

BSM Interpretations of the Flavor Anomalies

Bhupal Dev

Washington University in St. Louis

SchwingerFest 2022: Muon g-2 University of California, Los Angeles June 16, 2022

Flavor Anomalies

Can a single BSM framework explain all the flavor anomalies?

Muon Anomalous Magnetic Moment

[see talk from G. Venanzoni]

BSM Solutions to $(g-2)_{\mu}$ Anomaly

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL	Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm		
Muon g-2 Collaboration • G.W. Bennett (Brookhaven) et al. (Feb, 2006)	Muon g-2 Collaboration - B. Abi (Oxford U.) et al. (Apr 7, 2021)		
Published in: Phys.Rev.D 73 (2006) 072003 • e-Print: hep-ex/0602035 [hep-ex]	Published in: Phys.Rev.Lett. 126 (2021) 14, 141801 - e-Print: 2104.03281 [hep-ex]		
pdf Ø DOI □ cite ☐ 2,882 citation	P pdf ∂ links ∂ DOI □ cite ⊕ 812 citation		

[see talks from S. Heinemeyer, P. Paradisi, E. Sessolo, P. Athron]

BSM Solutions to $(g-2)_{\mu}$ Anomaly

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL	Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm				
Muon g-2 Collaboration • G.W. Bennett (Brookhaven) et al. (Feb, 2006)	Muon g-2 Collaboration - B. Abi (Oxford U.) et al. (Apr 7, 2021)				
Published in: Phys.Rev.D 73 (2006) 072003 • e-Print: hep-ex/0602035 [hep-ex]	Published in: Phys.Rev.Lett. 126 (2021) 14, 141801 • e-Print: 2104.03281 [hep-ex]				
☐ pdf ② DOI	pdf Ø links Ø DOI	⊕ 812 citatio			

[see talks from S. Heinemeyer, P. Paradisi, E. Sessolo, P. Athron]

• Need $\Delta a_{\mu}=251(59)\times 10^{-11}$ which is coincidentally at the same level as $a_{\mu}^{\rm EW}=153.6(1.0)\times 10^{-11}$.

$$\Delta a_{\mu} \sim \frac{g_{\text{new}}^2}{16\pi^2} \frac{(\text{muon mass} \sim 0.1 \text{ GeV})^2}{(\text{new particle mass})^2}$$

$$\sim a_{\mu}^{\text{EW}} \quad \text{when} \quad \begin{cases} g_{\text{new}} \sim \textit{W} \text{ boson coupling} \\ m_{\text{new}} \sim \textit{W} \text{ boson mass} \end{cases}$$

BSM Solutions to $(g-2)_{\mu}$ Anomaly

[see talks from S. Heinemeyer, P. Paradisi, E. Sessolo, P. Athron]

• Need $\Delta a_{\mu}=251(59)\times 10^{-11}$ which is coincidentally at the same level as $a_{\mu}^{\rm EW}=153.6(1.0)\times 10^{-11}$.

$$\Delta a_{\mu} \sim \frac{g_{\text{new}}^2}{16\pi^2} \frac{(\text{muon mass} \sim 0.1 \text{ GeV})^2}{(\text{new particle mass})^2}$$

$$\sim a_{\mu}^{\text{EW}} \quad \text{when} \quad \begin{cases} g_{\text{new}} \sim W \text{ boson coupling} \\ m_{\text{new}} \sim W \text{ boson mass} \end{cases}$$

- Essentially two types of solutions:
 - ullet Small interaction, small mass (e.g., ALP, dark photon, light Z') [see talks from J. Heeck, J. Fan]
 - $\bullet \ \mathcal{O}(1) \ interaction, \ \mathcal{O}(EW) \ mass \ (e.g. \ 2HDM, \ SUSY, \ leptoquark) \ [see \ talk \ from \ S. \ Heinemeyer]$
- New particle(s) in the loop can be anything: neutral/charged spin 0, 1/2, 1.

