BSM Interpretations of the Flavor Anomalies

Bhupal Dev

Washington University in St. Louis

SchwingerFest 2022: Muon g-2
University of California, Los Angeles
June 16, 2022

Flavor Anomalies

Can a single BSM framework explain all the flavor anomalies?

Muon Anomalous Magnetic Moment

$$
a_{\mu}^{(\text {expt })}-a_{\mu}^{(\mathrm{SM})}=(251 \pm 59) \times 10^{-11}
$$

BSM Solutions to $(g-2)_{\mu}$ Anomaly

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL
Muon g-2 Collaboration • G.W. Bennett (Brookhaven) et al. (Feb, 2006)
Published in: Phys.Rev.D 73 (2006) $072003 \cdot$ e-Print: hep-ex/0602035 [hep-ex]
$\$$ pdf e DOI E cite
\#1 Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
Muon g-2 Collaboration • B. Abi (Oxford U.) et al. (Apr 7, 2021)
Published in: Phys.Rev.Lett. 126 (2021) 14, 141801 • e-Print: 2104.03281 [hep-ex]
-) 2,882 citations
A paf
C) links \cdots DOI

E cite
$\supset 812$ citations
[see talks from S. Heinemeyer, P. Paradisi, E. Sessolo, P. Athron]

BSM Solutions to $(g-2)_{\mu}$ Anomaly

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL
Muon g-2 Collaboration . G.W. Bennett (Brookhaven) et al. (Feb, 2006)
Published in: Phys.Rev.D 73 (2006) 072003 • e-Print: hep-ex/0602035 [hep-ex]
(3) pdf e DOI E cite
\#1 Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
Muon g-2 Collaboration • B. Abi (Oxford U.) et al. (Apr 7, 2021)
Published in: Phys.Rev.Lett. 126 (2021) 14, 141801 • e-Print: 2104.03281 [hep-ex]
[6) pdf e links e DOI 巨 cite
[see talks from S. Heinemeyer, P. Paradisi, E. Sessolo, P. Athron]

- Need $\Delta a_{\mu}=251(59) \times 10^{-11}$ which is coincidentally at the same level as $a_{\mu}^{\mathrm{EW}}=153.6(1.0) \times 10^{-11}$.

$$
\begin{aligned}
\Delta a_{\mu} & \sim \frac{g_{\text {new }}^{2}}{16 \pi^{2}} \frac{(\text { muon mass } \sim 0.1 \mathrm{GeV})^{2}}{(\text { new particle mass })^{2}} \\
& \sim a_{\mu}^{\mathrm{EW}} \text { when } \quad\left\{\begin{array}{l}
g_{\text {new }} \sim W \text { boson coupling } \\
m_{\text {new }} \sim W \text { boson mass }
\end{array}\right.
\end{aligned}
$$

BSM Solutions to $(g-2)_{\mu}$ Anomaly

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL
Muon g-2 Collaboration . G.W. Bennett (Brookhaven) et al. (Feb, 2006)
Published in: Phys.Rev.D 73 (2006) 072003 • e-Print: hep-ex/0602035 [hep-ex]
[pdf ed DOI E cite
\#1 Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm
Muon g-2 Collaboration • B. Abi (Oxford U.) et al. (Apr 7, 2021)
Published in: Phys.Rev.Lett. 126 (2021) 14, 141801 • e-Print: 2104.03281 [hep-ex]
[adf ef links e pol E cite

- Need $\Delta a_{\mu}=251(59) \times 10^{-11}$ which is coincidentally at the same level as $a_{\mu}^{\mathrm{EW}}=153.6(1.0) \times 10^{-11}$.

$$
\begin{aligned}
\Delta a_{\mu} & \sim \frac{g_{\text {new }}^{2}}{16 \pi^{2}} \frac{(\text { muon mass } \sim 0.1 \mathrm{GeV})^{2}}{(\text { new particle mass })^{2}} \\
& \sim a_{\mu}^{\mathrm{EW}} \text { when } \quad\left\{\begin{array}{l}
g_{\text {new }} \sim W \text { boson coupling } \\
m_{\text {new }} \sim W \text { boson mass }
\end{array}\right.
\end{aligned}
$$

- Essentially two types of solutions:
- Small interaction, small mass (e.g., ALP, dark photon, light Z^{\prime}) [see talks from J. Heeck, J. Fan]
- $\mathcal{O}(1)$ interaction, $\mathcal{O}(E W)$ mass (e.g. 2HDM, SUSY, leptoquark) [see talk from S. Heinemeyer]
- New particle(s) in the loop can be anything: neutral/charged spin 0, 1/2, 1.
[Lindner, Platscher, Queiroz, 1610.06587 (Phys. Rep. '18)]
- Need to be careful about the sign of the BSM contribution.
- Also need flavor non-universal couplings to avoid other experimental constraints (mostly involving electron/quark sector).
$R_{K^{(*)}}$ Anomaly $\left(b \rightarrow s \ell^{+} \ell^{-}\right)$

$$
R_{K^{(*)}}=\frac{\operatorname{BR}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\operatorname{BR}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

