jacobo's talk



Three regions of interest:

- GUT/high scale: 10^9 GeV $\leq m_N \leq 10^{14}$ GeV. Can be falsified with an LNV signal at LHC. [Deppisch, Harz, Hirsch '14] – see Julia's talk
- Collider-friendly scale: 100 GeV ≤ m_N ≤ few TeV.
 Can be tested in collider and/or low-energy (0νββ, LFV) searches. –this talk
- Low-scale: 1 GeV $\leq m_N \leq$ 5 GeV.

Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Belle-II). –see Jacobo's talk



Vanilla Leptogenesis

- Hierarchical heavy neutrino spectrum ($m_{N_1} \ll m_{N_2} < m_{N_3}$).
- Both vertex correction and self-energy diagrams are relevant.
- For type-I seesaw, the maximal *CP* asymmetry is given by

$$\varepsilon_1^{\max} = \frac{3}{16\pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m_{\rm atm}^2}$$

• Lower bound on *m*_{N1}: [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

$$m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left(\frac{\eta_B}{6 \times 10^{-10}} \right) \left(\frac{0.05 \text{ eV}}{\sqrt{\Delta m_{\text{atm}}^2}} \right) \kappa_f^{-1}$$

Vanilla Leptogenesis

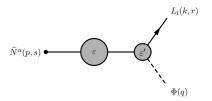
- Hierarchical heavy neutrino spectrum ($m_{N_1} \ll m_{N_2} < m_{N_3}$).
- Both vertex correction and self-energy diagrams are relevant.
- For type-I seesaw, the maximal CP asymmetry is given by

$$\varepsilon_1^{\max} = \frac{3}{16\pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m_{\rm atm}^2}$$

• Lower bound on m_{N1}: [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

$$m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left(\frac{\eta_B}{6 \times 10^{-10}} \right) \left(\frac{0.05 \text{ eV}}{\sqrt{\Delta m_{\text{atm}}^2}} \right) \kappa_f^{-1}$$

- Experimentally inaccessible!
- Also leads to a lower limit on the reheating temperature $T_{
 m rh}\gtrsim 10^9$ GeV.
- In supergravity models, need $T_{\rm rh} \lesssim 10^6 10^9$ GeV to avoid the gravitino problem. [Khlopov, Linde '84; Ellis, Kim, Nanopoulos '84; Cyburt, Ellis, Fields, Olive '02; Kawasaki, Kohri, Moroi, Yotsuyanagi '08]
- Also in conflict with the Higgs naturalness bound $m_N \lesssim 10^7$ GeV. [Vissani '97; Clarke, Foot, Volkas '15; Bambhaniya, BD, Goswami, Khan, Rodejohann '16]



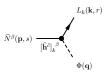
- Dominant self-energy effects on the CP-asymmetry (ε-type) [Flanz, Paschos, Sarkar '95; Covi, Roulet, Vissani '96].
- Resonantly enhanced, even up to order 1, when $\Delta m_N \sim \Gamma_N/2 \ll m_{N_{1,2}}$. [Pilaftsis '97; Pilaftsis, Underwood '03]
- The quasi-degeneracy can be naturally motivated as due to approximate breaking of some symmetry in the leptonic sector.
- Heavy neutrino mass scale can be as low as the EW scale.
 [Pilaftsis, Underwood '05; Deppisch, Pilaftsis '10; BD, Millington, Pilaftsis, Teresi '14]
- A testable leptogenesis scenario at both Energy and Intensity Frontiers.

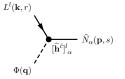
Flavor-diagonal Rate Equations

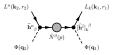
$$\frac{n^{\gamma} H_{N}}{z} \frac{\mathrm{d}\eta_{\alpha}^{N}}{\mathrm{d}z} = \left(1 - \frac{\eta_{\alpha}^{N}}{\eta_{\mathrm{eq}}^{N}}\right) \sum_{I} \gamma_{L_{I}\Phi}^{N_{\alpha}}$$

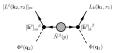
$$\frac{n^{\gamma} H_{N}}{z} \frac{\mathrm{d}\delta\eta_{I}^{L}}{\mathrm{d}z} = \sum_{\alpha} \left(\frac{\eta_{\alpha}^{N}}{\eta_{\mathrm{eq}}^{N}} - 1\right) \varepsilon_{I\alpha} \sum_{k} \gamma_{L_{k}\Phi}^{N_{\alpha}}$$

$$- \frac{2}{3} \delta\eta_{I}^{L} \sum_{k} \left[\gamma_{L_{k}\Phi}^{L_{I}\Phi} + \gamma_{L_{k}\Phi}^{L_{I}\Phi} + \delta\eta_{k}^{L} \left(\gamma_{L_{I}\Phi}^{L_{k}\Phi} - \gamma_{L_{I}\Phi}^{L_{k}\Phi}\right)\right]$$

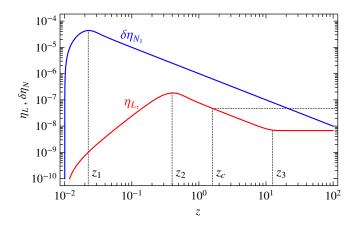






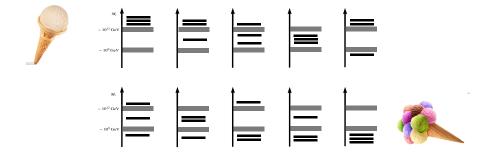


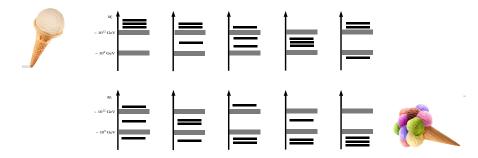
[Deppisch, Pilaftsis '11]



$$\eta_L(z) \simeq rac{3}{2z} \sum_l rac{\sum_lpha arepsilon_{llpha}}{\mathcal{K}_l^{ ext{eff}}} \qquad (z_2 < z < z_3)$$

Flavordynamics





- Flavor effects important at low scale [Abada, Davidson, Ibarra, Josse-Michaux, Losada, Riotto '06; Nardi,
 Nic Bault Badia: 100 Participation Provided Prices Marrada (10) PD Milliotter, Chiefer Town 1411
 - Nir, Roulet, Racker '06; De Simone, Riotto '06; Blanchet, Di Bari, Jones, Marzola '12; BD, Millington, Pilaftsis, Teresi '14]
- Two sources of flavor effects:
 - Heavy neutrino Yukawa couplings h_l^α [Pilaftsis '04; Endoh, Morozumi, Xiong '04]
 - Charged lepton Yukawa couplings y^k [Barbieri, Creminelli, Strumia, Tetradis '00]
- *Three* distinct physical phenomena: mixing, oscillation and decoherence.
- Captured consistently in the Boltzmann approach by the *fully* flavor-covariant formalism. [BD, Millington, Pilaftsis, Teresi '14; '15]