[Lindner, Platscher, Queiroz, 1610.06587 (Phys. Rep. '18)]

- Need to be careful about the sign of the BSM contribution.
- Also need flavor non-universal couplings to avoid other experimental constraints (mostly involving electron/quark sector).

Ę

$R_{\mathcal{K}^{(*)}}$ Anomaly $(b \to s \ell^+ \ell^-)$

$$R_{K^{(*)}} = \frac{\mathsf{BR}(B o K^{(*)} \mu^+ \mu^-)}{\mathsf{BR}(B o K^{(*)} e^+ e^-)}$$

$$B^{+} \left| \overline{b} \right| W^{+} \left| \overline{b} \right| K$$

$$\gamma/Z^{0} \left| \ell^{+} \right| \ell^{-}$$

- \bullet Flavor Changing Neutral Current \longrightarrow loop-suppressed in the SM.
- New physics can be heavy (multi-TeV).

$$\begin{split} R_{K^+}^{[1,6]} &= 0.846^{+0.042}_{-0.039}^{+0.013} \\ R_{K^-0}^{[0.045,1.1]} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \\ R_{K^-0}^{[1.1,6]} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \\ R_{K^-0}^{[1.1,6]} &= 0.66^{+0.20}_{-0.14}^{+0.002} \\ R_{K^-}^{[0.045,6]} &= 0.70^{+0.18}_{-0.13}^{+0.03} \\ R_{K^+}^{[0.045,6]} &= 0.70^{+0.18}_{-0.13}^{+0.03} \\ R_{DK}^{[0.1,6]} &= 0.86^{+0.14}_{-0.11}^{+0.05} \end{split}$$

• 3.4σ net discrepancy.

- All measurements are consistently below the SM.
- LHCb update [2103.11769 (Nature Phy. '22)] didn't change the central value.

BSM Solutions to $R_{K^{(*)}}$ Anomaly

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}} - \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^{\star} \frac{e^2}{16\pi^2} \sum_i C_i \mathcal{O}_i$$

$$\begin{split} O_{0}^{ba\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)\,, & O_{0}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)\,, \\ O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)\,, & O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)\,, \end{split}$$

Altmannshofer, Stangl, 2103.13370 (EPJC '21)	$b \rightarrow s \mu \mu$		LFU, $B_s \to \mu\mu$		all rare B decays	
Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
$C_9^{bs\mu\mu}$	$-0.75^{+0.22}_{-0.23}$	3.4σ	$-0.74^{+0.20}_{-0.21}$	4.1σ	$-0.73^{+0.15}_{-0.15}$	5.2σ
$C_{10}^{bs\mu\mu}$	$+0.42^{+0.23}_{-0.24}$	1.7σ	$+0.60^{+0.14}_{-0.14}$	4.7σ	$+0.54^{+0.12}_{-0.12}$	4.7σ
$C_9^{\prime bs\mu\mu}$	$+0.24^{+0.27}_{-0.26}$	0.9σ	$-0.32^{+0.16}_{-0.17}$	2.0σ	$-0.18^{+0.13}_{-0.14}$	1.4σ
$C_{10}^{\prime bs\mu\mu}$	$-0.16^{+0.16}_{-0.16}$	1.0σ	$+0.06^{+0.12}_{-0.12}$	0.5σ	$+0.02^{+0.10}_{-0.10}$	0.2σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$-0.20^{+0.15}_{-0.15}$	1.3σ	$+0.43^{+0.18}_{-0.18}$	2.4σ	$+0.05^{+0.12}_{-0.12}$	0.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.53^{+0.13}_{-0.13}$	3.7σ	$-0.35^{+0.08}_{-0.08}$	4.6σ	$-0.39^{+0.07}_{-0.07}$	5.6σ