- Flavor Changing Neutral Current \longrightarrow loop-suppressed in the SM.
- New physics can be heavy (multi-TeV).

$$
\begin{gathered}
R_{K^{+}}^{[1,6]}=0.846_{-0.039}^{+0.042+0.012} \\
R_{K^{+0}}^{[0.045,1.1]}=0.66_{-0.07}^{+0.11} \pm 0.03 \\
R_{K^{* 0}}^{[1.1,6]}=0.69_{-0.07}^{+0.11} \pm 0.05 \\
R_{K_{S}}^{[1.1,6]}=0.66_{-0.14-0.04}^{+0.20+0.02} \\
R_{K^{*+}}^{[0.045,6]}=0.70_{-0.13}^{+0.18+0.03} \\
R_{p K}^{[0.1,6]}=0.86_{-0.11}^{+0.14} \pm 0.05
\end{gathered}
$$

- 3.4σ net discrepancy.
- All measurements are consistently below the SM.
- LHCb update [2103.11769 (Nature Phy. '22]] didn't change the central value.

BSM Solutions to $R_{K^{(*)}}$ Anomaly

$$
\mathcal{H}_{\mathrm{eff}}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}}-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{\star} \frac{e^{2}}{16 \pi^{2}} \sum_{i} C_{i} \mathcal{O}_{i} \quad \begin{array}{ll}
O_{9}^{b s \ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), & O_{10}^{b s \ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
\end{array} \quad \begin{aligned}
& O_{9}^{\text {bssel}}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \\
& O_{10}^{b s \ell l}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
\end{aligned}
$$

Altmannshofer, Stangl, 2103.13370 (EPJC '21) Wilson coefficient	$b \rightarrow s \mu \mu$		LFU, $B_{s} \rightarrow \mu \mu$		all rare B decays	
	best fit	pull	best fit	pull	best fit	pull
$C_{9}^{\text {bs } \mu \mu}$	$-0.75_{-0.23}^{+0.22}$	3.4σ	$-0.74_{-0.21}^{+0.20}$	4.1σ	$-0.73_{-0.15}^{+0.15}$	5.2σ
$C_{10}^{\text {bs } \mu \mu}$	$+0.42_{-0.24}^{+0.23}$	1.7σ	$+0.600_{-0.14}^{+0.14}$	4.7σ	$+0.54_{-0.12}^{+0.12}$	4.7σ
$C_{9}^{\prime b s \mu \mu}$	$+0.24_{-0.26}^{+0.27}$	0.9σ	$-0.32_{-0.17}^{+0.16}$	2.0σ	$-0.18_{-0.14}^{+0.13}$	1.4σ
$C_{10}^{\prime \prime s \mu \mu}$	$-0.16_{-0.16}^{+0.16}$	1.0σ	$+0.06_{-0.12}^{+0.12}$	0.5σ	$+0.02_{-0.10}^{+0.10}$	0.2σ
$C_{9}^{b s \mu \mu}=C_{10}^{\text {bsu } \mu}$	$-0.20_{-0.15}^{+0.15}$	1.3σ	$+0.43_{-0.18}^{+0.18}$	2.4σ	$+0.05_{-0.12}^{+0.12}$	0.4σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	$-0.53_{-0.13}^{+0.13}$	3.7σ	$-0.35_{-0.08}^{+0.08}$	4.6σ	$-0.39_{-0.07}^{+0.07}$	5.6σ

BSM Solutions to $R_{K^{(*)}}$ Anomaly

$$
\mathcal{H}_{\mathrm{eff}}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}}-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{\star} \frac{e^{2}}{16 \pi^{2}} \sum_{i} C_{i} \mathcal{O}_{i} \quad \begin{array}{ll}
O_{9}^{b s \ell \ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), & O_{9}^{b s s \ell \ell}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
O_{10}^{b s \ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right), & O_{10}^{b s \ell \ell}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{array}
$$