In quantum statistical mechanics,

$$\boldsymbol{n}^{X}(t) \equiv \langle \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i}) \rangle_{t} = \operatorname{Tr} \left\{ \rho(\tilde{t};\tilde{t}_{i}) \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})
ight\} \,.$$

• Differentiate w.r.t. the macroscopic time $t = \tilde{t} - \tilde{t}_i$:

$$\frac{\mathrm{d}\boldsymbol{n}^{X}(t)}{\mathrm{d}t} = \operatorname{Tr}\left\{\rho(\tilde{t};\tilde{t}_{i}) \frac{\mathrm{d}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\right\} + \operatorname{Tr}\left\{\frac{\mathrm{d}\rho(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})\right\} \equiv \mathcal{I}_{1} + \mathcal{I}_{2}.$$

- Use the Heisenberg EoM for \mathcal{I}_1 and Liouville-von Neumann equation for \mathcal{I}_2 .
- Markovian master equation for the number density matrix:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{n}^{X}(\mathbf{k},t) \simeq i\langle \left[H_{0}^{X}, \check{\boldsymbol{n}}^{X}(\mathbf{k},t)\right] \rangle_{t} - \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}t' \langle \left[H_{\mathrm{int}}(t'), \left[H_{\mathrm{int}}(t), \check{\boldsymbol{n}}^{X}(\mathbf{k},t)\right]\right] \rangle_{t} .$$

• In quantum statistical mechanics,

$$\boldsymbol{n}^{X}(t) \equiv \langle \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i}) \rangle_{t} = \operatorname{Tr} \left\{ \rho(\tilde{t};\tilde{t}_{i}) \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})
ight\} \,.$$

• Differentiate w.r.t. the macroscopic time $t = \tilde{t} - \tilde{t}_i$:

$$\frac{\mathrm{d}\boldsymbol{n}^{X}(t)}{\mathrm{d}t} = \operatorname{Tr}\left\{\rho(\tilde{t};\tilde{t}_{i}) \frac{\mathrm{d}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\right\} + \operatorname{Tr}\left\{\frac{\mathrm{d}\rho(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})\right\} \equiv \mathcal{I}_{1} + \mathcal{I}_{2}.$$

- Use the Heisenberg EoM for \mathcal{I}_1 and Liouville-von Neumann equation for \mathcal{I}_2 .
- Markovian master equation for the number density matrix:

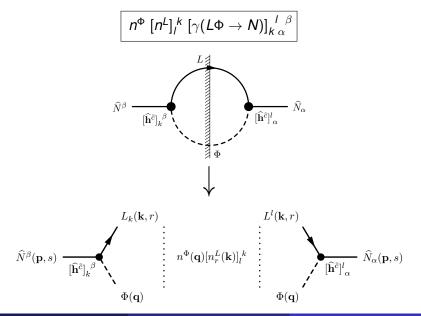
$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{n}^{X}(\mathbf{k},t) \simeq i\langle [H_{0}^{X}, \check{\boldsymbol{n}}^{X}(\mathbf{k},t)] \rangle_{t} - \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}t' \langle [H_{\mathrm{int}}(t'), [H_{\mathrm{int}}(t), \check{\boldsymbol{n}}^{X}(\mathbf{k},t)]] \rangle_{t}.$$

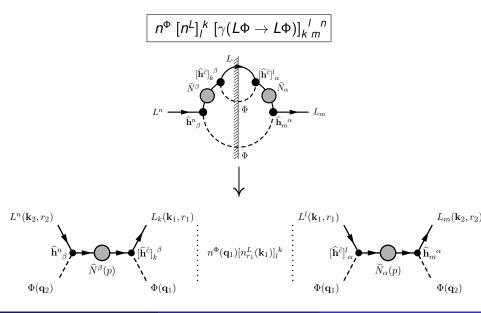
(Oscillation)

(Mixing)

• Generalization of the density matrix formalism. [Sigl, Raffelt '93]

Collision Rates for Decay and Inverse Decay





Final Rate Equations

$$\frac{H_{N} n^{\gamma}}{z} \frac{d[\underline{\eta}^{N}]_{\alpha}{}^{\beta}}{dz} = -i \frac{n^{\gamma}}{2} \left[\mathcal{E}_{N}, \, \delta \eta^{N} \right]_{\alpha}{}^{\beta} + \left[\widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right]_{\alpha}{}^{\beta} - \frac{1}{2 \eta_{\text{eq}}^{N}} \left\{ \underline{\eta}^{N}, \, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta}$$

$$\frac{H_{N} n^{\gamma}}{z} \frac{d[\delta \eta^{N}]_{\alpha}{}^{\beta}}{dz} = -2 i n^{\gamma} \left[\mathcal{E}_{N}, \, \underline{\eta}^{N} \right]_{\alpha}{}^{\beta} + 2 i \left[\widetilde{\text{Im}}(\delta \gamma_{L\Phi}^{N}) \right]_{\alpha}{}^{\beta} - \frac{i}{\eta_{\text{eq}}^{N}} \left\{ \underline{\eta}^{N}, \, \widetilde{\text{Im}}(\delta \gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta}$$

$$- \frac{1}{2 \eta_{\text{eq}}^{N}} \left\{ \delta \eta^{N}, \, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta}$$

$$H_{N} n^{\gamma} d[\delta n^{L}]_{\alpha}{}^{m} = v_{L} m \left[n^{N} \right]_{\alpha}{}^{\alpha} = v_{L} m \beta$$

