$R_{D^{(*)}}$ Anomaly: A Model-Independent Collider Signature and Possible Hint for R-parity Violating Supersymmetry

BHUPAL DEV

Washington University in St. Louis

W. Altmannshofer, BD and A. Soni, Phys. Rev. D 96, 095010 (2017) [arXiv:1704.06659 [hep-ph]] and in preparation.

> SUSY 2017 TIFR, Mumbai

December 12, 2017

$R_{D^{(*)}}$ Anomaly

A model-independent way to test the anomaly using ATLAS and CMS

• A possible correlation of the anomaly with the Higgs naturalness

• *R*-parity violating Supersymmetry with light 3rd generation

Model-independent Collider Analysis

• In a nut-shell, the anomalous behavior is in the basic process: $b \rightarrow c\tau \nu$.

- This necessarily implies by **crossing symmetry** an analogous anomaly in $g + c \rightarrow b\tau\nu$.
- Leads to a model-independent collider probe: $pp \rightarrow b\tau\nu$.

Model-independent Collider Analysis

- In a nut-shell, the anomalous behavior is in the basic process: $b \rightarrow c\tau \nu$.
- This necessarily implies by crossing symmetry an analogous anomaly in $g + c \rightarrow b\tau\nu$.
- Leads to a model-independent collider probe: $pp \rightarrow b\tau\nu$.

Effective Operators

• The effective 4-fermion Lagrangian for $b \rightarrow c \tau \nu$ in the SM is given by

$$-\mathcal{L}_{
m eff} \;=\; rac{4G_F V_{cb}}{\sqrt{2}} \left(ar{c} \gamma_\mu P_L b
ight) \left(ar{ au} \gamma^\mu P_L
u_ au
ight) + {
m H.c.}$$

- Same Lagrangian gives rise to $pp \rightarrow b\tau\nu$, but the rate is CKM-suppressed.
- Need not be the case in a generic NP scenario, which might be observable above the SM background at the LHC.
- Various dimension-6 four-fermion operators possible: [Freytsis, Ligeti, Ruderman (PRD '15)]

$$\begin{aligned} \mathcal{O}_{V_{R,L}} &= \left(\bar{c} \gamma^{\mu} P_{R,L} b \right) \left(\bar{\tau} \gamma_{\mu} P_{L} \nu \right) \\ \mathcal{O}_{S_{R,L}} &= \left(\bar{c} P_{R,L} b \right) \left(\bar{\tau} P_{L} \nu \right) . \\ \mathcal{O}_{T} &= \left(\bar{c} \sigma^{\mu \nu} P_{L} b \right) \left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu \right) . \end{aligned}$$

Effective Operators

• The effective 4-fermion Lagrangian for $b \rightarrow c \tau \nu$ in the SM is given by

$$-\mathcal{L}_{
m eff} \;=\; rac{4G_F V_{cb}}{\sqrt{2}} \left(ar{c} \gamma_\mu P_L b
ight) \left(ar{ au} \gamma^\mu P_L
u_ au
ight) + {
m H.c.}$$

- Same Lagrangian gives rise to $pp \rightarrow b\tau\nu$, but the rate is CKM-suppressed.
- Need not be the case in a generic NP scenario, which might be observable above the SM background at the LHC.
- Various dimension-6 four-fermion operators possible: [Freytsis, Ligeti, Ruderman (PRD '15)]

$$\begin{aligned} \mathcal{O}_{V_{R,L}} &= \left(\bar{c} \gamma^{\mu} P_{R,L} b \right) \left(\bar{\tau} \gamma_{\mu} P_{L} \nu \right) \\ \mathcal{O}_{S_{R,L}} &= \left(\bar{c} P_{R,L} b \right) \left(\bar{\tau} P_{L} \nu \right) \, . \\ \mathcal{O}_{T} &= \left(\bar{c} \sigma^{\mu \nu} P_{L} b \right) \left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu \right) \, . \end{aligned}$$

