

Neutrino Models at Colliders

Bhupal Dev

Washington University in St. Louis

SUSY2019

Corpus Christi

May 22, 2019

Harbinger of New Physics

Non-zero neutrino mass \Longrightarrow physics beyond the Standard Model

Non-zero neutrino mass \Longrightarrow physics beyond the Standard Model

Perhaps something beyond the standard Higgs mechanism...

Non-zero neutrino mass \Longrightarrow physics beyond the Standard Model

Perhaps something beyond the standard Higgs mechanism...

Can we probe the origin of neutrino mass at colliders?

[see Tuesday plenary talk by S. King]

- From pheno point of view, can broadly categorize into
 - Tree-level (seesaw) vs loop-level (radiative)
 - Minimal (SM gauge group) vs gauge-extended [e.g. $U(1)_{B-L}$, Left-Right]
 - Non-supersymmetric vs Supersymmetric

- From pheno point of view, can broadly categorize into
 - Tree-level (seesaw) vs loop-level (radiative)
 - Minimal (SM gauge group) vs gauge-extended [e.g. U(1)_{B-L}, Left-Right]
 - Non-supersymmetric vs Supersymmetric
- New fermions, gauge bosons, and/or scalars messengers of neutrino mass physics.
- Rich phenomenology.
- For messenger scale $\lesssim \mathcal{O}(\text{few TeV})$, accessible at the LHC and/or future colliders.
- Connection to other puzzles (e.g. baryogenesis, dark matter).

New Fermions

(aka sterile neutrinos/heavy neutrinos/heavy neutral leptons)

Type-I Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]

• Introduce SM-singlet Majorana fermions (N).

QUARKS

SEESAW MECHANISM

$$-\mathcal{L} \supset Y_{\nu}\overline{L}\phi^{c}N + \frac{1}{2}M_{N}\overline{N}^{c}N + \text{H.c.}$$

• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{T}$, where $M_D = v Y_{\nu}$.

[Figure from Antusch, Cazzato, Fischer (IJMPA '17)]

Type-I Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]

Introduce SM-singlet Majorana fermions (N).

$$-\mathcal{L} \supset Y_{\nu}\overline{L}\phi^{c}N + \frac{1}{2}M_{N}\overline{N}^{c}N + \text{H.c.}$$

• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$, where $M_D = v Y_{\nu}$.

• Naturalness of Higgs mass suggests $M_N \lesssim 10^7$ GeV.

[Vissani (PRD '98); Clarke, Foot, Volkas (PRD '15); Bambhaniya, BD, Goswami, Khan, Rodejohann (PRD '17)]

Heavy Majorana Neutrinos at the LHC

[Keung, Senjanović (PRL '83); Datta, Guchait, Pilaftsis (PRD '94); Panella, Cannoni, Carimalo, Srivastava (PRD '02); Han, Zhang (PRL '06); del Aguila, Aguilar-Saavedra, Pittau (JHEP '07); Atre, Han, Pascoli, Zhang (JHEP '09)]

Probes (sub) TeV-scale heavy Majorana neutrinos with 'large' active-sterile mixing.

Low-scale Seesaw with Large Mixing

• Naively, active-sterile neutrino mixing is small for EW-scale seesaw:

$$V_{\ell N} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{m_{\nu}}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

'Large' mixing effects possible with special structures of *M_D* and *M_N*.
 [Pilaftsis (ZPC '92); Gluza (APPB '02); de Gouvea '07; Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez, Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani (NPB '12); BD, Lee, Mohapatra (PRD '13);...]