| Altmannshofer, Stangl,
 2103.13370 (EPJC'21) | $b \rightarrow s \mu \mu$ | | LFU, $B_{s} \rightarrow \mu \mu$ | all rare B decays | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wilson coefficient | best fit | pull | best fit | pull | best fit | pull |
| $C_{9}^{b s \mu \mu}$ | $-0.75_{-0.23}^{+0.22}$ | 3.4σ | $-0.74_{-0.21}^{+0.20}$ | 4.1σ | $-0.73_{-0.15}^{+0.15}$ | 5.2σ |
| $C_{10}^{b s \mu \mu}$ | $+0.42_{-0.24}^{+0.23}$ | 1.7σ | $+0.60_{-0.14}^{+0.14}$ | 4.7σ | $+0.54_{-0.12}^{+0.12}$ | 4.7σ |
| $C_{9}^{\prime b s \mu \mu}$ | $+0.24_{-0.26}^{+0.27}$ | 0.9σ | $-0.32_{-0.17}^{+0.16}$ | 2.0σ | $-0.18_{-0.14}^{+0.13}$ | 1.4σ |
| $C_{10}^{b b \mu \mu}$ | $-0.16_{-0.16}^{+0.16}$ | 1.0σ | $+0.06_{-0.12}^{+0.12}$ | 0.5σ | $+0.02_{-0.10}^{+0.10}$ | 0.2σ |
| $C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$ | $-0.20_{-0.15}^{+0.15}$ | 1.3σ | $+0.43_{-0.18}^{+0.18}$ | 2.4σ | $+0.05_{-0.12}^{+0.12}$ | 0.4σ |
| $C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$ | $-0.53_{-0.13}^{+0.13}$ | 3.7σ | $-0.35_{-0.08}^{+0.08}$ | 4.6σ | $-0.39_{-0.07}^{+0.07}$ | 5.6σ |

Possible BSM models

- Heavy Z' model
 - $\operatorname{SU}(2)_{\mathrm{L}}$ singlet or triplet
-arXiv:1403.1269, 1501.00993, 1503.03477, 1611.02703, ...

- Other new heavy scalars/vectors also leptoquark possible -arXiv:01509.05020, 1608.07832,
1704.05438, 1607.01659, 1704.07845, hep-ph/0610037, $\underset{4}{4}$

$R_{D^{(*)}}$ Anomaly $(b \rightarrow c \tau \nu)$

$$
\left.R_{D^{(*)}}=\frac{\operatorname{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\operatorname{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)} \quad \text { (with } \ell=e, \mu\right)
$$

Experiment	Tag method	τ decay mode	R_{D}	$R_{D^{*}}$	$R_{J / \psi}$
Babar (2012) [1]	hadronic	$\ell \nu \nu$	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.0 .018$	
Belle (2015) [2]	hadronic	$\ell \nu \nu$	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	
LHCb (2015) [5]	hadronic	$\ell \nu \nu$		$0.336 \pm 0.027 \pm 0.030$	
Belle (2016) [2]	semileptonic	$\ell \nu \nu$		$0.302 \pm 0.030 \pm 0.011$	
Belle (2017) [3]	hadronic	$\pi(\rho) \nu$		$0.270 \pm 0.035 \pm 0.027$	
LHCb (2017) [6]	hadronic	$3 \pi \nu$		$0.291 \pm 0.019 \pm 0.029$	
Belle (2019) [4]	semileptonic	$\ell \nu \nu$	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	
LHCb (2016) [67]	hadronic	$\ell \nu \nu$		-	0
SM	-	-	$0.299 \pm 0.011[63]$	$0.260 \pm 0.008[64]$	$0.26 \pm 0.02[68]$

[Altmannshofer, BD, Soni, Sui, 2002.12910 (PRD '20)]

$R_{D(*)}$ Anomaly $(b \rightarrow c \tau \nu)$

$$
R_{D^{(*)}}=\frac{\operatorname{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\operatorname{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)} \quad(\text { with } \ell=e, \mu)
$$

[Altmannshofer, BD, Soni, Sui, 2002.12910 (PRD '20)]

Experiment	Tag method	τ decay mode	R_{D}	R_{D}	$R_{J / \psi}$
Babar (2012) [1]	hadronic	$\ell \nu \nu$	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.0 .018$	
Belle (2015) [2]	hadronic	$\ell \nu \nu$	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	
LHCb (2015) [5]	hadronic	$\ell \nu \nu$	-	$0.336 \pm 0.027 \pm 0.030$	
Belle (2016) [2]	semileptonic	$\ell \nu \nu$	-	$0.302 \pm 0.030 \pm 0.011$	
Belle (2017) [3]	hadronic	$\pi(\rho) \nu$	-	$0.270 \pm 0.035 \pm 0.027$	
LHCb (2017) [6]	hadronic	$3 \pi \nu$	-	$0.291 \pm 0.019 \pm 0.029$	
Belle (2019) [4]	semileptonic	$\ell \nu \nu$	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	
LHCb (2016) [67]	hadronic	$\ell \nu \nu$	-	-	$0.71 \pm 0.17 \pm 0.18$
SM	-	-	$0.299 \pm 0.011[63]$	$0.260 \pm 0.008[64]$	$0.26 \pm 0.02[68]$

- Flavor Changing Charged Current - tree-level in the SM (only CKM-suppressed).
- BSM effect has to be large $\Longrightarrow \lesssim \mathcal{O}(\mathrm{TeV})$-scale new particle.
- All experimental measurements to date are consistently above the SM prediction.
- 3.3σ discrepancy (HFLAV gives 3.1σ) \longrightarrow Lattice can improve SM prediction.