BSM Solutions to $R_{K^{(*)}}$ Anomaly

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}} - \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^{\star} \frac{e^2}{16\pi^2} \sum_i C_i \mathcal{O}_i$$

$$\begin{split} O_{g}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)\,, & O_{g}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)\,, \\ O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)\,, & O_{10}^{bs\ell\ell} &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)\,, \end{split}$$

Altmannshofer, Stangl, 2103.13370 (EPJC '21)	$b \to s \mu \mu$		LFU, $B_s \to \mu\mu$		all rare B decays	
Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
$C_9^{bs\mu\mu}$	$-0.75^{+0.22}_{-0.23}$	3.4σ	$-0.74^{+0.20}_{-0.21}$	4.1σ	$-0.73^{+0.15}_{-0.15}$	5.2σ
$C_{10}^{bs\mu\mu}$	$+0.42^{+0.23}_{-0.24}$	1.7σ	$+0.60^{+0.14}_{-0.14}$	4.7σ	$+0.54^{+0.12}_{-0.12}$	4.7σ
$C_9^{\prime bs\mu\mu}$	$+0.24^{+0.27}_{-0.26}$	0.9σ	$-0.32^{+0.16}_{-0.17}$	2.0σ	$-0.18^{+0.13}_{-0.14}$	1.4σ
$C_{10}^{\prime bs\mu\mu}$	$-0.16^{+0.16}_{-0.16}$	1.0σ	$+0.06^{+0.12}_{-0.12}$	0.5σ	$+0.02^{+0.10}_{-0.10}$	0.2σ
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	$-0.20^{+0.15}_{-0.15}$	1.3σ	$+0.43^{+0.18}_{-0.18}$	2.4σ	$+0.05^{+0.12}_{-0.12}$	0.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.53^{+0.13}_{-0.13}$	3.7σ	$-0.35^{+0.08}_{-0.08}$	4.6σ	$-0.39^{+0.07}_{-0.07}$	5.6σ

➤ Possible BSM models

*Leptoquark model *Spin 0 or 1 *arXiv:01511.01900, 1503.01084, 1704.05835, 1512.01560, 1511.06024, 1408.1627, ...

arXiv:1706.07808

•Other new heavy scalars/vectors also leptoquark possible •arXiv:01509.05020, 1608.07832, 1704.05438, 1607.01659,

1704.05438, 1607.01659, 1704.07845, hep-ph/0610037, ...

$R_{D^{(*)}}$ Anomaly (b o c au u)

$$R_{D^{(*)}} = \left. \begin{array}{l} \mathsf{BR}(B o D^{(*)} au
u) \\ \mathsf{BR}(B o D^{(*)} \ell
u) \end{array} \right. \ \ (\text{with } \ell = e, \mu)$$

Experiment	Tag method	τ decay mode	R_D	R_{D^*}	$R_{J/\psi}$
Babar (2012) [1]	hadronic	ένν	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.0.018$	
Belle (2015) [2]	hadronic	ένν	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	
LHCb (2015) [5]	hadronic	ένν	-	$0.336 \pm 0.027 \pm 0.030$	
Belle (2016) [2]	semileptonic	ένν	-	$0.302 \pm 0.030 \pm 0.011$	
Belle (2017) [3]	hadronic	$\pi(\rho)\nu$	-	$0.270 \pm 0.035 \pm 0.027$	
LHCb (2017) [6]	hadronic	$3\pi\nu$	-	$0.291 \pm 0.019 \pm 0.029$	
Belle (2019) [4]	semileptonic	ένν	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	
LHCb (2016) [67]	hadronic	ένν	-	-	$0.71 \pm 0.17 \pm 0.18$
SM	-	-	0.299 ± 0.011 [63]	0.260 ± 0.008 [64]	0.26 ± 0.02 [68]

[Altmannshofer, BD, Soni, Sui, 2002.12910 (PRD '20)]

$R_{D^{(*)}}$ Anomaly (b o c au u)

- Flavor Changing Charged Current tree-level in the SM (only CKM-suppressed).
- BSM effect has to be large $\Longrightarrow \lesssim \mathcal{O}(\text{TeV})\text{-scale new particle}.$
- All experimental measurements to date are consistently above the SM prediction.
- 3.3σ discrepancy (HFLAV gives 3.1σ) \longrightarrow Lattice can improve SM prediction.