Low-scale Seesaw with Large Mixing

• Naively, active-sterile neutrino mixing is small for EW-scale seesaw:

$$V_{\ell N} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{m_{\nu}}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

- 'Large' mixing effects possible with special structures of *M_D* and *M_N*.
 [Pilaftsis (ZPC '92); Gluza (APPB '02); de Gouvea '07; Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez, Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani (NPB '12); BD, Lee, Mohapatra (PRD '13);...]
- One example: [Kersten, Smirnov (PRD '07)]

$$M_D = \begin{pmatrix} m_1 & \delta_1 & \epsilon_1 \\ m_2 & \delta_2 & \epsilon_2 \\ m_3 & \delta_3 & \epsilon_3 \end{pmatrix} \quad \text{and} \quad M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix} \quad \text{with } \epsilon_i, \delta_i \ll m_i$$

Low-scale Seesaw with Large Mixing

Naively, active-sterile neutrino mixing is small for EW-scale seesaw:

$$V_{\ell N} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{m_{\nu}}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

- 'Large' mixing effects possible with special structures of *M_D* and *M_N*.
 [Pilaftsis (ZPC '92); Gluza (APPB '02); de Gouvea '07; Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez, Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani (NPB '12); BD, Lee, Mohapatra (PRD '13);...]
- One example: [Kersten, Smirnov (PRD '07)]

$$M_D = \begin{pmatrix} m_1 & \delta_1 & \epsilon_1 \\ m_2 & \delta_2 & \epsilon_2 \\ m_3 & \delta_3 & \epsilon_3 \end{pmatrix} \quad \text{and} \quad M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix} \quad \text{with } \epsilon_i, \delta_i \ll m_i.$$

- But the steriles with large mixing are 'quasi-Dirac' with suppressed LNV.
- Generic requirement in order to satisfy neutrino oscillation data and 0νββ constraints. [Abada, Biggio, Bonnet, Gavela, Hambye (JHEP '07); Ibarra, Molinaro, Petcov (JHEP '10); Fernandez-Martinez, Hernandez-Garcia, Lopez-Pavon, Lucente (JHEP '15); Drewes, Garbrecht, Gueter, Klaric (JHEP '16)]
- Should also look for lepton number conserving channels at the LHC.

- Provides a (technically) natural low-scale seesaw framework.
- Two sets of SM-singlet fermions with opposite lepton numbers. [Mohapatra, Valle (PRD '86)]

$$\begin{aligned} -\mathcal{L}_{Y} &\supset \quad Y_{\nu} \overline{L} \phi^{c} N + M_{N} \overline{S} N + \frac{1}{2} \mu_{S} \overline{S} S^{c} + \text{H.c.} \\ m_{\nu} &\simeq \quad (M_{D} M_{N}^{-1}) \, \mu_{S} \, (M_{D} M_{N}^{-1})^{\text{T}} \end{aligned}$$

Naturally allows for large mixing:

$$V_{\ell N} \simeq \sqrt{rac{m_{
u}}{\mu_S}} pprox 10^{-2} \sqrt{rac{1 \ \mathrm{keV}}{\mu_S}}$$

- Provides a (technically) natural low-scale seesaw framework.
- Two sets of SM-singlet fermions with opposite lepton numbers. [Mohapatra, Valle (PRD '86)]

$$\begin{aligned} -\mathcal{L}_{Y} &\supset \quad Y_{\nu} \overline{L} \phi^{c} N + M_{N} \overline{S} N + \frac{1}{2} \mu_{S} \overline{S} S^{c} + \text{H.c.} \\ m_{\nu} &\simeq \quad (M_{D} M_{N}^{-1}) \, \mu_{S} \, (M_{D} M_{N}^{-1})^{\text{T}} \end{aligned}$$

Naturally allows for large mixing:

$$V_{\ell N} \simeq \sqrt{rac{m_{
u}}{\mu_{\mathcal{S}}}} pprox 10^{-2} \sqrt{rac{1 \ \mathrm{keV}}{\mu_{\mathcal{S}}}}$$

- But again quasi-Dirac heavy neutrinos.
- Should look for both lepton number conserving and violating channels at the LHC.
- Ratio of same-sign to opposite-sign dilepton signal could test the Majorana vs. Dirac nature. [Gluza, Jelinski (PLB '15); BD, Mohapatra (PRL '15); Gluza, Jelinski, Szafron (PRD '16); Anamiati, Hirsch, Nardi (JHEP '16); Das, BD, Mohapatra (PRD '17)]

