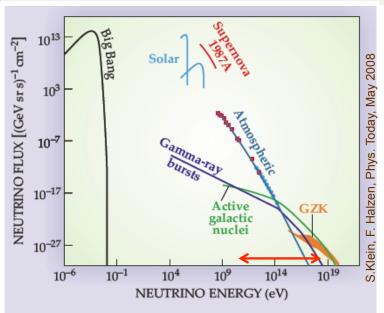
Astrophysical and Dark Matter Origin of the IceCube High-energy Neutrino Events

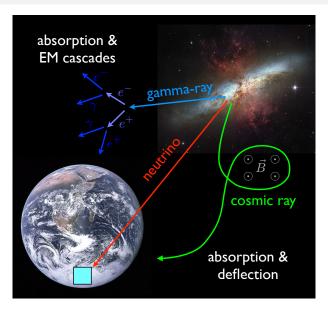
BHUPAL DEV

Washington University in St. Louis

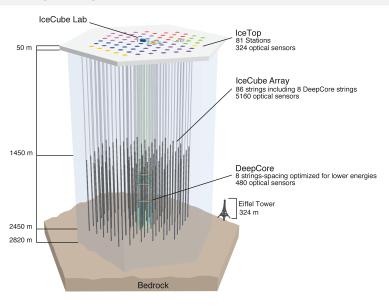
with Yicong Sui, arXiv:1804.04919 [hep-ph]

The Mitchell Conference on Collider, Dark Matter, and Neutrino Physics 2018

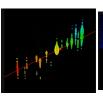

Texas A & M University, College Station


Outline

- Introduction: HESE vs. Throughgoing Events
- 1-comp vs. 2-comp Astrophysical Neutrinos
- Decaying Heavy Dark Matter ?
- Gamma-ray Constraints
- Conclusion


Ubiquitous Neutrino Flux

High-energy Neutrinos: Astrophysical Messengers


Need Very Large Detectors

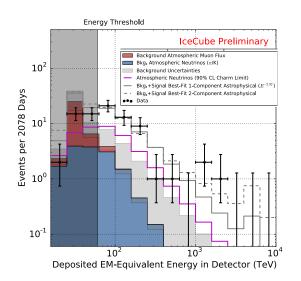
Neutrino Detection at IceCube

$$u_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

Events: Shower vs. Track; HESE vs. Throughgoing

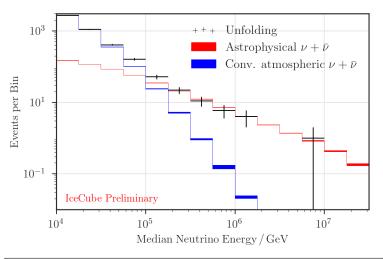
Constitution

CC Muon (track)

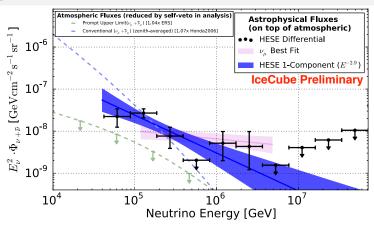

CC EM/NC all (shower)

CC tau 'double bang' (simulation only)

High Energy Starting Events (HESE)


Throughgoing muon (track only)

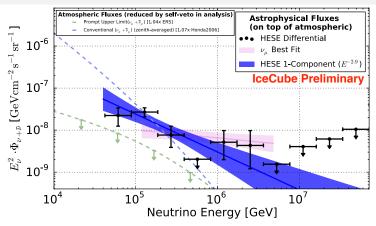
6-year HESE Dataset


82 events with $> 7\sigma$ excess over atmospheric background.

8-year TG Dataset

 ~ 1000 events with 6.7σ excess over atmospheric background.

Comparison between HESE and TG Events



For 1-comp power-law flux

$$\Phi_{\nu} = \Phi_0 \left(\frac{E_{\nu}}{E_0}\right)^{-\gamma}, \quad \gamma = 2.9^{+0.33}_{-0.29} \text{ (HESE) vs } 2.19 \pm 0.10 \text{ (TG)}$$

• Theory expectation $\gamma \sim 2$.