BSM Solutions to $R_{D^{(*)}}$ Anomaly

$$\mathcal{H}_{\mathrm{eff}} = rac{4G_F}{\sqrt{2}} V_{cb} \mathcal{O}_{V_L} + rac{1}{\Lambda^2} \sum_i C_i^{(','')} \mathcal{O}_i^{(','')}$$

BSM Solutions to $R_{D^{(*)}}$ Anomaly

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \mathcal{O}_{V_L} + \frac{1}{\Lambda^2} \sum_i C_i^{(','')} \mathcal{O}_i^{(','')}$$

- Charged Higgs solution in type-II 2HDM (MSSM-type) goes in the wrong direction [BaBar, 1303.0571 (PRD '13); Belle, 1906.06871].
- In general, tension with LHC mono- τ data [Greljo, Camalich, Ruiz-Alvarez, 1811.07920 (PRL '19)] and induces a large BR($B_c \to \tau \nu$) > 50% which is problematic [Alonso, Grinstein, Camalich, 1611.06676 (PRL '17); Akeroyd, Chen, 1708.04072 (PRD '17); Aebischer, Grinstein, 2105.02988]
- W' solution is challenged by LHC di-tau data [Faroughy, Greljo, Kamenik, 1609.07138 (PLB '17)]
 and by precision Z-pole observables [Feruglio, Paradisi, Pattori, 1606.00524 (PRL '17)].

BSM Solutions to $R_{D^{(*)}}$ Anomaly

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \mathcal{O}_{V_L} + \frac{1}{\Lambda^2} \sum_i C_i^{(','')} \mathcal{O}_i^{(','')}$$

- Charged Higgs solution in type-II 2HDM (MSSM-type) goes in the wrong direction [BaBar, 1303.0571 (PRD '13); Belle, 1906.06871].
- In general, tension with LHC mono- τ data [Greljo, Camalich, Ruiz-Alvarez, 1811.07920 (PRL '19)] and induces a large BR($B_c \to \tau \nu$) > 50% which is problematic [Alonso, Grinstein, Camalich, 1611.06676 (PRL '17); Akeroyd, Chen, 1708.04072 (PRD '17); Aebischer, Grinstein, 2105.02988]
- W' solution is challenged by LHC di-tau data [Faroughy, Greljo, Kamenik, 1609.07138 (PLB '17)]
 and by precision Z-pole observables [Feruglio, Paradisi, Pattori, 1606.00524 (PRL '17)].

BSM Solutions to All Flavor Anomalies

Leptoquarks emerge as the winner! (or not too soon?)

Leptoquarks

• Single scalar leptoquark solution [Bauer, Neubert, 1511.01900 (PRL '16)]

• Now disfavored by global fits (including $b \to s \mu^+ \mu^-$ observables, as well as LHC constraints). [Angelescu, Becirevic, Faroughy, Jaffredo, Sumensari, 2103.12504]

Model	$R_{K^{(\ast)}}$	$R_{D^{(\ast)}}$	$\boxed{R_{K^{(*)}} \ \& \ R_{D^{(*)}}}$
S_3 ($\bar{\bf 3}, {\bf 3}, 1/3$)	✓	×	×
S_1 ($\bar{\bf 3}, {\bf 1}, 1/3$)	×	✓	×
R_2 (3, 2, 7/6)	X	✓	×
U_1 (3, 1, 2/3)	✓	✓	✓
U_3 (3, 3, 2/3)	✓	×	×

Leptoquarks

• Single scalar leptoquark solution [Bauer, Neubert, 1511.01900 (PRL '16)]