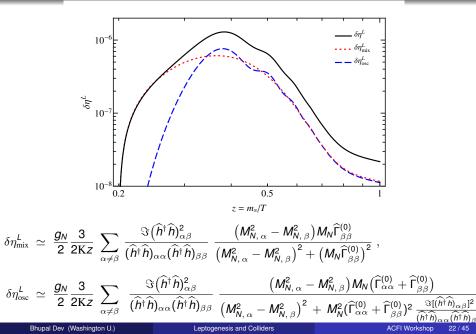
$$\frac{H_{N}n^{\gamma}}{z} \frac{d[\delta\eta^{L}]_{I}^{m}}{dz} = -\left[\delta\gamma_{L\Phi}^{N}\right]_{I}^{m} + \frac{\left[\underline{\eta}\right]_{\beta}}{\eta_{eq}^{N}} \left[\delta\gamma_{L\Phi}^{N}\right]_{I}^{m}{}_{\alpha}^{\beta} + \frac{\left[\delta\eta^{L}\right]_{\beta}}{2\eta_{eq}^{N}} \left[\gamma_{L\Phi}^{N}\right]_{I}^{m}{}_{\alpha}^{\beta}
- \frac{1}{3} \left\{\delta\eta^{L}, \gamma_{L\bar{\Phi}\bar{\Phi}\bar{e}}^{L\bar{\Phi}} + \gamma_{L\bar{\Phi}}^{L\bar{\Phi}}\right\}_{I}^{m} - \frac{2}{3} \left[\delta\eta^{L}\right]_{k}^{n} \left(\left[\gamma_{L\bar{\Phi}\bar{\Phi}\bar{e}}^{L\bar{\Phi}}\right]_{n}^{k} - \left[\gamma_{L\bar{\Phi}}^{L\bar{\Phi}}\right]_{n}^{k}\right)
- \frac{2}{3} \left\{\delta\eta^{L}, \gamma_{dec}\right\}_{I}^{m} + \left[\delta\gamma_{dec}^{back}\right]_{I}^{m}$$

$$\frac{H_{N} n^{\gamma}}{z} \frac{d[\underline{\eta}^{N}]_{\alpha}^{\beta}}{dz} = -i \frac{n^{\gamma}}{2} \left[\mathcal{E}_{N}, \, \delta \eta^{N} \right]_{\alpha}^{\beta} + \left[\widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right]_{\alpha}^{\beta} - \frac{1}{2 \eta_{eq}^{N}} \left\{ \underline{\eta}^{N}, \, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}^{\beta} \\
\frac{H_{N} n^{\gamma}}{z} \frac{d[\delta \eta^{N}]_{\alpha}^{\beta}}{dz} = -2 i n^{\gamma} \left[\mathcal{E}_{N}, \, \underline{\eta}^{N} \right]_{\alpha}^{\beta} + 2 i \left[\widetilde{\text{Im}}(\delta \gamma_{L\Phi}^{N}) \right]_{\alpha}^{\beta} - \frac{i}{\eta_{eq}^{N}} \left\{ \underline{\eta}^{N}, \, \widetilde{\text{Im}}(\delta \gamma_{L\Phi}^{N}) \right\}_{\alpha}^{\beta} \\
- \frac{1}{2 \eta_{eq}^{N}} \left\{ \delta \eta^{N}, \, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}^{\beta} \\
\frac{H_{N} n^{\gamma}}{z} \frac{d[\delta \eta^{L}]_{l}^{m}}{dz} = -\left[\delta \gamma_{L\Phi}^{N} \right]_{l}^{m} + \frac{\left[\underline{\eta}^{N} \right]_{\beta}^{\alpha}}{\eta_{eq}^{N}} \left[\delta \gamma_{L\Phi}^{N} \right]_{l-\alpha}^{m-\beta} + \frac{\left[\delta \eta^{N} \right]_{\beta}^{\alpha}}{2 \eta_{eq}^{N}} \left[\gamma_{L\Phi}^{N} \right]_{l-\alpha}^{m-\beta} \\
- \frac{1}{3} \left\{ \delta \eta^{L}, \, \gamma_{L^{\Phi}\Phi^{\bar{e}}}^{L\bar{e}} + \gamma_{L\Phi}^{L\Phi} \right\}_{l}^{m} - \frac{2}{3} \left[\delta \eta^{L} \right]_{k}^{n} \left(\left[\gamma_{L^{\bar{e}}\Phi^{\bar{e}}}^{L\bar{e}} \right]_{n-l}^{k,m} - \left[\gamma_{L\Phi}^{L\Phi} \right]_{n-l}^{k,m} \right) \\
- \frac{2}{3} \left\{ \delta \eta^{L}, \, \gamma_{dec} \right\}_{l}^{m} + \left[\delta \gamma_{dec}^{\text{back}} \right]_{l}^{m}$$

$$\frac{H_{N} n^{\gamma}}{z} \frac{d[\underline{\eta}^{N}]_{\alpha}{}^{\beta}}{dz} = -i \frac{n^{\gamma}}{2} \left[\mathcal{E}_{N}, \, \delta \eta^{N} \right]_{\alpha}{}^{\beta} + \left[\widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right]_{\alpha}{}^{\beta} - \frac{1}{2 \eta_{eq}^{N}} \left\{ \underline{\eta}^{N}, \, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta} \\
\frac{H_{N} n^{\gamma}}{z} \frac{d[\delta \eta^{N}]_{\alpha}{}^{\beta}}{dz} = -2 i n^{\gamma} \left[\mathcal{E}_{N}, \, \underline{\eta}^{N} \right]_{\alpha}{}^{\beta} + 2 i \left[\widetilde{\text{Im}}(\delta \gamma_{L\Phi}^{N}) \right]_{\alpha}{}^{\beta} - \frac{i}{\eta_{eq}^{N}} \left\{ \underline{\eta}^{N}, \, \widetilde{\text{Im}}(\delta \gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta} \\
- \frac{1}{2 \eta_{eq}^{N}} \left\{ \delta \eta^{N}, \, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta} \\
\frac{H_{N} n^{\gamma}}{z} \frac{d[\delta \eta^{L}]_{l}^{m}}{dz} = -\left[\delta \gamma_{L\Phi}^{N} \right]_{l}^{m} + \frac{\left[\underline{\eta}^{N} \right]_{\beta}{}^{\alpha}}{\eta_{eq}^{N}} \left[\delta \gamma_{L\Phi}^{N} \right]_{l}^{m}{}^{\beta} + \frac{\left[\delta \eta^{N} \right]_{\beta}{}^{\alpha}}{2 \eta_{eq}^{N}} \left[\gamma_{L\Phi}^{N} \right]_{l}^{m}{}^{\beta} \\
- \frac{1}{3} \left\{ \delta \eta^{L}, \, \gamma_{L\Phi}^{L\Phi}{}^{\varepsilon} + \gamma_{L\Phi}^{L\Phi} \right\}_{l}^{m} - \frac{2}{3} \left[\delta \eta^{L} \right]_{k}^{n} \left(\left[\gamma_{L\Phi}^{L\Phi}{}^{\varepsilon} \right]_{n}{}^{k} - \left[\gamma_{L\Phi}^{L\Phi} \right]_{n}{}^{k} \right] \right) \\
- \frac{2}{3} \left\{ \delta \eta^{L}, \, \gamma_{dec} \right\}_{l}^{m} + \left[\delta \gamma_{dec}^{\text{back}} \right]_{l}^{m}$$