BSM Solutions to $R_{D^{(*)}}$ Anomaly

$$
\mathcal{H}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \mathcal{O}_{V_{L}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i}^{\left(\prime^{\prime \prime},{ }^{\prime \prime}\right)} \mathcal{O}_{i}^{\left(\prime^{\prime \prime},\right)}
$$

W'

[Murgui, Peñuelas, Jung, Pich, 1904.09311 (JHEP '19)]

BSM Solutions to $R_{D^{(*)}}$ Anomaly

$$
\mathcal{H}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \mathcal{O}_{V_{L}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i}^{\left(\prime^{\prime \prime},\right.} \mathcal{O}_{i}^{\left(\prime^{\prime \prime}\right)}
$$

[Murgui, Peñuelas, Jung, Pich, 1904.09311 (JHEP '19)]

- Charged Higgs solution in type-II 2HDM (MSSM-type) goes in the wrong direction [BaBar, 1303.0571 (PRD '13); Belle, 1906.06871].
- In general, tension with LHC mono- τ data [Greljo, Camalich, Ruiz-Alvarez, 1811.07920 (PRL'19)] and induces a large $\operatorname{BR}\left(B_{c} \rightarrow \tau \nu\right)>50 \%$ which is problematic [Alonso, Grinstein, Camalich, 1611.06676 (PRL '17); Akeroyd, Chen, 1708.04072 (PRD '17); Aebischer, Grinstein, 2105.02988]
- W^{\prime} solution is challenged by LHC di-tau data [Faroughy, Greljo, Kamenik, 1609.07138 (PLB '17)] and by precision Z-pole observables (Feruglio, Paradisi, Pattori, 1606.00524 (PRL '17)].

BSM Solutions to $R_{D^{(*)}}$ Anomaly

$$
\mathcal{H}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \mathcal{O}_{V_{L}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i}^{\left(\prime^{\prime \prime},\right.} \mathcal{O}_{i}^{\left(\prime^{\prime \prime}\right)}
$$

[Murgui, Peñuelas, Jung, Pich, 1904.09311 (JHEP '19)]

- Charged Higgs solution in type-II 2HDM (MSSM-type) goes in the wrong direction [BaBar, 1303.0571 (PRD '13); Belle, 1906.06871].
- In general, tension with LHC mono- τ data [Greljo, Camalich, Ruiz-Alvarez, 1811.07920 (PRL'19)] and induces a large $\mathrm{BR}\left(B_{c} \rightarrow \tau \nu\right)>50 \%$ which is problematic [Alonso, Grinstein, Camalich, 1611.06676 (PRL '17); Akeroyd, Chen, 1708.04072 (PRD '17); Aebischer, Grinstein, 2105.02988]
- W^{\prime} solution is challenged by LHC di-tau data [Faroughy, Greljo, Kamenik, 1609.07138 (PLB '17)] and by precision Z-pole observables (Feruglio, Paradisi, Pattori, 1606.00524 (PRL '17)].

BSM Solutions to All Flavor Anomalies

Leptoquarks emerge as the winner! (or not too soon?)

Leptoquarks

- Single scalar leptoquark solution [Bauer, Neubert, 1511.01900 (PRL '16)]

- Now disfavored by global fits (including $b \rightarrow s \mu^{+} \mu^{-}$observables, as well as LHC constraints). [Angelescu, Becirevic, Faroughy, Jaffredo, Sumensari, 2103.12504]

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
$S_{3}(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3)$	\checkmark	x	x
$S_{1}(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3)$	x	\checkmark	x
$R_{2}(\mathbf{3}, \mathbf{2}, 7 / 6)$	x	\checkmark	x
$U_{1}(\mathbf{3}, \mathbf{1}, 2 / 3)$	\checkmark	\checkmark	\checkmark
$U_{3}(\mathbf{3}, \mathbf{3}, 2 / 3)$	\checkmark	x	x

Leptoquarks

- Single scalar leptoquark solution [Bauer, Neubert, 1511.01900 (PRL '16)]

- Now disfavored by global fits (including $b \rightarrow s \mu^{+} \mu^{-}$observables, as well as LHC constraints). [Angelescu, Becirevic, Faroughy, Jaffredo, Sumensari, 2103.12504]