• Now disfavored by global fits (including $b \to s \mu^+ \mu^-$ observables, as well as LHC constraints). [Angelescu, Becirevic, Faroughy, Jaffredo, Sumensari, 2103.12504]

Model	$R_{K^{(\ast)}}$	$R_{D^{(\ast)}}$	$\boxed{R_{K^{(*)}} \ \& \ R_{D^{(*)}}}$
S_3 ($\bar{\bf 3}, {\bf 3}, 1/3$)	✓	×	×
S_1 ($\bar{\bf 3}, {\bf 1}, 1/3$)	×	✓	×
R_2 (3, 2, 7/6)	×	✓	×
U_1 (3, 1, 2/3)	✓	✓	✓
U_3 (3, 3, 2/3)	✓	×	×

- Vector LQ must be embedded into some UV-completion [e.g. Heeck, Teresi, 1808.07492]
- Solutions with more than one scalar LQ also possible. [Chen, Nomura, Okada, 1703.03251;
 Bigaran, Gargalionis, Volkas, 1906.01870); Saad, 2005.04352; Babu, BD, Jana, Thapa, 2009.01771; Heeck, Thapa,
 2202.08854; Crivellin, Fuks, Schnell, 2203.10111; ...1

An alternative route: *R*-parity violating Supersymmetry!

(not just another LQ model)

An alternative route: *R*-parity violating Supersymmetry!

(not just another LQ model)

An alternative route: *R*-parity violating Supersymmetry!

(not just another LQ model)

SUSY is alive and doing just fine.

Why SUSY?

Why SUSY?

Natural SUSY

[Brust, Katz, Lawrence, Sundrum, 1110.6670 (JHEP '12); Papucci, Ruderman, Weiler, 1110.6926 (JHEP '12)]

Muon g - 2 in MSSM

Chakraborti, Heinemeyer, Saha (2104.03287); Altmannshofer, Gadam, Gori, Hamer (2104.08293)]

$R_{D^{(*)}}$ in MSSM

► There are tree level contributions to $B \to D^{(*)} \tau \nu$ from charged Higgs exchange

$$\frac{R_D}{R_D^{\rm SM}} \sim 1 \!-\! 1.5 \frac{m_\tau m_b}{m_{H^\pm}^2} \tan^2\beta$$

$$rac{R_{D^*}}{R_{D^*}^{
m SM}} \sim 1 - 0.12 rac{m_ au m_b}{m_{H^\pm}^2} an^2 eta$$

- ► Effect goes in the wrong direction and is much smaller for R_{D^*}
- ► Correlated with effect in $B \rightarrow \tau \nu$

$$rac{{\sf BR}(B o au
u)}{{\sf BR}(B o au
u)_{\sf SM}} \simeq \left(1-rac{m_B^2}{m_{H^\pm}^2} an^2eta
ight)^2$$

 \Rightarrow Can't explain $R_{D^{(*)}}$ with charged Higgs exchange in the MSSM

$\overline{R_{K^{(*)}}}$ in MSSM

- only way to get lepton flavor non universal contribution to rare $b \rightarrow s\ell\ell$ decays is through box diagrams with light winos (or Binos) and large non-universality in slepton masses.
- requires an extremely light spectrum to get $C_{o}^{bs\mu\mu} \sim -0.5$:
 - winos and smuons around 100 GeV; sbottoms around 500 GeV:

very challenging to hide this at the LHC...

semileptonic operators

 $b_{L(R)}$

[Altmannshofer, Stangl (2103.13370)]

MSSM with R-Parity Violation

- More natural to include RPV couplings, rather than imposing R-parity by hand.
 [Brust, Katz, Lawrence, Sundrum, 1110.6670 (JHEP '12)]
- LFUV arises naturally á la Yang-Mills. [BD, Soni, Xu, 2106.15647]
- Third generation may be special. (LFUV in B-sector, but not in D nor in Λ)
- RPV3: RPV SUSY with light 3rd-generation sfermions.