$$\frac{H_{N} n^{\gamma}}{z} \frac{d[\underline{\eta}^{N}]_{\alpha}{}^{\beta}}{dz} = -i \frac{n^{\gamma}}{2} \left[\mathcal{E}_{N}, \delta \eta^{N} \right]_{\alpha}{}^{\beta} + \left[\widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right]_{\alpha}{}^{\beta} - \frac{1}{2 \eta_{eq}^{N}} \left\{ \underline{\eta}^{N}, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta} \\
\frac{H_{N} n^{\gamma}}{z} \frac{d[\delta \eta^{N}]_{\alpha}{}^{\beta}}{dz} = -2 i n^{\gamma} \left[\mathcal{E}_{N}, \underline{\eta}^{N} \right]_{\alpha}{}^{\beta} + 2 i \left[\widetilde{\text{Im}}(\delta \gamma_{L\Phi}^{N}) \right]_{\alpha}{}^{\beta} - \frac{i}{\eta_{eq}^{N}} \left\{ \underline{\eta}^{N}, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta} \\
- \frac{1}{2 \eta_{eq}^{N}} \left\{ \delta \eta^{N}, \widetilde{\text{Re}}(\gamma_{L\Phi}^{N}) \right\}_{\alpha}{}^{\beta} \\
\frac{H_{N} n^{\gamma}}{z} \frac{d[\delta \eta^{L}]_{l}{}^{m}}{dz} = - \left[\delta \gamma_{L\Phi}^{N} \right]_{l}{}^{m} + \frac{\left[\underline{\eta}^{N} \right]_{\beta}{}^{\alpha}}{\eta_{eq}^{N}} \left[\delta \gamma_{L\Phi}^{N} \right]_{l}{}^{m}{}^{\beta} + \frac{\left[\delta \eta^{N} \right]_{\beta}{}^{\alpha}}{2 \eta_{eq}^{N}} \left[\gamma_{L\Phi}^{N} \right]_{l}{}^{m}{}^{\beta}} \\
- \frac{1}{3} \left\{ \delta \eta^{L}, \gamma_{L\Phi}^{L\Phi} + \gamma_{L\Phi}^{L\Phi} \right\}_{l}{}^{m} - \frac{2}{3} \left[\delta \eta^{L} \right]_{k}{}^{n} \left(\left[\gamma_{L\Phi}^{L\Phi} \right]_{n}{}^{k} - \left[\gamma_{L\Phi}^{L\Phi} \right]_{n}{}^{k} \right] \right) \\
- \frac{2}{3} \left\{ \delta \eta^{L}, \gamma_{dec} \right\}_{l}{}^{m} + \left[\delta \gamma_{dec}^{\text{back}} \right]_{l}{}^{m}$$

Key Result



- Need $m_N \lesssim \mathcal{O}(\text{TeV})$.
- Naive type-I seesaw requires mixing with light neutrinos to be $\lesssim 10^{-5}$.
- Collider signal suppressed in the minimal set-up (SM+RH neutrinos).
- Two ways out:
 - Construct a TeV seesaw model with large mixing (special textures of m_D and m_N).
 - Go beyond the minimal SM seesaw (e.g. $U(1)_{B-L}$, Left-Right).
- Observable low-energy signatures (LFV, $0\nu\beta\beta$) possible in any case.
- Complementarity between high-energy and high-intensity frontiers.
- Leptogenesis brings in additional powerful constraints in each case.
- Can be used to test/falsify leptogenesis.

A Minimal Model of RL

- O(N)-symmetric heavy neutrino sector at a high scale μ_X .
- Radiative RL: Small mass splitting at low scale from RG effects. [Branco, Gonzalez Felipe, Joaquim, Masina, Rebelo, Savoy '03]

$$\boldsymbol{M}_{N} = \boldsymbol{m}_{N} \mathbf{1} + \boldsymbol{\Delta} \boldsymbol{M}_{N}^{\mathrm{RG}}$$
, with $\boldsymbol{\Delta} \boldsymbol{M}_{N}^{\mathrm{RG}} = -\frac{\boldsymbol{m}_{N}}{8\pi^{2}} \ln\left(\frac{\mu_{X}}{\boldsymbol{m}_{N}}\right) \operatorname{Re}\left[\boldsymbol{h}^{\dagger}(\mu_{X})\boldsymbol{h}(\mu_{X})\right]$

- A specific realization: Resonant ℓ-genesis (RL_ℓ). [Pilaftsis '04; Deppisch, Pilaftsis '11]
- An example of RL_{τ} with $U(1)_{L_e+L_{\mu}} \times U(1)_{L_{\tau}}$ flavor symmetry:

$$m{h} = \left(egin{array}{ccc} 0 & a e^{-i\pi/4} & a e^{i\pi/4} \ 0 & b e^{-i\pi/4} & b e^{i\pi/4} \ 0 & 0 & 0 \end{array}
ight) + \,\deltam{h}\,, \ \deltam{h} = \left(egin{array}{ccc} \epsilon_e & 0 & 0 \ \epsilon_\mu & 0 & 0 \ \epsilon_ au & \kappa_1 e^{-i(\pi/4-\gamma_1)} & \kappa_2 e^{i(\pi/4-\gamma_2)} \end{array}
ight)\,,$$

• But *CP* asymmetry vanishes up to $\mathcal{O}(h^4)$. [BD, Millington, Pilaftsis, Teresi '15]

A Next-to-minimal Model

[BD, Millington, Pilaftsis, Teresi '15]

• Add an additional flavor-breaking ΔM_N :

$$M_N = m_N \mathbf{1} + \Delta M_N + \Delta M_N^{\text{RG}}$$
, with $\Delta M_N = \begin{pmatrix} \Delta M_1 & 0 & 0 \\ 0 & \Delta M_2/2 & 0 \\ 0 & 0 & -\Delta M_2/2 \end{pmatrix}$

$$m{h} = \left(egin{array}{cccc} 0 & a \, e^{-i \pi/4} & a \, e^{i \pi/4} \ 0 & b \, e^{-i \pi/4} & b \, e^{i \pi/4} \ 0 & c \, e^{-i \pi/4} & c \, e^{i \pi/4} \end{array}
ight) \, + \left(egin{array}{cccc} \epsilon_{m{ extbf{e}}} & 0 & 0 \ \epsilon_{\mu} & 0 & 0 \ \epsilon_{ au} & 0 & 0 \end{array}
ight) \, .$$