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
$S_{3}(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3)$	\checkmark	x	x
$S_{1}(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3)$	x	\checkmark	x
$R_{2}(\mathbf{3}, \mathbf{2}, 7 / 6)$	x	\checkmark	x
$U_{1}(\mathbf{3}, \mathbf{1}, 2 / 3)$	\checkmark	\checkmark	\checkmark
$U_{3}(\mathbf{3}, \mathbf{3}, 2 / 3)$	\checkmark	x	x

- Vector LQ must be embedded into some UV-completion [e.g. Heeck, Teresi, 1808.07492]
- Solutions with more than one scalar LQ also possible. [Chen, Nomura, Okada, 1703.03251; Bigaran, Gargalionis, Volkas, 1906.01870); Saad, 2005.04352; Babu, BD, Jana, Thapa, 2009.01771; Heeck, Thapa, 2202.08854; Crivellin, Fuks, Schnell, 2203.10111; ...]

An alternative route: R-parity violating Supersymmetry!
(not just another LQ model)

An alternative route: R-parity violating Supersymmetry!

(not just another LQ model)

An alternative route: R-parity violating Supersymmetry!

(not just another LQ model)

SUSY is alive and doing just fine.

Why SUSY?

Why SUSY?

Gauge hierarchy problem

Standard Model particles

Natural SUSY

Muon $g-2$ in MSSM

$$
\begin{aligned}
& a_{\mu}^{\bar{x}^{+}-\bar{v}_{\mu}} \simeq \frac{\alpha m_{\mu}^{2} \mu M_{2} \tan \beta}{4 \pi \sin ^{2} \theta_{W} m_{\tilde{v}_{\mu}}^{2}}\left[\frac{f_{x^{ \pm}}\left(M_{2}^{2} / m_{\tilde{\tau}_{\mu}}^{2}\right)-f_{x^{ \pm}}\left(\mu^{2} / m_{\tilde{v}_{\mu}}^{2}\right)}{M_{2}^{2}-\mu^{2}}\right], \\
& a_{\mu}^{x_{\mu}^{0}-\tilde{\mu}} \simeq \frac{\alpha m_{\mu}^{2} M_{1}\left(\mu \tan \beta-A_{\mu}\right)}{4 \pi \cos ^{2} \theta_{W}\left(m_{\tilde{\mu} \mu}^{2}-m_{\tilde{\mu}_{L}}^{2}\right)}\left[\frac{f_{x^{0}}\left(M_{1}^{2} / m_{\mu_{R}}^{2}\right)}{m_{\tilde{\mu} R}^{2}}-\frac{f_{x^{0}}\left(M_{1}^{2} / m_{\mu_{L}}^{2}\right)}{m_{\tilde{\mu}}^{2}}\right]
\end{aligned}
$$

Chakraborti, Heinemeyer, Saha (2104.03287); Altmannshofer, Gadam, Gori, Hamer (2104.08293)]

- There are tree level contributions to $B \rightarrow D^{(*)} \tau \nu$ from charged Higgs exchange

$$
\begin{aligned}
\frac{R_{D}}{R_{D}^{S M}} & \sim 1-1.5 \frac{m_{\tau} m_{b}}{m_{H^{ \pm}}^{2}} \tan ^{2} \beta \\
\frac{R_{D^{*}}}{R_{D^{*}}^{S M}} & \sim 1-0.12 \frac{m_{\tau} m_{b}}{m_{H^{ \pm}}^{2}} \tan ^{2} \beta
\end{aligned}
$$

- Effect goes in the wrong direction and is much smaller for $R_{D^{*}}$
- Correlated with effect in $B \rightarrow \tau \nu$

$$
\frac{\mathrm{BR}(B \rightarrow \tau \nu)}{\operatorname{BR}(B \rightarrow \tau \nu)_{\mathrm{SM}}} \simeq\left(1-\frac{m_{B}^{2}}{m_{H^{ \pm}}^{2}} \tan ^{2} \beta\right)^{2}
$$

\Rightarrow Can't explain $R_{D(*)}$ with charged Higgs exchange in the MSSM

$R_{K^{(*)}}$ in MSSM

- only way to get lepton flavor non universal contribution to rare $b \rightarrow s \ell \ell$ decays is through box diagrams with light winos (or Binos) and large non-universality in slepton masses.
- requires an extremely light spectrum to get $C_{9}^{b s \mu \mu} \sim-0.5$:
winos and smuons around 100 GeV ; sbottoms around 500 GeV ;
very challenging to hide this at the LHC...
semileptonic operators