[Altmannshofer, BD, Soni, 1704.06659 (PRD '17)]

MSSM with R-Parity Violation

- More natural to include RPV couplings, rather than imposing R-parity by hand.
 [Brust, Katz, Lawrence, Sundrum, 1110.6670 (JHEP '12)]
- LFUV arises naturally á la Yang-Mills. [BD, Soni, Xu, 2106.15647]
- Third generation may be special. (LFUV in B-sector, but not in D nor in Λ)
- RPV3: RPV SUSY with light 3rd-generation sfermions.

[Altmannshofer, BD, Soni, 1704.06659 (PRD '17)]

• Can naturally accommodate $R_{D^{(*)}}$ ($b \to c au
u$) via LQD interactions. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); Trifinopoulos (EPJC '18); Hu, Li, Muramatsu, Yang (PRD '19)]

$$\mathcal{L}_{LQD} = \lambda'_{ijk} \left[\widetilde{\nu}_{iL} \overline{d}_{kR} d_{jL} + \widetilde{d}_{jL} \overline{d}_{kR} \nu_{iL} + \widetilde{d}_{kR}^* \overline{\nu}_{iL}^c d_{jL} - \widetilde{e}_{iL} \overline{d}_{kR} u_{jL} - \widetilde{u}_{jL} \overline{d}_{kR} e_{iL} - \widetilde{d}_{kR}^* \overline{e}_{iL}^c u_{jL} \right] + \text{H.c}$$

• Can simultaneously explain $R_{K^{(*)}}$ ($b \to s\ell\ell$) via LLE interactions, together with LQD. [Das, Hati, Kumar, Mahajan (PRD '17); Earl, Grégoire (JHEP '18); Trifinopoulos (EPJC '18); Hu, Huang (PRD '20); Altmannshofer, BD, Soni, Sui (PRD '20)]

$$\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \left[\widetilde{\nu}_{iL} \overline{e}_{kR} e_{jL} + \widetilde{e}_{jL} \overline{e}_{kR} \nu_{iL} + \widetilde{e}_{kR}^* \overline{\nu}_{iL}^c e_{jL} - (i \leftrightarrow j) \right] + \text{H.c.}$$

Muon g − 2 from both LQD and LLE terms, but LLE more relevant.

Muon g - 2 in RPV3

Muon g - 2 in RPV3

• 1-loop contributions from λ' and λ couplings (in addition to the standard MSSM contributions)

$$\Delta a_{\mu} = \frac{\textit{m}_{\mu}^{2}}{96\pi^{2}} \sum_{k=1}^{3} \left(\frac{2(|\lambda_{32k}|^{2} + |\lambda_{3k2}|^{2})}{\textit{m}_{\widetilde{\nu}_{\tau}}^{2}} - \frac{|\lambda_{3k2}|^{2}}{\textit{m}_{\widetilde{\tau}_{L}}^{2}} - \frac{|\lambda_{k23}|^{2}}{\textit{m}_{\widetilde{\tau}_{R}}^{2}} + \frac{3|\lambda_{2k3}'|^{2}}{\textit{m}_{\widetilde{b}_{R}}^{2}} \right)$$

 Need light sbottoms and/or sneutrinos with large couplings to get a relevant contribution in the right direction

$\overline{R}_{D^{(*)}}$ in RPV3

$R_{D(*)}$ in RPV3

[Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); $\cdot\cdot\cdot$]