Comparison between HESE and TG Events

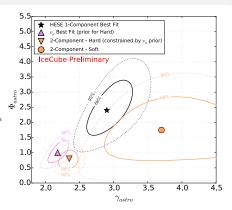
For 1-comp power-law flux

$$\Phi_{\nu} \ = \ \Phi_{0} \left(\frac{E_{\nu}}{E_{0}}\right)^{-\gamma} \, , \quad \gamma = 2.9^{+0.33}_{-0.29} \ ({\rm HESE}) \ {\rm vs} \ 2.19 \pm 0.10 \ ({\rm TG})$$

• Theory expectation $\gamma \sim 2$.

Two-component Solution

PHYSICAL REVIEW D 92, 073001 (2015)


Two-component flux explanation for the high energy neutrino events at IceCube

Chien-Yi Chen, P. S. Bhupal Dev, and Amarjit Soni

¹Department of Physics, Brookhuven National Laboratory, Upton, New York 11973, USA ²Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manches. Manchester M13 9PL, United Kingdom

(Received 2 December 2014; published 1 October 2015)

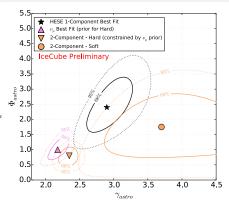
$$\Phi_{
u} \; = \; \Phi_{1} \left(\frac{E_{
u}}{E_{0}} \right)^{-\gamma_{1}} e^{-E_{
u}/E_{c}} + \Phi_{2} \left(\frac{E_{
u}}{E_{0}} \right)^{-\gamma_{2}}$$

[ICRC Proceedings, 1710.01191]

- ullet Break in the u spectrum follows the break in the CR spectrum.
- Exponential cut-off could be due to a spectral resonance (e.g. Δ^+), or a dissipative source (e.g. GRB). [Murase, loka (PRL '13); Petropoulou, Giannios,

Two-component Solution

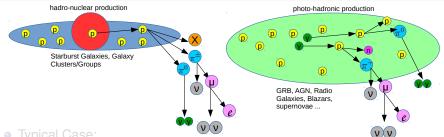
PHYSICAL REVIEW D 92, 073001 (2015)


Two-component flux explanation for the high energy neutrino events at IceCube

Chien-Yi Chen,1 P. S. Bhupal Dev,2 and Amarjit Soni1

¹Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA ²Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manches. Manchester M13 9PL, United Kingdom

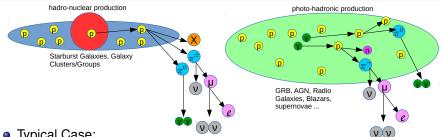
(Received 2 December 2014; published 1 October 2015)


$$\Phi_{
u} \; = \; \Phi_{1} \left(\frac{E_{
u}}{E_{0}} \right)^{-\gamma_{1}} e^{-E_{
u}/E_{c}} + \Phi_{2} \left(\frac{E_{
u}}{E_{0}} \right)^{-\gamma_{2}}$$

[ICRC Proceedings, 1710.01191]

- ullet Break in the u spectrum follows the break in the CR spectrum.
- ullet Exponential cut-off could be due to a spectral resonance (e.g. Δ^+), or a dissipative source (e.g. GRB). [Murase, loka (PRL '13); Petropoulou, Giannios,

Dimitrakoudis (MNRAS '14); Anchordogui et al. (PRD '17)]

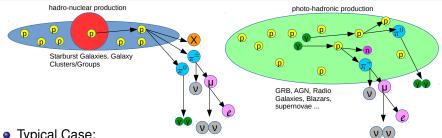

Typical Case:

$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{\mathbf{S}} = \begin{cases} \left(\frac{1}{6} : \frac{1}{3} : 0 : \frac{1}{6} : \frac{1}{3} : 0\right) \\ \left(\frac{1}{3} : \frac{1}{3} : 0 : 0 : \frac{1}{3} : 0\right) \end{cases}$$
(pp)