$C_{9}^{(\prime)}\left(\overline{\boldsymbol{s}} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\mu} \gamma^{\mu} \mu\right)$
$C_{10}^{(\prime)}\left(\bar{s} \gamma_{\mu} P_{L(R)} b\right)\left(\bar{\mu} \gamma^{\mu} \gamma_{5} \mu\right)$

MSSM with R-Parity Violation

- More natural to include RPV couplings, rather than imposing R-parity by hand. [Brust, Katz, Lawrence, Sundrum, 1110.6670 (JHEP '12)]
- LFUV arises naturally - á la Yang-Mills. [BD, Soni, Xu, 2106. 15647]
- Third generation may be special. (LFUV in B-sector, but not in D nor in Λ)
- RPV3: RPV SUSY with light 3rd-generation sfermions.
[Altmannshofer, BD, Soni, 1704.06659 (PRD '17)]

MSSM with R-Parity Violation

- More natural to include RPV couplings, rather than imposing R-parity by hand. [Brust, Katz, Lawrence, Sundrum, 1110.6670 (JHEP '12)]
- LFUV arises naturally - á la Yang-Mills. [BD, Soni, Xu, 2106.15647]
- Third generation may be special. (LFUV in B-sector, but not in D nor in \wedge)
- RPV3: RPV SUSY with light 3rd-generation sfermions.
[Altmannshofer, BD, Soni, 1704.06659 (PRD '17)]
- Can naturally accommodate $R_{D^{(*)}}(b \rightarrow c \tau \nu)$ via $L Q D$ interactions. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); Trifinopoulos (EPJC '18); Hu, Li, Muramatsu, Yang (PRD '19)]

$$
\mathcal{L}_{L Q D}=\lambda_{i j k}^{\prime}\left[\widetilde{\nu}_{i L} \bar{d}_{k R} d_{j L}+\widetilde{d}_{j L} \bar{d}_{k R} \nu_{i L}+\widetilde{d}_{k R}^{*} \bar{\nu}_{i L}^{c} d_{j L}-\widetilde{e}_{i L} \bar{d}_{k R} u_{j L}-\widetilde{u}_{j L} \bar{d}_{k R} e_{i L}-\widetilde{d}_{k R}^{*} \bar{e}_{i L}^{c} u_{j L}\right]+\text { H.c. }
$$

- Can simultaneously explain $R_{K^{(*)}}(b \rightarrow s \ell)$ via LLE interactions, together with LQD. [Das, Hati, Kumar, Mahajan (PRD '17); Earl, Grégoire (JHEP '18); Trifinopoulos (EPJC '18); Hu, Huang (PRD '20); Altmannshofer, BD, Soni, Sui (PRD '20)]

$$
\mathcal{L}_{L L E}=\frac{1}{2} \lambda_{i j k}\left[\widetilde{\nu}_{i L} \bar{e}_{k R} e_{j L}+\widetilde{e}_{j L} \bar{e}_{k R} \nu_{i L}+\widetilde{e}_{k R}^{*} \bar{\nu}_{i L}^{c} e_{j L}-(i \leftrightarrow j)\right]+\text { H.c. }
$$

- Muon g-2 from both LQD and LLE terms, but LLE more relevant.

Muon $g-2$ in RPV3

[Kim, Kyae, Lee (PLB '01)]

Muon $g-2$ in RPV3

[Kim, Kyae, Lee (PLB '01)]

- 1-loop contributions from λ^{\prime} and λ couplings (in addition to the standard MSSM contributions)

$$
\Delta a_{\mu}=\frac{m_{\mu}^{2}}{96 \pi^{2}} \sum_{k=1}^{3}\left(\frac{2\left(\left|\lambda_{32 k}\right|^{2}+\left|\lambda_{3 k 2}\right|^{2}\right)}{m_{\tilde{\nu}_{\tau}}^{2}}-\frac{\left|\lambda_{3 k 2}\right|^{2}}{m_{\tilde{\tau}_{L}}^{2}}-\frac{\left|\lambda_{k 23}\right|^{2}}{m_{\tilde{\tau}_{R}}^{2}}+\frac{3\left|\lambda_{2 k 3}^{\prime}\right|^{2}}{m_{\tilde{b}_{R}}^{2}}\right)
$$

- Need light sbottoms and/or sneutrinos with large couplings to get a relevant contribution in the right direction

$R_{D^{(*)}}$ in RPV3

[Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); . . •]