- Tree level contributions from sbottom or stau exchange
- Stau behaves like a charged Higgs (but its couplings are less constrained). Stau contribution disfavored by B_c → τν branching ratio and kinematic distributions in B → D^(*)τν.
- Sbottom behaves like a leptoquark. Chirality structure as prefered by model independent fits (Shi et al. 1905.08498; Murgui et al. 1904.09311; Asadi, Shih 1905.03311; Cheung et al. 2002.07272; ...)
- Can address the $R_{D^{(*)}}$ anomalies for sbottom masses O(1 TeV) and couplings $\lambda' \sim O(1)$
- need to be careful to keep μe universality in $b \rightarrow c\ell\nu$

$$\begin{split} \frac{R_D}{R_D^{SM}} \; &= \; \frac{R_{D^*}}{R_{D^*}^{SM}} = \frac{|\Delta_{31}^c|^2 + |\Delta_{32}^c|^2 + |1 + \Delta_{33}^c|^2}{|\Delta_{21}^c|^2 + |1 + \Delta_{22}^c|^2 + |\Delta_{23}^c|^2} \;, \\ \text{with } \Delta_{ll'}^c \; &= \; \frac{v^2}{4m_{\tilde{b}_R}^2} \lambda_{l'33}' \left(\lambda_{l33}' + \lambda_{l23}' \frac{V_{cs}}{V_{cb}} + \lambda_{l13}' \frac{V_{cd}}{V_{cb}} \right) . \end{split}$$

$\overline{R_{K^{(*)}}}$ in RPV3

$R_{K^{(*)}}$ in RPV3

- Tree level contribution from stop exchange have the wrong chirality
- Several loop contributions with the right chirality and $C_9 = -C_{10}$
- Both λ and λ' couplings can be involved

$$C_9^\mu = -C_{10}^\mu = \frac{\textit{m}_t^2}{\textit{m}_{\tilde{b}_B}^2} \frac{\left| \lambda_{233}' \right|^2}{16\pi\alpha_{\rm em}} - \frac{\textit{v}^2}{\textit{m}_{\tilde{b}_B}^2} \frac{\textit{X}_{bs}\textit{X}_{\mu\mu}}{64\pi\alpha_{\rm em}\textit{V}_{lb}\textit{V}_{ls}^*},$$

where
$$X_{bs}=\sum_{i=1}^3\lambda'_{i33}\lambda'_{i23}$$
 and $X_{\mu\mu}=\sum_{j=1}^3|\lambda'_{2j3}|^2$.

Low-energy Constraints

Constraint	Parameter dependence	Relevant terms
B o au u	$\lambda'_{\ell'33},\lambda'_{3j3},m_{\widetilde{b}_R}$	$\frac{\lambda'_{\ell'33} \cdot \lambda'_{3j3}}{m_{\widetilde{b}_R}^2}$
$B o K^{(*)} u \bar{ u}$	$\lambda'_{\ell'33},\lambda'_{\ell23}$, $m_{\widetilde{b}_R}$	$\frac{\lambda'_{\ell'33} \cdot \lambda'_{\ell23}}{m_{\widetilde{b}_R}^2}, \frac{\lambda'_{\ell'33} \cdot \lambda'_{\ell32}}{m_{\widetilde{b}_L}^2}$
$B o \pi/\rho u ar{ u}$	$\lambda'_{\ell'33},\lambda'_{\ell13}$, $m_{\widetilde{b}_R}$	$rac{\lambda'_{\ell'33}\cdot\lambda'_{\ell13}}{m_{\widetilde{b}_R}^2}$
	$\lambda'_{i33},\lambda'_{i23},\lambda'_{i32}$,	$\frac{\lambda_{i23}^{\prime}\lambda_{i33}^{\prime}\lambda_{j23}^{\prime}\lambda_{j33}^{\prime}}{m_{\tilde{b}_R}^2},$
$B_s - \overline{B}_s$ mixing	$m_{\widetilde{b}_R},m_{\widetilde{ u}}$	$\frac{\lambda'_{i23}\lambda'_{i32}\lambda'_{j33}\lambda'_{j33}}{m_{\tilde{b}_R}^2} \ ,$
		$rac{\lambda'_{332}\lambda'_{323}}{m_{\widetilde{ u}}^2}$
$D - \overline{D}$ mixing	$\lambda'_{323},m_{\widetilde{b}_R},m_{\widetilde{ au}_R}$	$rac{\lambda_{323}'^4}{m_{ ilde{b}_R}^2},rac{\lambda_{323}'^4}{m_{ ilde{ au}_R}^2}$
$D^0 \to \mu^+ \mu^-$	$\lambda'_{2j3},m_{\widetilde{b}_R}$	$rac{\lambda'_{2j3}\lambda'_{2j'3}}{m_{\widetilde{b}_R}^2}$
$ au ightarrow \ell u ar{ u}$	$\lambda_{323},\lambda_{333}',m_{\widetilde{ au}_R},m_{\widetilde{b}_R}$	$\frac{\lambda_{323}^2}{m_{\widetilde{ au}_R}^2}, \frac{{\lambda'}_{333}^2}{m_{\widetilde{b}_R}^2}$
$Z o \ell ar{\ell}'$	$\lambda'_{333},m_{\widetilde{b}_R}$	$\frac{\lambda'^2_{333}}{m_{\widetilde{h}P}^2}$