• Muon-damped case:

$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{\mathbf{S}} = \begin{cases} (0 : \frac{1}{2} : 0 : 0 : \frac{1}{2} : 0) & (pp) \\ (0 : 1 : 0 : 0 : 0 : 0) & (p\gamma) \end{cases}$$

$$(\nu_e + \bar{\nu}_e) : (\nu_\mu + \bar{\nu}_\mu) : (\nu_\tau + \bar{\nu}_\tau) = \begin{cases} (1:1:1)_{\oplus} & \text{for } (1:2:0)_{\odot} \\ (4:7:7)_{\oplus} & \text{for } (0:1:0)_{\odot} \end{cases}$$

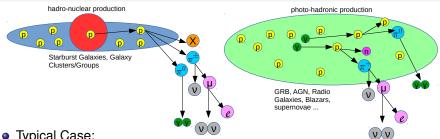

Typical Case:

$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{\mathbf{S}} = \begin{cases} \left(\frac{1}{6} : \frac{1}{3} : 0 : \frac{1}{6} : \frac{1}{3} : 0\right) & (pp) \\ \left(\frac{1}{3} : \frac{1}{3} : 0 : 0 : \frac{1}{3} : 0\right) & (p\gamma) \end{cases}$$

• Muon-damped case:

$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{S} = \begin{cases} (0 : \frac{1}{2} : 0 : 0 : \frac{1}{2} : 0) & (pp) \\ (0 : 1 : 0 : 0 : 0 : 0) & (p\gamma) \end{cases}$$

$$(\nu_e + \bar{\nu}_e) : (\nu_\mu + \bar{\nu}_\mu) : (\nu_\tau + \bar{\nu}_\tau) = \begin{cases} (1:1:1)_{\oplus} & \text{for } (1:2:0)_{\odot} \\ (4:7:7)_{\oplus} & \text{for } (0:1:0)_{\odot} \end{cases}$$


Typical Case:

$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{\mathbf{S}} = \begin{cases} \left(\frac{1}{6} : \frac{1}{3} : 0 : \frac{1}{6} : \frac{1}{3} : 0\right) & (pp) \\ \left(\frac{1}{3} : \frac{1}{3} : 0 : 0 : \frac{1}{3} : 0\right) & (p\gamma) \end{cases}$$

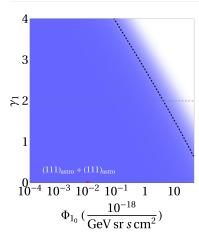
• Muon-damped case:

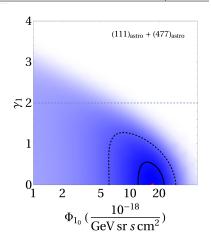
$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{\mathbf{S}} = \begin{cases} (0 : \frac{1}{2} : 0 : 0 : \frac{1}{2} : 0) & (pp) \\ (0 : 1 : 0 : 0 : 0 : 0) & (p\gamma) \end{cases}$$

$$(\nu_e + \bar{\nu}_e) : (\nu_\mu + \bar{\nu}_\mu) : (\nu_\tau + \bar{\nu}_\tau) = \begin{cases} (1:1:1)_{\oplus} & \text{for } (1:2:0)_{\odot} \\ (4:7:7)_{\oplus} & \text{for } (0:1:0)_{\odot} \end{cases}$$

Typical Case:

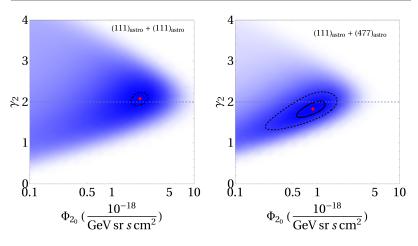
$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{\mathbf{S}} = \begin{cases} \left(\frac{1}{6} : \frac{1}{3} : 0 : \frac{1}{6} : \frac{1}{3} : 0\right) & (pp) \\ \left(\frac{1}{3} : \frac{1}{3} : 0 : 0 : \frac{1}{3} : 0\right) & (p\gamma) \end{cases}$$