- Tree level contributions from sbottom or stau exchange
- Stau behaves like a charged Higgs (but its couplings are less constrained). Stau contribution disfavored by $B_{c} \rightarrow \tau \nu$ branching ratio and kinematic distributions in $B \rightarrow D^{(*)} \tau \nu$.
- Sbottom behaves like a leptoquark. Chirality structure as prefered by model independent fits (Shi et al. 1905.08498; Murgui et al. 1904.09311; Asadi, Shih 1905.03311; Cheung et al. 2002.07272; ...)
- Can address the $R_{\left.D^{*}\right)}$ anomalies for sbottom masses $O(1 \mathrm{TeV})$ and couplings $\lambda^{\prime} \sim O(1)$
- need to be careful to keep $\mu-e$ universality in $b \rightarrow c \ell \nu$

$$
\begin{aligned}
& \frac{R_{D}}{R_{D}^{S M}}=\frac{R_{D^{*}}}{R_{D^{*}}^{S M}}=\frac{\left|\Delta_{31}^{c}\right|^{2}+\left|\Delta_{32}^{c}\right|^{2}+\left|1+\Delta_{33}^{c}\right|^{2}}{\left|\Delta_{21}^{c}\right|^{2}+\left|1+\Delta_{22}^{c}\right|^{2}+\left|\Delta_{23}^{c}\right|^{2}} \\
& \text { with } \Delta_{I^{\prime}}^{c}=\frac{v^{2}}{4 m_{\widetilde{b}_{R}}^{2}} \lambda_{l^{\prime} 33}^{\prime}\left(\lambda_{/ 33}^{\prime}+\lambda_{l 23}^{\prime} \frac{V_{c s}}{V_{c b}}+\lambda_{l 13}^{\prime} \frac{V_{c d}}{V_{c b}}\right)
\end{aligned}
$$

$R_{K^{(*)}}$ in RPV3

[Das, Hati, Kumar, Mahajan (PRD '17); Trifinopoulos (EPJC '18); • •]

$R_{K(*)}$ in RPV3

[Das, Hati, Kumar, Mahajan (PRD '17); Trifinopoulos (EPJC '18); • •]

- Tree level contribution from stop exchange have the wrong chirality
- Several loop contributions with the right chirality and $C_{9}=-C_{10}$
- Both λ and λ^{\prime} couplings can be involved

$$
C_{9}^{\mu}=-C_{10}^{\mu}=\frac{m_{t}^{2}}{m_{\tilde{b}_{R}}^{2}} \frac{\left|\lambda_{233}^{\prime}\right|^{2}}{16 \pi \alpha_{\mathrm{em}}}-\frac{v^{2}}{m_{\widetilde{b}_{R}}^{2}} \frac{X_{b s} X_{\mu \mu}}{64 \pi \alpha_{\mathrm{em}} V_{t b} V_{t s}^{*}},
$$

where $X_{b s}=\sum_{i=1}^{3} \lambda_{i 33}^{\prime} \lambda_{i 23}^{\prime}$ and $X_{\mu \mu}=\sum_{j=1}^{3}\left|\lambda_{2 j 3}^{\prime}\right|^{2}$.

Low-energy Constraints

Constraint	Parameter dependence	Relevant terms
$B \rightarrow \tau \nu$	$\lambda_{\ell^{\prime} 33}^{\prime}, \lambda_{3 j 3}^{\prime}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{\ell^{\prime} 33}^{\prime} \cdot \lambda_{3 j 3}^{\prime}}{m_{\hat{b}_{R}}^{2}}$
$B \rightarrow K^{(*)} \nu \bar{\nu}$	$\lambda_{\ell^{\prime} 33}^{\prime}, \lambda_{\ell 23}^{\prime}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{\ell^{\prime} 33}^{\prime} \cdot \lambda_{\ell 23}^{\prime}}{m_{\bar{b}_{R}}^{2}}, \frac{\lambda_{\ell \prime^{\prime} 33}^{\prime} \cdot \lambda_{\ell 32}^{\prime}}{m_{\bar{b}_{L}}^{2}}$
$B \rightarrow \pi / \rho \nu \bar{\nu}$	$\lambda_{\ell^{\prime} 33}^{\prime}, \lambda_{\ell 13}^{\prime}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{\ell^{\prime} 33}^{\prime} \cdot \lambda_{\ell 13}^{\prime}}{m_{\stackrel{\rightharpoonup}{b}_{R}}^{\prime}}$
$B_{s}-\bar{B}_{s}$ mixing	$\begin{gathered} \lambda_{i 33}^{\prime}, \lambda_{i 23}^{\prime}, \lambda_{i 32}^{\prime}, \\ m_{\widetilde{b}_{R}}, m_{\widetilde{\nu}} \end{gathered}$	$\begin{gathered} \frac{\lambda_{i 23}^{\prime} \lambda_{i 33}^{\prime} \lambda_{j 23}^{\prime} \lambda_{j 33}^{\prime}}{m_{\breve{b}_{R}}^{2}}, \\ \frac{\lambda_{i 23}^{\prime} \lambda_{i 32}^{\prime} \lambda_{j 33}^{\prime} \lambda_{j 33}^{\prime}}{m_{\bar{b}_{R}}^{2}}, \\ \frac{\lambda_{332}^{\prime} \lambda_{323}^{\prime}}{m_{\tilde{\nu}}^{2}} \\ \hline \end{gathered}$
$D-\bar{D}$ mixing	$\lambda_{323}^{\prime}, m_{\tilde{b}_{R}}, m_{\widetilde{\tau}_{R}}$	$\frac{\lambda_{323}^{\prime 4}}{m_{\bar{b}_{R}}^{2}}, \frac{\lambda_{323}^{\prime \prime}}{m_{\tilde{\tau}_{R}}^{2}}$
$D^{0} \rightarrow \mu^{+} \mu^{-}$	$\lambda_{2 j 3}^{\prime}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{2 j 3}^{\prime} \lambda_{2 j^{\prime} 3}^{\prime}}{m_{\bar{b}_{R}}^{2}}$
$\tau \rightarrow \ell \nu \bar{\nu}$	$\lambda_{323}, \lambda_{333}^{\prime}, m_{\widetilde{\tau}_{R}}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{323}^{2}}{m_{\tilde{\tau}_{R}}^{2}}, \frac{\lambda_{333}^{\prime 2}}{m_{\bar{b}_{R}}^{2}}$
$Z \rightarrow \ell \overline{\ell^{\prime}}$	$\lambda_{333}^{\prime}, m_{\tilde{b}_{R}}$	$\frac{\lambda_{333}^{\prime 2}}{m_{\stackrel{\rightharpoonup}{b}_{R}}^{2}}$