Numerical Scan

A Combined RPV3 Fit to All Flavor Anomalies

A Combined RPV3 Fit to All Flavor Anomalies

A Combined RPV3 Fit to All Flavor Anomalies

Distinct LHC Signals in RPV3

Effective operators:

$$\begin{split} R_{D^{(*)}} \ : \mathcal{O}_{V_L} &= (\bar{c}\gamma^\mu P_L b)(\bar{\tau}\gamma_\mu P_L \nu) \\ R_{\mathcal{K}^{(*)}} \ : Q_{9(10)}^\ell &= (\bar{s}\gamma^\mu P_L b)(\bar{\ell}\gamma_\mu (\gamma_5)\ell) \end{split}$$

• Crossing symmetry: $b \to c\tau\nu$ leads to $gc \to b\tau\nu$, and $b \to s\ell\ell$ leads to $gs \to b\ell\ell$.

An LHC Test of Muon g-2

28

Conclusion

- Mounting evidence for the violation of lepton flavor universality.
- [Crivellin, Hoferichter, 2111.1273 (Science '21)]
- Can be explained by invoking BSM physics (true for any anomaly).
- Leptoquarks and RPV-SUSY remain as the most attractive scenarios for a simultaneous explanation of B-anomalies and muon g-2.
- Personal choice: RPV3 motivated by Higgs naturalness and other beautiful features of SUSY, while being consistent with null searches at the LHC.
 - Removes the accidental flavor symmetry of the SM.
 - Same chiral structure as the SM \Longrightarrow correct D^* and τ polarizations, as well as $R_K R_{K(*)}$ correlation come automatically.
 - Highly predictive and testable at Belle II, LHCb and high- p_T LHC experiments.
 - Improved lattice input for $B \to K \nu \bar{\nu}$ and $B_s \overline{B}_s$ will be crucial.
 - Flavor anomalies might be providing the first experimental hint of SUSY!

Conclusion

- Mounting evidence for the violation of lepton flavor universality.
- [Crivellin, Hoferichter, 2111.1273 (Science '21)]
- Can be explained by invoking BSM physics (true for any anomaly).
- Leptoquarks and RPV-SUSY remain as the most attractive scenarios for a simultaneous explanation of B-anomalies and muon g-2.
- Personal choice: RPV3 motivated by Higgs naturalness and other beautiful features of SUSY, while being consistent with null searches at the LHC.
 - Removes the accidental flavor symmetry of the SM.
 - Same chiral structure as the SM \Longrightarrow correct D^* and τ polarizations, as well as $R_K R_{K(*)}$ correlation come automatically.
 - Highly predictive and testable at Belle II, LHCb and high- p_T LHC experiments.
 - Improved lattice input for $B \to K \nu \bar{\nu}$ and $B_s \overline{B}_s$ will be crucial.
 - Flavor anomalies might be providing the first experimental hint of SUSY!

Thank You.