Heavy (Pseudo) Dirac Neutrinos at the LHC

[del Aguila, Aguilar-Saavedra (PLB '09; NPB '09); Chen, BD (PRD '12); Das, Okada (PRD '13); Das, BD, Okada (PLB '14); Izaguirre, Shuve (PRD '15); Dib, Kim (PRD '15); Dib, Kim, Wang (PRD '17; CPC '17); Dube, Gadkari, Thalapilili (PRD '17)]

[CMS Collaboration, Phys. Rev. Lett. 120, 221801 (2018)]

Importance of VBF for Heavy Neutrino Production

[BD, Pilaftsis, Yang (PRL '14); Alva, Han, Ruiz (JHEP '15); Degrande, Mattelaer, Ruiz, Turner (PRD '16); Das, Okada (PRD '16)]

Higgs Decay

Can access the region for successful leptogenesis via heavy neutrino oscillations.

Displaced Vertex Search

[[]Antusch, Cazzato, Fischer (IJMPA '17)]

Displaced Vertex Search

[Kling, Trojanowski (PRD '18)]

[[]Antusch, Cazzato, Fischer (IJMPA '17)]

Displaced Vertex Search

[Kling, Trojanowski (PRD '18)]

[Antusch, Cazzato, Fischer (IJMPA '17)]

[see Wednesday plenary talks by D. Curtin and J. Feng]

Summary of Constraints and Prospects

[Atre, Han, Pascoli, Zhang (JHEP '09); Deppisch, BD, Pilaftsis (NJP '15)]

Interference Effect

[Hernandez, Jones-Perez, Suarez-Navarro (EPJC '19); Bolton, Deppisch, BD (to appear)]

New Gauge Bosons

(W',Z')

$U(1)_X$ Extension

[Buchmuller, Greub (NPB '91); Fileviez Perez, Han, Li (PRD '09); Kang, Ko, Li (PRD '15); Heeck, Teresi (PRD '16);

BD, Mohapatra, Zhang (JHEP '17); Das, Okada, Raut (EPJC '18); Cox, Han, Yanagida (JHEP '18); ...]

$U(1)_X$ Extension

[Buchmuller, Greub (NPB '91); Fileviez Perez, Han, Li (PRD '09); Kang, Ko, Li (PRD '15); Heeck, Teresi (PRD '16); BD, Mohapatra, Zhang (JHEP '17); Das, Okada, Raut (EPJC '18); Cox, Han, Yanagida (JHEP '18); ...]

[[]Deppisch, Desai, Valle (PRD '14)]

$U(1)_X$ Extension

[Buchmuller, Greub (NPB '91); Fileviez Perez, Han, Li (PRD '09); Kang, Ko, Li (PRD '15); Heeck, Teresi (PRD '16); BD, Mohapatra, Zhang (JHEP '17); Das, Okada, Raut (EPJC '18); Cox, Han, Yanagida (JHEP '18); ...]

[Deppisch, Desai, Valle (PRD '14)]

One of the RHNs can be made a dark matter candidate. [see parallel talk by S. Okada]

Left-Right Symmetric Extension

[Keung, Senjanović (PRL '83); Ferrari *et al* (PRD '00); Nemevsek, Nesti, Senjanović, Zhang (PRD '11); Das, Deppisch, Kittel, Valle (PRD '12); Mitra, Ruiz, Scott, Spannowsky (PRD '16);...]; see Tuesday plenary talk by G. Senjanović

New contribution to same-sign dilepton signal (independent of mixing)

Left-Right Symmetric Extension

[Keung, Senjanović (PRL '83); Ferrari *et al* (PRD '00); Nemevsek, Nesti, Senjanović, Zhang (PRD '11); Das, Deppisch, Kittel, Valle (PRD '12); Mitra, Ruiz, Scott, Spannowsky (PRD '16);...]; see Tuesday plenary talk by G. Senjanović