• Light neutrino mass constraint:

$$\mathbf{M}_{\nu} \simeq -rac{v^2}{2}\mathbf{h}\mathbf{M}_N^{-1}\mathbf{h}^{\mathsf{T}} \simeq rac{v^2}{2m_N} \left(egin{array}{c} rac{\Delta m_N}{m_N}a^2 - \epsilon_{ extbf{e}}^2 & rac{\Delta m_N}{m_N}ab - \epsilon_{ extbf{e}}\epsilon_{\mu} & -\epsilon_{ extbf{e}}\epsilon_{ au} \ rac{\Delta m_N}{m_N}ab - \epsilon_{ extbf{e}}\epsilon_{\mu} & rac{\Delta m_N}{m_N}b^2 - \epsilon_{\mu}^2 & -\epsilon_{\mu}\epsilon_{ au} \ -\epsilon_{ extbf{e}}\epsilon_{ au} & -\epsilon_{ extbf{e}}\epsilon_{ au} & -\epsilon_{ extbf{e}}\epsilon_{ au} \end{array}
ight),$$

where

$$\Delta m_N \equiv 2 \, [\Delta M_N]_{23} + i \left([\Delta M_N]_{33} - [\Delta M_N]_{22} \right) = -i \, \Delta M_2 \; .$$

Parameters	BP1	BP2	BP3
m _N	120 GeV	400 GeV	5 TeV
С	2×10^{-6}	2×10^{-7}	2×10^{-6}
$\Delta M_1/m_N$	$-5 imes 10^{-6}$	$-3 imes 10^{-5}$	$-4 imes 10^{-5}$
$\Delta M_2/m_N$	$(-1.59 - 0.47 i) \times 10^{-8}$	$(-1.21 + 0.10 i) \times 10^{-9}$	$(-1.46 + 0.11 i) \times 10^{-8}$
а	$(5.54 - 7.41 i) \times 10^{-4}$	$(4.93 - 2.32 i) \times 10^{-3}$	$(4.67 - 4.33 i) \times 10^{-3}$
b	$(0.89 - 1.19i) \times 10^{-3}$	$(8.04 - 3.79 i) \times 10^{-3}$	$(7.53 - 6.97 i) \times 10^{-3}$
ϵ_{e}	3.31 <i>i</i> × 10 ⁻⁸	5.73 <i>i</i> × 10 ⁻⁸	2.14 <i>i</i> \times 10 ⁻⁷
ϵ_{μ}	$2.33 i imes 10^{-7}$	$4.30 i imes 10^{-7}$	1.50 <i>i</i> × 10 ⁻⁶
$\epsilon_{ au}$	$3.50 i \times 10^{-7}$	$6.39 i imes 10^{-7}$	2.26 <i>i</i> × 10 ⁻⁶

Observables	BP1	BP2	BP3	Current Limit
$BR(\mu \to e\gamma)$	$4.5 imes 10^{-15}$	$1.9 imes 10^{-13}$	$2.3 imes 10^{-17}$	$< 4.2 imes 10^{-13}$
$BR(au o \mu \gamma)$	$1.2 imes 10^{-17}$	$1.6 imes 10^{-18}$	$8.1 imes 10^{-22}$	$<$ 4.4 $ imes$ 10 $^{-8}$
$BR(au o e\gamma)$	$4.6 imes 10^{-18}$	$5.9 imes 10^{-19}$	$3.1 imes 10^{-22}$	$<$ 3.3 $ imes$ 10 $^{-8}$
BR(µ → 3 <i>e</i>)	$1.5 imes 10^{-16}$	$9.3 imes 10^{-15}$	$4.9 imes 10^{-18}$	$< 1.0 \times 10^{-12}$
$R^{Ti}_{\mu o e}$	$2.4 imes 10^{-14}$	$2.9 imes 10^{-13}$	$2.3 imes 10^{-20}$	$< 6.1 imes 10^{-13}$
$R^{Au}_{\mu ightarrow e}$	$3.1 imes 10^{-14}$	$3.2 imes 10^{-13}$	$5.0 imes 10^{-18}$	$< 7.0 imes 10^{-13}$
$egin{array}{c} R^{Au}_{\mu o e} \ R^{Pb}_{\mu o e} \end{array}$	$2.3 imes10^{-14}$	$2.2 imes10^{-13}$	$4.3 imes10^{-18}$	$< 4.6 imes 10^{-11}$
$ \Omega _{e\mu}$	$5.8 imes 10^{-6}$	$1.8 imes 10^{-5}$	$1.6 imes 10^{-7}$	$< 7.0 imes 10^{-5}$

A Discrete Flavor Model for RL

- Based on residual leptonic flavor G_f = Δ(3n²) or Δ(6n²) (with n even, 3 ∤ n, 4 ∤ n) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- LH lepton doublets L_ℓ transform in a faithful complex irrep 3, RH neutrinos N_α in an unfaithful real irrep 3' and RH charged leptons ℓ_B in a singlet 1 of G_f.
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, $0 \le s \le n 1$. [Hagedorn, Meroni, Molinaro '14]

A Discrete Flavor Model for RL

- Based on residual leptonic flavor G_f = Δ(3n²) or Δ(6n²) (with n even, 3 ∤ n, 4 ∤ n) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- LH lepton doublets L_ℓ transform in a faithful complex irrep 3, RH neutrinos N_α in an unfaithful real irrep 3' and RH charged leptons ℓ_B in a singlet 1 of G_f.
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, $0 \le s \le n 1$. [Hagedorn, Meroni, Molinaro '14]

- Based on residual leptonic flavor G_f = Δ(3n²) or Δ(6n²) (with n even, 3 ∤ n, 4 ∤ n) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- LH lepton doublets L_ℓ transform in a faithful complex irrep 3, RH neutrinos N_α in an unfaithful real irrep 3' and RH charged leptons ℓ_R in a singlet 1 of G_f.
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, $0 \le s \le n-1$. [Hagedorn, Meroni, Molinaro '14]
- One example: [BD, Hagedorn, Molinaro (in prep)]

$$Y_{D} = \Omega(s)(\mathbf{3}) R_{13}(\theta_{L}) \begin{pmatrix} y_{1} & 0 & 0 \\ 0 & y_{2} & 0 \\ 0 & 0 & y_{3} \end{pmatrix} R_{13}(-\theta_{R}) \Omega(s)(\mathbf{3}')^{\dagger} .$$
$$M_{R} = M_{N} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

• $\theta_L \approx 0.18(2.96)$ gives $\sin^2 \theta_{23} \approx 0.605(0.395)$, $\sin^2 \theta_{12} \approx 0.341$ and $\sin^2 \theta_{13} \approx 0.0219$ (within 3σ of current global-fit). [Hagedorn, Molinaro '16]

Fixing Model Parameters

• Light neutrino masses given by the type-I seesaw:

$$M_{\nu}^{2} = \frac{v^{2}}{M_{N}} \begin{cases} \begin{pmatrix} y_{1}^{2} \cos 2\theta_{R} & 0 & y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ y_{1}y_{3} \sin 2\theta_{R} & 0 & -y_{3}^{2} \cos 2\theta_{R} \end{pmatrix} & (s \text{ even}), \\ \begin{pmatrix} -y_{1}^{2} \cos 2\theta_{R} & 0 & -y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ -y_{1}y_{3} \sin 2\theta_{R} & 0 & y_{3}^{2} \cos 2\theta_{R} \end{pmatrix} & (s \text{ odd}). \end{cases}$$

• For $y_1 = 0$ ($y_3 = 0$), we get strong normal (inverted) ordering, with $m_{\text{lightest}} = 0$.