SM Backgrounds

- The direct $pp \rightarrow b\tau\nu$ is suppressed by $|V_{cb}|^2$.
- In a realistic hadron collider environment, however, there are other potentially dangerous backgrounds.
 - $pp \rightarrow jW \rightarrow j\tau\nu$ (*j* misidentified as *b*)
 - $pp \rightarrow W \rightarrow \tau \nu$, with an ISR gluon $\rightarrow b\bar{b}$ and one *b* is lost
 - $pp \rightarrow tj \rightarrow b\tau\nu j$ and $pp \rightarrow tW \rightarrow b\tau\nu jj$, where the jet(s) are lost
 - $pp \rightarrow b\bar{b}j$, where one *b* is misidentified as a τ and the light jet is lost (i.e. misidentified as MET).
- The mis-ID rates at the LHC typically are at the level of $\sim 1\%$.
- $\sigma_{\rm SM}(pp \rightarrow b\tau\nu \rightarrow b\ell + \not\!\! E_T) \sim 50 \text{ pb at } \sqrt{s} = 13 \text{ TeV LHC}.$

SM Backgrounds

- The direct $pp \rightarrow b\tau\nu$ is suppressed by $|V_{cb}|^2$.
- In a realistic hadron collider environment, however, there are other potentially dangerous backgrounds.
 - $pp \rightarrow jW \rightarrow j\tau\nu$ (*j* misidentified as *b*)
 - $pp \rightarrow W \rightarrow \tau \nu$, with an ISR gluon $\rightarrow b\bar{b}$ and one b is lost
 - $pp \rightarrow tj \rightarrow b\tau\nu j$ and $pp \rightarrow tW \rightarrow b\tau\nu jj$, where the jet(s) are lost
 - $pp \rightarrow b\bar{b}j$, where one *b* is misidentified as a τ and the light jet is lost (i.e. misidentified as MET).

The mis-ID rates at the LHC typically are at the level of ~ 1%.

- $\sigma_{\rm SM}(pp \rightarrow b\tau\nu \rightarrow b\ell + \not\!\!\!E_T) \sim 50 \text{ pb at } \sqrt{s} = 13 \text{ TeV LHC}.$

SM Backgrounds

- The direct $pp \rightarrow b\tau\nu$ is suppressed by $|V_{cb}|^2$.
- In a realistic hadron collider environment, however, there are other potentially dangerous backgrounds.
 - $pp \rightarrow jW \rightarrow j\tau\nu$ (*j* misidentified as *b*)
 - $pp \rightarrow W \rightarrow \tau \nu$, with an ISR gluon $\rightarrow b\bar{b}$ and one *b* is lost
 - $pp \rightarrow tj \rightarrow b\tau\nu j$ and $pp \rightarrow tW \rightarrow b\tau\nu jj$, where the jet(s) are lost
 - $pp \rightarrow b\bar{b}j$, where one *b* is misidentified as a τ and the light jet is lost (i.e. misidentified as MET).
- The mis-ID rates at the LHC typically are at the level of ~ 1%.
- $\sigma_{\rm SM}(pp \rightarrow b\tau\nu \rightarrow b\ell + \not\!\! E_T) \sim 50 \text{ pb at } \sqrt{s} = 13 \text{ TeV LHC}.$

Signal Rate

- We consider the dimension-6 NP operators $\mathcal{O}_{V_{R,L}}$ and $\mathcal{O}_{S_{R,L}}$.
- For a typical choice $g_{\rm NP}/\Lambda^2 = (1 \text{ TeV})^{-2}$, the signal cross section for $pp \rightarrow b\tau\nu \rightarrow b\ell + \not\!\!\!E_T$ of $\sigma_V \simeq 1.1$ pb (vector case) and $\sigma_S \simeq 1.8$ pb (scalar case), both at $\sqrt{s} = 13$ TeV LHC.
- Can directly probe mediator masses up to around 2.4 (2.6) TeV at 3σ CL in the vector (scalar) operator case with $\mathcal{O}(1)$ couplings at $\sqrt{s} = 13$ TeV LHC with $\mathcal{L} = 300$ fb⁻¹.
- The signal-to-background ratio can be significantly improved by using specialized selection cuts, e.g. p^b_T > 100 GeV, M_{bℓ} > 100 GeV and ∉_T > 100 GeV.