Future Prospects

[Nemevsek, Nesti, Popara (PRD '18)]

L-R Seesaw Phase Diagram

[Chen, BD, Mohapatra (PRD '13); BD, Kim, Mohapatra (JHEP '16)]

CPV in the RHN Sector

$$\begin{pmatrix} N_{e} \\ N_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{R} & \sin \theta_{R} e^{-i\delta_{R}} \\ -\sin \theta_{R} e^{i\delta_{R}} & \cos \theta_{R} \end{pmatrix} \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix} .$$
Same sign charge asymmetry : $\mathcal{A}_{\alpha\beta} \equiv \frac{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) - \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) + \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}$

•

CPV in the RHN Sector

$$\begin{pmatrix} N_{e} \\ N_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_{R} & \sin \theta_{R} e^{-i\delta_{R}} \\ -\sin \theta_{R} e^{i\delta_{R}} & \cos \theta_{R} \end{pmatrix} \begin{pmatrix} N_{1} \\ N_{2} \end{pmatrix}.$$
Same sign charge asymmetry : $\mathcal{A}_{\alpha\beta} \equiv \frac{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) - \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}{\mathcal{N}(\ell_{\alpha}^{+}\ell_{\beta}^{+}) + \mathcal{N}(\ell_{\alpha}^{-}\ell_{\beta}^{-})}.$

$$\int_{0}^{10} \frac{\sqrt{(2V'[e])}}{\sqrt{(2V'[e])}} \frac{\sqrt{(2V'[e$$

CPV in the RHN Sector

- $\langle \mathbf{n}_R^0 \rangle \equiv v_R$ gives rise to RH Majorana neutrino masses, and hence, type-I seesaw.
- $\langle \mathbf{n}_L^0 \rangle \equiv \mathbf{v}_L$ gives rise to a type-II seesaw contribution.
- 14 physical scalar fields (compared to just 1 in the SM).
- Very rich phenomenology.

[Gunion, Grifols, Mendez, Kayser, Olness (PRD '89); Polak, Zralek (PLB '92); Akeroyd, Aoki (PRD '05); Fileviez Perez, Han, Huang, Li, Wang (PRD '08); Bambhaniya, Chakrabortty, Gluza, Kordiaczyńska, Szafron (JHEP '14); Dutta, Eusebi, Gao, Ghosh, Kamon (PRD '14); Maiezza, Nemevsek, Nesti (PRL '15); BD, Mohapatra, Zhang (JHEP '16);...] • FCNC constraints require the bidoublet scalars $(H_1^0, A_1^0, H_1^{\pm})$ to be very heavy $\gtrsim 15$ TeV. [An, Ji, Mohapatra, Zhang (NPB '08); Bertolini, Maiezza, Nesti (PRD '14)]

No hope for them at the LHC. Need a 100 TeV collider! [see Monday plenary talk by T. Han]

- Hadrophobic and allowed to be light (down to sub-GeV scale) by current constraints.
- Suppressed coupling to SM particles (either loop-level or small mixing).
- Necessarily long-lived at the LHC, with displaced vertex signals.
- Clean LFV signals at future lepton colliders.

Charged Triplet Sector

[CMS-PAS-HIG-16-036]

Prospects at e^-p Collider

Prospects at e^-p Collider

Zee Model

Zee Model

Zee Model

[Babu, BD, Jana, Thapa (to appear); see Tuesday parallel talk by K. S. Babu]

RPV SUSY

$$W_{\rm RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda_{ijk}' L_i Q_j D_k^c + \frac{1}{2} \lambda_{ijk}'' U_i^c D_j^c D_k^c$$

[Hall, Suzuki (NPB '84); Babu, Mohapatra (PRL '90)]

RPV SUSY

$$W_{\rm RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$

[Hall, Suzuki (NPB '84); Babu, Mohapatra (PRL '90)]