NO:
$$y_1 = 0$$
, $y_2 = \pm \frac{\sqrt{M_N \sqrt{\Delta m_{sol}^2}}}{v}$, $y_3 = \pm \frac{\sqrt{M_N \frac{\sqrt{\Delta m_{atm}^2}}{|\cos 2 \theta_R|}}}{v}$
IO: $y_3 = 0$, $y_2 = \pm \frac{\sqrt{M_N \sqrt{|\Delta m_{atm}^2|}}}{v}$, $y_1 = \pm \frac{\sqrt{M_N \frac{\sqrt{(|\Delta m_{atm}^2| - \Delta m_{sol}^2)}}{|\cos 2 \theta_R|}}}{v}$

• Only free parameters: M_N and θ_R .

Low Energy CP Phases and $0\nu\beta\beta$

- Dirac phase is trivial: $\delta = 0$.
- For *m*_{lightest} = 0, only one Majorana phase *α*, which depends on the chosen CP transformation:

$$\sin \alpha = (-1)^{k+r+s} \sin 6 \, \phi_s \quad \text{and} \quad \cos \alpha = (-1)^{k+r+s+1} \, \cos 6 \, \phi_s \text{ with } \phi_s = \frac{\pi \, s}{n} \, ,$$

where k = 0 (k = 1) for $\cos 2\theta_R > 0$ ($\cos 2\theta_R < 0$) and r = 0 (r = 1) for NO (IO). • Restricts the light neutrino contribution to $0\nu\beta\beta$:

$$m_{\beta\beta} \approx \frac{1}{3} \begin{cases} \left| \sqrt{\Delta m_{\rm sol}^2} + 2(-1)^{s+k+1} \sin^2 \theta_L \, e^{6\,i\,\phi_s} \sqrt{\Delta m_{\rm atm}^2} \right| & (NO). \\ \left| 1 + 2(-1)^{s+k} \, e^{6\,i\,\phi_s} \cos^2 \theta_L \right| \sqrt{\left| \Delta m_{\rm atm}^2 \right|} & (IO). \end{cases}$$

• For n = 26, $\theta_L \approx 0.18$ and best-fit values of Δm_{sol}^2 and Δm_{atm}^2 , we get

$$\begin{array}{ll} 0.0019\,\mathrm{eV} \lesssim m_{\beta\beta} \lesssim 0.0040\,\mathrm{eV} & (\mathrm{NO}) \\ 0.016\,\mathrm{eV} \lesssim m_{\beta\beta} \lesssim 0.048\,\mathrm{eV} & (\mathrm{IO}). \end{array}$$

High Energy CP Phases and Leptogenesis

- At leading order, three degenerate RH neutrinos.
- Higher-order corrections can break the residual symmetries, giving rise to a quasi-degenerate spectrum:

 $M_1 = M_N (1 + 2\kappa)$ and $M_2 = M_3 = M_N (1 - \kappa)$.

• CP asymmetries in the decays of N_i are given by

$$arepsilon_{ilpha} pprox \sum_{j
eq i} \operatorname{Im}\left(\hat{Y}^{\star}_{\mathcal{D}, lpha i} \hat{Y}_{\mathcal{D}, lpha j}\right) \operatorname{Re}\left(\left(\hat{Y}^{\dagger}_{\mathcal{D}} \hat{Y}_{\mathcal{D}}\right)_{ij}\right) \mathcal{F}_{ij}$$

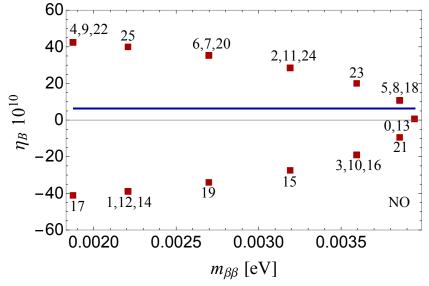
F_{ij} are related to the regulator in RL and are proportional to the mass splitting of *N_i*.
We find ε_{3α} = 0 and

$$\varepsilon_{1\alpha} \approx \frac{y_2 y_3}{9} \left(-2 y_2^2 + y_3^2 \left(1 - \cos 2 \theta_R\right)\right) \sin 3 \phi_s \sin \theta_R \sin \theta_{L,\alpha} F_{12} \quad (\text{NO})$$

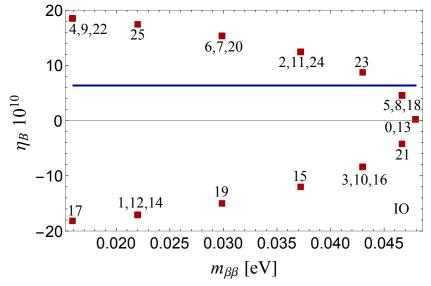
$$\varepsilon_{1\alpha} \approx \frac{y_1 y_2}{9} \left(-2 y_2^2 + y_1^2 \left(1 + \cos 2 \theta_R\right)\right) \sin 3 \phi_s \cos \theta_R \cos \theta_{L,\alpha} F_{12} \quad (\text{IO})$$

with $\theta_{L,\alpha} = \theta_L + \rho_{\alpha} 4\pi/3$ and $\rho_e = 0$, $\rho_{\mu} = 1$, $\rho_{\tau} = -1$.

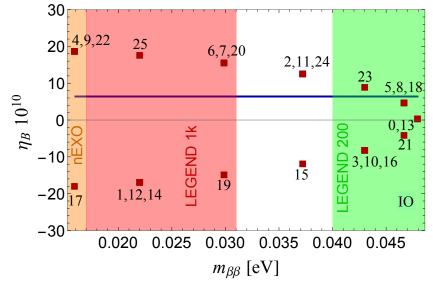
• $\varepsilon_{2\alpha}$ are the negative of $\epsilon_{1\alpha}$ with F_{12} being replaced by F_{21} .