Numerical Scan

Numerical Scan

Numerical Scan

Numerical Scan

Numerical Scan

Numerical Scan

A Combined RPV3 Fit to All Flavor Anomalies

A Combined RPV3 Fit to All Flavor Anomalies

A Combined RPV3 Fit to All Flavor Anomalies

Distinct LHC Signals in RPV3

- Effective operators:

$$
\begin{aligned}
& R_{D(*)}: \mathcal{O}_{V_{L}}=\left(\bar{c} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu\right) \\
& R_{K(*)}: Q_{g(10)}^{\ell}=\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell\right)
\end{aligned}
$$

- Crossing symmetry: $b \rightarrow c \tau \nu$ leads to $g c \rightarrow b \tau \nu$, and $b \rightarrow s \ell \ell$ leads to $g s \rightarrow b \ell \ell$.

[Altmannshofer, BD, Soni (PRD '17)]

[Altmannshofer, BD, Soni, Sui (PRD '20)]

An LHC Test of Muon $g-2$

Conclusion

- Mounting evidence for the violation of lepton flavor universality. [Crivellin, Hoferichter, 2111.1273 (Science '21)]
- Can be explained by invoking BSM physics (true for any anomaly).
- Leptoquarks and RPV-SUSY remain as the most attractive scenarios for a simultaneous explanation of B-anomalies and muon $g-2$.
- Personal choice: RPV3 - motivated by Higgs naturalness and other beautiful features of SUSY, while being consistent with null searches at the LHC.
- Removes the accidental flavor symmetry of the SM.
- Same chiral structure as the $\mathrm{SM} \Longrightarrow$ correct D^{*} and τ polarizations, as well as $R_{K}-R_{K^{(*)}}$ correlation come automatically.
- Highly predictive and testable at Belle II, LHCb and high- p_{T} LHC experiments.
- Improved lattice input for $B \rightarrow K \nu \bar{\nu}$ and $B_{s}-\bar{B}_{s}$ will be crucial.
- Flavor anomalies might be providing the first experimental hint of SUSY!

Conclusion

- Mounting evidence for the violation of lepton flavor universality. [Crivellin, Hoferichter, 2111.1273 (Science '21)]
- Can be explained by invoking BSM physics (true for any anomaly).
- Leptoquarks and RPV-SUSY remain as the most attractive scenarios for a simultaneous explanation of B-anomalies and muon $g-2$.
- Personal choice: RPV3 - motivated by Higgs naturalness and other beautiful features of SUSY, while being consistent with null searches at the LHC.
- Removes the accidental flavor symmetry of the SM.
- Same chiral structure as the $\mathrm{SM} \Longrightarrow$ correct D^{*} and τ polarizations, as well as $R_{K}-R_{K^{(*)}}$ correlation come automatically.
- Highly predictive and testable at Belle II, LHCb and high- p_{T} LHC experiments.
- Improved lattice input for $B \rightarrow K \nu \bar{\nu}$ and $B_{s}-\bar{B}_{s}$ will be crucial.
- Flavor anomalies might be providing the first experimental hint of SUSY!

Thank You.