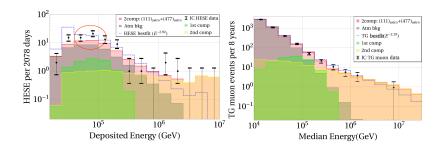

• Muon-damped case:


$$(\nu_e : \nu_\mu : \nu_\tau : \bar{\nu}_e : \bar{\nu}_\mu : \bar{\nu}_\tau)_{S} = \begin{cases} (0 : \frac{1}{2} : 0 : 0 : \frac{1}{2} : 0) \\ (0 : 1 : 0 : 0 : 0 : 0) \end{cases}$$
 (pp)

$$(\nu_e + \bar{\nu}_e) : (\nu_\mu + \bar{\nu}_\mu) : (\nu_\tau + \bar{\nu}_\tau) = \begin{cases} (1:1:1)_{\oplus} & \text{for } (1:2:0)_{\mathbf{S}} \\ (4:7:7)_{\oplus} & \text{for } (0:1:0)_{\mathbf{S}} \end{cases}$$

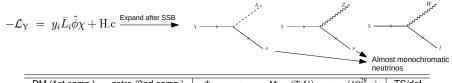
Fit Results


1st Comp.	2nd Comp.	Φ_{1_0}	Φ_{2_0}	γ_1	γ_2	$E_c/100~{ m TeV}$	TS/dof
				1.47×10^{-4}		0.10	1.91
(1:1:1)	(4:7:7)	17.18	0.88	3.19×10^{-10}	1.83	0.50	1.48

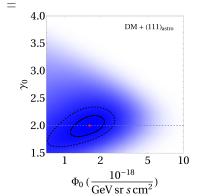


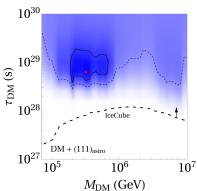
Fit Results

1st Comp.	2nd Comp.	Φ_{1_0}	Φ_{2_0}	γ_1	γ_2	$E_c/100~{ m TeV}$	TS/dof
				1.47×10^{-4}		0.10	1.91
(1:1:1)	(4:7:7)	17.18	0.88	3.19×10^{-10}	1.83	0.50	1.48

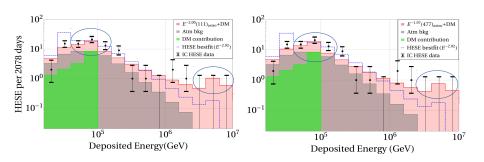


Event Spectrum

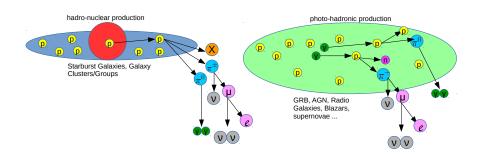



- $\sim 2\sigma$ excess around 100 TeV in the HESE data (consistent with [Chianese, Miele, Morisi (JCAP '17; PLB '17)])
- A possible explanation: Decaying Dark Matter (instead of the soft astrophysical component).
- Has been widely discussed in the context of PeV excess. [Esmaili, Serpico (JCAP '13); Bhattacharya, Reno, Sarcevic (JHEP '14); Rott, Kohri, Park (PRD '15); Bai, Lu, Salvado (JHEP '16); Bhattacharya, Esmaili, Palomares-Ruiz, Sarcevic (JCAP '17); ...]