[BD, Hagedorn, Molinaro (in prep)]



[BD, Hagedorn, Molinaro (in prep)]



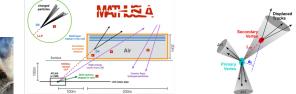
[BD, Hagedorn, Molinaro (in prep)]

Decay Length

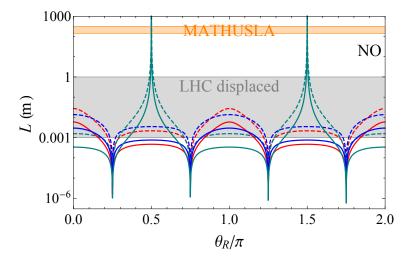
• For RH Majorana neutrinos, $\Gamma_{\alpha} = M_{\alpha} (\hat{Y}_{D}^{\dagger} \hat{Y}_{D})_{\alpha\alpha} / (8 \pi)$. We get

$$\begin{split} \Gamma_1 &\approx \quad \frac{M_N}{24\,\pi}\,\left(2\,y_1^2\,\cos^2\theta_R + y_2^2 + 2\,y_3^2\,\sin^2\theta_R\right)\,,\\ \Gamma_2 &\approx \quad \frac{M_N}{24\,\pi}\,\left(y_1^2\,\cos^2\theta_R + 2\,y_2^2 + y_3^2\,\sin^2\theta_R\right)\,,\\ \Gamma_3 &\approx \quad \frac{M_N}{8\,\pi}\,\left(y_1^2\,\sin^2\theta_R + y_3^2\,\cos^2\theta_R\right)\,. \end{split}$$

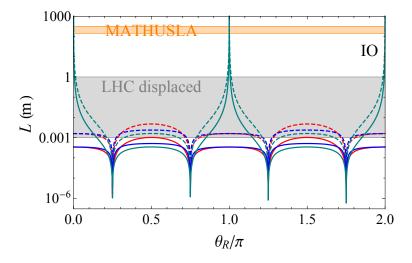
- For $y_1 = 0$ (NO), $\Gamma_3 = 0$ for $\theta_R = (2j + 1)\pi/2$ with integer *j*.
- For $y_3 = 0$ (IO), $\Gamma_3 = 0$ for $j\pi$ with integer j.
- In either case, N_3 is an ultra long-lived particle.
- Suitable for MATHUSLA [Chou, Curtin, Lubatti '16] see Henry's talk
- In addition, N_{1,2} can have displaced vertex signals at the LHC.



Bhupal Dev (Washington U.)



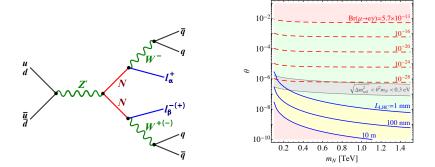
 N_1 (red), N_2 (blue), N_3 (green). M_N =150 GeV (dashed), 250 GeV (solid).

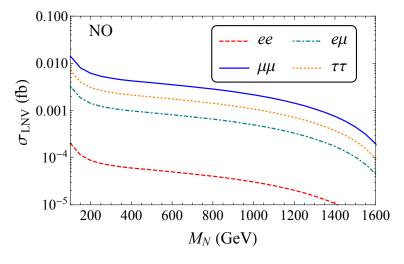


 N_1 (red), N_2 (blue), N_3 (green). M_N =150 GeV (dashed), 250 GeV (solid).

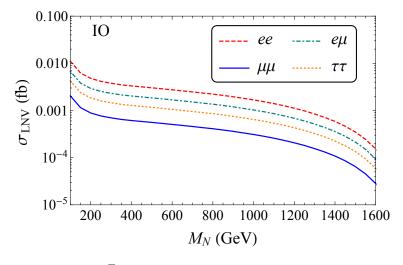
Collider Signal

- Need an efficient production mechanism.
- $y_i \lesssim 10^{-6}$ (our case) suppresses the Drell-Yan production $pp \to W^{(*)} \to N_i \ell_{\alpha}$.
- Let us consider a minimal $U(1)_{B-L}$ portal.
- Production cross section is no longer Yukawa-suppressed, while the decay is, giving rise to displaced vertex at the LHC. [Deppisch, Desai, Valle '13]





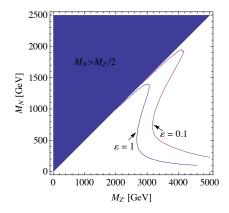
At $\sqrt{s} = 14$ TeV LHC and for $M_{Z'} = 3.5$ TeV.



At $\sqrt{s} = 14$ TeV LHC and for $M_{Z'} = 3.5$ TeV.

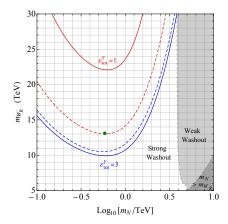
Bound on Z' Mass

- Z' interactions induce additional dilution effects, e.g. $NN \rightarrow Z' \rightarrow jj$.
- Successful leptogenesis requires a lower bound on $M_{Z'}$. [Blanchet, Chacko, Granor, Mohapatra '09; Heeck, Teresi '17; BD, Hagedorn, Molinaro (in prep)]



RL in LR and Bound on W_R Mass

- Additional dilution effects induced by W_R , e.g. $Ne_R \rightarrow W_R \rightarrow \bar{u}_R d_R$.
- Lower limit on $M_{W_R}\gtrsim$ 10 TeV. [Frere, Hambye, Vertongen '09; BD, Lee, Mohapatra '15]



- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe.
- Resonant Leptogenesis provides a way to test this idea in laboratory experiments.
- Flavor effects are important in the calculation of lepton asymmetry.
- Testable models of RL.
- Predictive in both low and high-energy sectors.
- Correlation between BAU and $0\nu\beta\beta$.
- In gauge-extended models, LNV signals (including displaced vertex) at the LHC.
- Discovery of a heavy gauge boson could falsify leptogenesis.

- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe.
- Resonant Leptogenesis provides a way to test this idea in laboratory experiments.
- Flavor effects are important in the calculation of lepton asymmetry.
- Testable models of RL.
- Predictive in both low and high-energy sectors.
- Correlation between BAU and $0\nu\beta\beta$.
- In gauge-extended models, LNV signals (including displaced vertex) at the LHC.
- Discovery of a heavy gauge boson could falsify leptogenesis.