Signal Rate

- We consider the dimension-6 NP operators $\mathcal{O}_{V_{R,L}}$ and $\mathcal{O}_{S_{R,L}}$.
- For a typical choice $g_{\rm NP}/\Lambda^2 = (1 \text{ TeV})^{-2}$, the signal cross section for $pp \rightarrow b\tau\nu \rightarrow b\ell + \not \!\!\!E_T$ of $\sigma_V \simeq 1.1$ pb (vector case) and $\sigma_S \simeq 1.8$ pb (scalar case), both at $\sqrt{s} = 13$ TeV LHC.
- Can directly probe mediator masses up to around 2.4 (2.6) TeV at 3σ CL in the vector (scalar) operator case with $\mathcal{O}(1)$ couplings at $\sqrt{s} = 13$ TeV LHC with $\mathcal{L} = 300$ fb⁻¹.
- The signal-to-background ratio can be significantly improved by using specialized selection cuts, e.g. $p_T^b > 100 \text{ GeV}$, $M_{b\ell} > 100 \text{ GeV}$ and $\not\!\!\!E_T > 100 \text{ GeV}$.

Kinematic Distributions

Cut Efficiency

	Cut	Efficiency		
Observable	value	SM	Signal	Signal
	(GeV)	background	(Vector case)	(Scalar case)
p_T^ℓ	100	0.01	0.52	0.56
	50	0.10	0.78	0.82
	30	0.44	0.92	0.94
p_T^b	100	0.13	0.99	0.33
	50	0.47	1.00	0.62
	30	0.75	1.00	0.84
$M_{b\ell}$	100	0.18	0.96	0.76
	50	0.63	0.99	0.94
	30	0.88	1.00	0.98
₿ _T	100	0.01	0.54	0.70
	50	0.09	0.70	0.86
	30	0.29	0.79	0.92

Possible Hint for Natural SUSY with RPV

- Anomaly involved 3rd generation of the SM.
- Speculation: May be related to Higgs naturalness?
- An obvious UV-complete candidate: Natural SUSY with light 3rd generation. [Brust, Katz, Lawrence, Sundrum (JHEP '12); Papucci, Ruderman, Weiler (JHEP '12)]
- Coupling unification still preserved, even with RPV.

Explaining the $R_{D^{(*)}}$ Anomaly

• Consider a minimal RPV SUSY setup with the λ' -couplings.

$$\mathcal{L} = \lambda'_{ijk} \Big[\tilde{\nu}_{iL} \bar{d}_{kR} d_{jL} + \tilde{d}_{jL} \bar{d}_{kR} \nu_{iL} + \tilde{d}^*_{kR} \bar{\nu}^c_{iL} d_{jL} \\ - \tilde{e}_{iL} \bar{d}_{kR} u_{jL} - \tilde{u}_{jL} \bar{d}_{kR} e_{iL} - \tilde{d}^*_{kR} \bar{e}^c_{iL} u_{jL} \Big] + \text{H.c.}$$

Leads to the effective 4-fermion interactions: [Deshpande, He (EPJC '17)]

$$\begin{split} \mathcal{L}_{\text{eff}} &\supset \frac{\lambda_{ijk}' \lambda_{imk}'^*}{2m_{\tilde{d}_{kR}}^2} \Big[\bar{\nu}_{mL} \gamma^{\mu} \nu_{iL} \bar{d}_{nL} \gamma_{\mu} d_{jL} \\ &+ \bar{e}_{mL} \gamma^{\mu} e_{iL} \left(\bar{u}_L V_{\text{CKM}} \right)_n \gamma_{\mu} \left(V_{\text{CKM}}^{\dagger} u_L \right)_j \\ &- \nu_{mL} \gamma^{\mu} e_{iL} \bar{d}_{nL} \gamma_{\mu} \left(V_{\text{CKM}}^{\dagger} u_L \right)_j + \text{ h.c.} \Big] \\ &- \frac{\lambda_{ijk}' \lambda_{mjn}'^*}{2m_{\tilde{u}_{jL}}^2} \bar{e}_{mL} \gamma^{\mu} e_{iL} \bar{d}_{kR} \gamma_{\mu} d_{nR} , \end{split}$$

• Contributes to $R_{D^{(*)}}$ at tree-level: $b \to \tilde{b}\nu \to c\tau\nu$.

Allowed Parameter Space

Explaining the $R_{D^{(*)}}$ Anomaly

Conclusion and Outlook

- If the $R_{D^{(*)}}$ anomaly is true, we should find an anomaly in the high-energy signal of $pp \rightarrow b\tau\nu$.
- Provides a model-independent high- p_T test of the $R_{D^{(*)}}$ anomaly at the LHC.
- Since it involves the 3rd generation, the origin of the anomaly might be related to the Higgs naturalness problem.
- A specific scenario that addresses this issue: Natural SUSY with RPV.
- Common explanation of $R_{D^{(*)}}$ and $R_{K^{(*)}}$?