A Simple DM Model

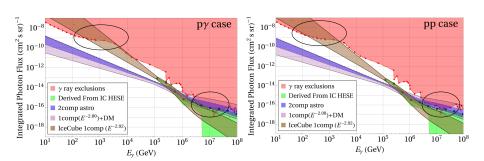


DM (1st comp.)	astro (2nd comp.)	Φ_0	γ_0	$M_{\rm DM}~({ m TeV})$	$\tau_{\rm DM}(10^{28} {\rm s})$	TS/dof
(1:1:1)	(1:1:1)	1.62	2.00	316.23	6.31	1.38
(1:1:1)	(4:7:7)	1.39	1.97	316.23	6.31	1.37



Event Spectrum

Gamma-ray Constraints



$$E_{\gamma}^2 \Phi_{\gamma} \simeq \frac{4}{K} E_{\nu}^2 \frac{\Phi_{(\nu + \bar{\nu})_{\text{tot}}}}{3} \bigg|_{E_{\nu} = 0.5 E_{\gamma}} \quad \text{with } K = 2 \ (pp) \text{ or } 1 \ (p\gamma)$$

[Waxman, Bahcall (PRL '97); Murase, Laha, Ando, Ahlers (PRL '15); Esmaili, Serpico (JCAP '15); Cohen, Murase, Rodd, Safdi, Soreq (PRL '17)]

We applied diffuse gamma-ray constraints from Fermi-LAT, HESS, VERITAS, HAWC, ARGO, MILARGO, GRAPES, KASCADE and CASA-MIA.

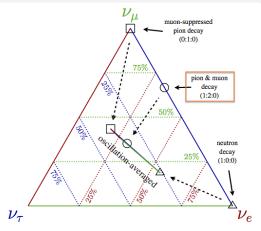
Gamma-ray Constraints

Single-component HESE bestfit ruled out

Two-component bestfit still consistent

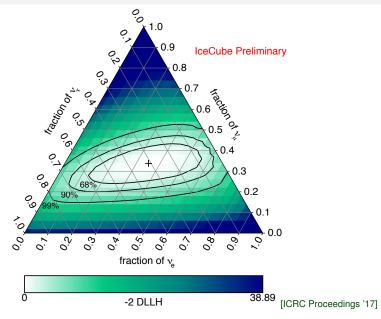
DM+astro flux is (slightly) favored over the purely astro flux

Conclusion

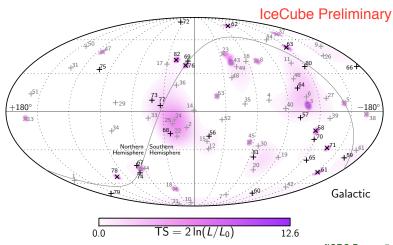

- Understanding all aspects of the UHE neutrino events at IceCube is very important for both Astrophysics and Particle Physics ramifications.
- Single-component power-law fit to the HESE data is disfavored.
- Need (at least) two-component flux to simultaneously explain the HESE and throughgoing datasets.
- Could be either purely astrophysical or a combination of astro and particle physics origin.
- Considered a simple model of decaying fermionic dark matter.
- (Slightly) Favored by the data and gamma-ray constraints over a purely astro flux.
- More statistics and multi-messenger approach would be able to discriminate between the two solutions.

Conclusion

- Understanding all aspects of the UHE neutrino events at IceCube is very important for both Astrophysics and Particle Physics ramifications.
- Single-component power-law fit to the HESE data is disfavored.
- Need (at least) two-component flux to simultaneously explain the HESE and throughgoing datasets.
- Could be either purely astrophysical or a combination of astro and particle physics origin.
- Considered a simple model of decaying fermionic dark matter.
- (Slightly) Favored by the data and gamma-ray constraints over a purely astro flux.
- More statistics and multi-messenger approach would be able to discriminate between the two solutions.


THANK YOU.

Physical Flavor Compositions



$$\begin{array}{l} (1:2:0)_S \ \rightarrow \ (1:1:1)_{\oplus} \\ (0:1:0)_S \ \rightarrow \ (4:7:7)_{\oplus} \\ (1:1:0)_S \ \rightarrow \ (14:11:11)_{\oplus} \\ (1:0:0)_S \ \rightarrow \ (5:2:2)_{\oplus} \end{array}$$

Flavor Composition from IceCube data

All-sky Event Distribution

[ICRC Proceedings '17]