Backup Slides

Flavor Transformations

$$\begin{aligned} -\mathcal{L}_{N} &= h_{l}^{\alpha} \overline{L}^{l} \widetilde{\Phi} N_{\mathrm{R},\alpha} + \frac{1}{2} \overline{N}_{\mathrm{R},\alpha}^{C} [M_{N}]^{\alpha\beta} N_{\mathrm{R},\beta} + \mathrm{H.c.} \, . \\ \bullet \text{ Under } U(\mathcal{N}_{L}) \otimes U(\mathcal{N}_{N}), \\ L_{l} \rightarrow L_{l}^{\prime} &= V_{l}^{m} L_{m} \, , \qquad L^{l} \equiv (L_{l})^{\dagger} \rightarrow L^{\prime l} = V_{m}^{\prime} L^{m} \, , \\ N_{\mathrm{R},\alpha} \rightarrow N_{\mathrm{R},\alpha}^{\prime} &= U_{\alpha}^{\beta} N_{\mathrm{R},\beta} \, , \qquad N_{\mathrm{R}}^{\alpha} \equiv (N_{\mathrm{R},\alpha})^{\dagger} \rightarrow N_{\mathrm{R}}^{\prime} \,^{\alpha} = U_{\beta}^{\alpha} N_{\mathrm{R}}^{\beta} \, . \\ h_{l}^{\alpha} \rightarrow h_{l}^{\prime} \,^{\alpha} = V_{l}^{m} U_{\beta}^{\alpha} h_{m}^{\beta} \, , \qquad [M_{N}]^{\alpha\beta} \rightarrow [M_{N}^{\prime}]^{\alpha\beta} = U_{\gamma}^{\alpha} U_{\delta}^{\beta} [M_{N}]^{\gamma\delta} \end{aligned}$$

Flavor Transformations

$$-\mathcal{L}_{N} = h_{l}^{\alpha} \overline{L}^{\prime} \widetilde{\Phi} N_{\mathrm{R},\alpha} + \frac{1}{2} \overline{N}_{\mathrm{R},\alpha}^{C} [M_{N}]^{\alpha\beta} N_{\mathrm{R},\beta} + \mathrm{H.c.} .$$

• Under $U(\mathcal{N}_L) \otimes U(\mathcal{N}_N)$,

$$\begin{split} L_{l} &\to L_{l}' = V_{l}^{\ m} L_{m} , \qquad \qquad L^{l} \equiv (L_{l})^{\dagger} \to L^{\prime l} = V_{m}^{l} L^{m} , \\ N_{R,\alpha} \to N_{R,\alpha}' = U_{\alpha}^{\ \beta} N_{R,\beta} , \qquad N_{R}^{\ \alpha} \equiv (N_{R,\alpha})^{\dagger} \to N_{R}^{\ \alpha} = U_{\beta}^{\alpha} N_{R}^{\ \beta} . \\ h_{l}^{\ \alpha} \to h_{l}^{\prime \ \alpha} = V_{l}^{\ m} U_{\beta}^{\ \alpha} h_{m}^{\ \beta} , \qquad [M_{N}]^{\alpha\beta} \to [M_{N}']^{\alpha\beta} = U_{\gamma}^{\alpha} U_{\beta}^{\beta} [M_{N}]^{\gamma\delta} \end{split}$$

• Number densities:

$$\begin{split} & [n_{s_1s_2}^{L}(\mathbf{p},t)]_{I}^{m} \equiv \frac{1}{\mathcal{V}_3} \langle b^{m}(\mathbf{p},s_2,\tilde{t}) \, b_{I}(\mathbf{p},s_1,\tilde{t}) \rangle_{t} , \\ & [\bar{n}_{s_1s_2}^{L}(\mathbf{p},t)]_{I}^{m} \equiv \frac{1}{\mathcal{V}_3} \langle d_{I}^{\dagger}(\mathbf{p},s_1,\tilde{t}) \, d^{\dagger,m}(\mathbf{p},s_2,\tilde{t}) \rangle_{t} , \\ & [n_{r_1r_2}^{N}(\mathbf{k},t)]_{\alpha}^{\beta} \equiv \frac{1}{\mathcal{V}_3} \langle a^{\beta}(\mathbf{k},r_2,\tilde{t}) \, a_{\alpha}(\mathbf{k},r_1,\tilde{t}) \rangle_{t} , \\ & [\bar{n}_{r_1r_2}^{N}(\mathbf{k},t)]_{\alpha}^{\beta} \equiv \frac{1}{\mathcal{V}_3} \langle G_{\alpha\gamma} \, a^{\gamma}(\mathbf{k},r_1,\tilde{t}) \, G^{\beta\delta} \, a_{\delta}(\mathbf{k},r_2,\tilde{t}) \rangle_{t} , \end{split}$$

• Total number density:

$$\boldsymbol{n}^{N}(t) \equiv \sum_{r=-,+} \int_{\mathbf{k}} \boldsymbol{n}_{rr}^{N}(\mathbf{k},t) , \quad \boldsymbol{n}^{L}(t) \equiv \operatorname{Tr}_{\mathrm{iso}} \sum_{s=-,+} \int_{\mathbf{p}} \boldsymbol{n}_{ss}^{L}(\mathbf{p},t) .$$

Bhupal Dev (Washington U.)

Explicitly, for charged-lepton and heavy-neutrino matrix number densities,

$$\frac{d}{dt} [n_{s_{1}s_{2}}^{L}(\mathbf{p},t)]_{I}^{m} = -i [E_{L}(\mathbf{p}), n_{s_{1}s_{2}}^{L}(\mathbf{p},t)]_{I}^{m} + [C_{s_{1}s_{2}}^{L}(\mathbf{p},t)]_{I}^{m}$$

$$\frac{d}{dt} [n_{r_{1}r_{2}}^{N}(\mathbf{k},t)]_{\alpha}^{\beta} = -i [E_{N}(\mathbf{k}), n_{r_{1}r_{2}}^{N}(\mathbf{k},t)]_{\alpha}^{\beta} + [C_{r_{1}r_{2}}^{N}(\mathbf{k},t)]_{\alpha}^{\beta} + G_{\alpha\lambda} [\overline{C}_{r_{2}r_{1}}^{N}(\mathbf{k},t)]_{\mu}^{\lambda} G^{\mu\beta}$$

Collision terms are of the form

$$[C_{s_1s_2}^{L}(\mathbf{p},t)]_{I}^{m} \supset -\frac{1}{2} \left[\mathcal{F}_{s_1s\,r_1r_2}(\mathbf{p},\mathbf{q},\mathbf{k},t) \right]_{I\alpha}^{\beta} \left[\Gamma_{s\,s_2r_2r_1}(\mathbf{p},\mathbf{q},\mathbf{k}) \right]_{\beta\beta}^{m\alpha},$$

where \mathcal{F} are statistical tensors, and Γ are the <u>rank-4</u> absorptive rate tensors describing heavy neutrino decays and inverse decays.