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2019

	Model	:	Signature	∫£ dt [1	Ъ ⁻¹]	Mass limit							Reference
RPV	LFV $p \rightarrow b_1 + X, b_1 \rightarrow exp(let/pr \tilde{k}_1^+ \tilde{k}_1^+ (\tilde{k}_1^0 \rightarrow W)VZUU(v)\tilde{k}_5^+ \tilde{k}_1 \rightarrow Qv\tilde{n}_i \tilde{i}_1 \rightarrow b_1\tilde{i}_1 \tilde{i}_1 , \tilde{i}_1 \rightarrow b_2\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow b_1$	eμ.eτ.μτ 4 e.μ 2 e.μ 1 μ	0 jets 1 4-5 large- <i>R</i> jets Multiple 2 jets + 2 <i>b</i> 2 <i>b</i> DV	3.5 7 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1	2	$ \begin{split} & \delta_{1} & \\ & \delta_{2} & \left[E_{1} \left[\lambda_{1} + \delta_{2} + \delta_{1} + \pi + \delta_{1} + \delta_{2} + \delta_{$	0.55 0.61	0.82	1.05 1.05 1.0	1.33 1.3 1.4-1.45 1.6	1.9 1.9 2.0	$\begin{split} \mathcal{L}_{(1)}^{2}=0.11, \mathcal{L}_{(2)}(y_{12},y_{12},y_{23},0.07)\\ \mathrm{mr}_{1}^{2}(\tilde{f}_{1})=100~\mathrm{GeV}\\ \mathrm{Large}\mathcal{L}_{11}^{2}\\ \mathrm{mr}_{1}^{2}(\tilde{f}_{1})=200~\mathrm{GeV}, \mathrm{birot}\mathrm{He}\\ \mathrm{mr}_{1}^{2}(\tilde{f}_{1})=200~\mathrm{GeV}, \mathrm{birot}\mathrm{He}\\ \mathrm{BR}[\tilde{f}_{1},-\mathrm{he}//\mathrm{Sp}]=2006,\\ \mathrm{BR}[\tilde{f}_{1},-\mathrm{he}//\mathrm{Sp}]=100\%,~\mathrm{cost}=1 \end{split}$	1607.08079 1804.00568 ATLAS-CONF-2018-003 ATLAS-CONF-2018-003 1710.07171 1710.05544 ATLAS-CONF-2019-006
Only a selection of the available mass limits on new states or 10 ⁻¹ 1 Mass scale [TeV]													

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

RPV SUSY

$$W_{\rm RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda_{ijk}' L_i Q_j D_k^c + \frac{1}{2} \lambda_{ijk}'' U_i^c D_j^c D_k^c$$

[Hall, Suzuki (NPB '84); Babu, Mohapatra (PRL '90)]

simplified models, c.f. refs. for the assumptions made.

• Recent interest in light of the *B*-anomalies. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni

(PRD '17); Das, Hati, Kumar, Mahajan (PRD '17); Earl, Gregoire (JHEP '18); Trifinopoulos (EPJC '18)] – see Friday plenary

talk by X.-G. He

 Can also address the ANITA anomalous events. [Collins, BD, Sui (PRD '19); see Tuesday parallel talk by Y. Sui]

- Understanding the neutrino mass mechanism will provide important insights into the BSM world.
- Current and future colliders provide a ripe testing ground for low-scale neutrino mass models.
- Can probe the messenger particles (new fermions/gauge bosons/scalars) in a wide range of parameter space.
- Healthy complementarity at the intensity frontier.
- Could shed light on other outstanding puzzles, such as the matter-antimatter asymmetry and dark matter.

- Understanding the neutrino mass mechanism will provide important insights into the BSM world.
- Current and future colliders provide a ripe testing ground for low-scale neutrino mass models.
- Can probe the messenger particles (new fermions/gauge bosons/scalars) in a wide range of parameter space.
- Healthy complementarity at the intensity frontier.
- Could shed light on other outstanding puzzles, such as the matter-antimatter asymmetry and dark matter.

Thank You!