$R_D(*)$ Anomaly: A Model-Independent Collider Signature and Possible Hint for R-parity Violating Supersymmetry

BHUPAL DEV

Washington University in St. Louis

SUSY 2017

TIFR, Mumbai

December 12, 2017
$R_D(\ast)$ Anomaly

$$R_D = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)} , \quad R_D^\ast = \frac{\mathcal{B}(B \to D^\ast\tau\nu)}{\mathcal{B}(B \to D^\ast\ell\nu)} \quad \text{(where } \ell = e, \mu) .$$
A model-independent way to test the anomaly using ATLAS and CMS

A possible correlation of the anomaly with the Higgs naturalness

R-parity violating Supersymmetry with light 3rd generation
Model-independent Collider Analysis

- In a nut-shell, the anomalous behavior is in the basic process: \(b \rightarrow c \tau \nu \).
- This necessarily implies by crossing symmetry an analogous anomaly in \(g + c \rightarrow b \tau \nu \).
- Leads to a model-independent collider probe: \(pp \rightarrow b \tau \nu \).
In a nut-shell, the anomalous behavior is in the basic process: $b \rightarrow c \tau \nu$.

This necessarily implies by **crossing symmetry** an analogous anomaly in $g + c \rightarrow b \tau \nu$.

Leads to a model-independent collider probe: $pp \rightarrow b \tau \nu$.
Effective Operators

The effective 4-fermion Lagrangian for $b \rightarrow c \tau \nu$ in the SM is given by

$$-\mathcal{L}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} (\bar{c} \gamma_\mu P_L b) (\bar{\tau} \gamma^\mu P_L \nu_\tau) + \text{H.c.}$$

Same Lagrangian gives rise to $pp \rightarrow b \tau \nu$, but the rate is CKM-suppressed.

Need not be the case in a generic NP scenario, which might be observable above the SM background at the LHC.

Various dimension-6 four-fermion operators possible: [Freytsis, Ligeti, Ruderman (PRD '15)]

$$\mathcal{O}_{V_{R,L}} = (\bar{c} \gamma^\mu P_{R,L} b) (\bar{\tau} \gamma_\mu P_L \nu)$$
$$\mathcal{O}_{S_{R,L}} = (\bar{c} P_{R,L} b) (\bar{\tau} P_L \nu) .$$
$$\mathcal{O}_T = (\bar{c} \sigma^{\mu \nu} P_L b)(\bar{\tau} \sigma_{\mu \nu} P_L \nu) .$$
Effective Operators

- The effective 4-fermion Lagrangian for $b \rightarrow c\tau\nu$ in the SM is given by
 \[-\mathcal{L}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} (\bar{c} \gamma_\mu P_L b) (\bar{\tau} \gamma^\mu P_L \nu) + \text{H.c.} \]

- Same Lagrangian gives rise to $pp \rightarrow b\tau\nu$, but the rate is CKM-suppressed.

- Need not be the case in a generic NP scenario, which might be observable above the SM background at the LHC.

- Various dimension-6 four-fermion operators possible: [Freytsis, Ligeti, Ruderman (PRD '15)]

 \[O_{V_{R,L}} = (\bar{c} \gamma^\mu P_{R,L} b) (\bar{\tau} \gamma_\mu P_L \nu) \]
 \[O_{S_{R,L}} = (\bar{c} P_{R,L} b) (\bar{\tau} P_L \nu) \]
 \[O_T = (\bar{c} \sigma^{\mu\nu} P_L b)(\bar{\tau} \sigma_{\mu\nu} P_L \nu) \]
SM Backgrounds

- The direct $pp \rightarrow b\tau\nu$ is suppressed by $|V_{cb}|^2$.
- In a realistic hadron collider environment, however, there are other potentially dangerous backgrounds.
 - $pp \rightarrow jW \rightarrow j\tau\nu$ (j misidentified as b)
 - $pp \rightarrow W \rightarrow \tau\nu$, with an ISR gluon $\rightarrow b\bar{b}$ and one b is lost
 - $pp \rightarrow tj \rightarrow b\tau\nu j$ and $pp \rightarrow tW \rightarrow b\tau\nu jj$, where the jet(s) are lost
 - $pp \rightarrow b\bar{b}j$, where one b is misidentified as a τ and the light jet is lost (i.e. misidentified as MET).
- The mis-ID rates at the LHC typically are at the level of $\sim 1\%$.
- With basic trigger cuts $p_{T}^{j,b,\ell} > 20$ GeV, $E_{T} > 20$ GeV, $|\eta^{j,b,\ell}| < 2.5$ and $\Delta R^{\ell j,\ell b,jb} > 0.4$, we find the dominant contribution comes from $pp \rightarrow Wj$ and $pp \rightarrow b\bar{b}j$.
- $\sigma_{SM}(pp \rightarrow b\tau\nu \rightarrow b\ell + E_{T}) \sim 50$ pb at $\sqrt{s} = 13$ TeV LHC.
SM Backgrounds

- The direct $pp \rightarrow b\tau\nu$ is suppressed by $|V_{cb}|^2$.
- In a realistic hadron collider environment, however, there are other potentially dangerous backgrounds.
 - $pp \rightarrow jW \rightarrow j\tau\nu$ (j misidentified as b)
 - $pp \rightarrow W \rightarrow \tau\nu$, with an ISR gluon $\rightarrow b\bar{b}$ and one b is lost
 - $pp \rightarrow tj \rightarrow b\tau\nu j$ and $pp \rightarrow tW \rightarrow b\tau\nu jj$, where the jet(s) are lost
 - $pp \rightarrow b\bar{b}j$, where one b is misidentified as a τ and the light jet is lost (i.e. misidentified as MET).
- The mis-ID rates at the LHC typically are at the level of $\sim 1\%$.
- With basic trigger cuts $p_T^{j,b,\ell} > 20$ GeV, $E_T > 20$ GeV, $|\eta^{j,b,\ell}| < 2.5$ and $\Delta R^{j,\ell,b,jb} > 0.4$, we find the dominant contribution comes from $pp \rightarrow Wj$ and $pp \rightarrow b\bar{b}j$.
- $\sigma_{SM}(pp \rightarrow b\tau\nu \rightarrow b\ell + E_T) \sim 50$ pb at $\sqrt{s} = 13$ TeV LHC.
SM Backgrounds

- The direct $pp \to b\tau\nu$ is suppressed by $|V_{cb}|^2$.
- In a realistic hadron collider environment, however, there are other potentially dangerous backgrounds.
 - $pp \to jW \to j\tau\nu$ (j misidentified as b)
 - $pp \to W \to \tau\nu$, with an ISR gluon $\to b\bar{b}$ and one b is lost
 - $pp \to tj \to b\tau\nu j$ and $pp \to tW \to b\tau\nu jj$, where the jet(s) are lost
 - $pp \to b\bar{b}j$, where one b is misidentified as a τ and the light jet is lost (i.e. misidentified as MET).
- The mis-ID rates at the LHC typically are at the level of $\sim 1\%$.
- With basic trigger cuts $p_T^{j,b,\ell} > 20$ GeV, $E_T > 20$ GeV, $|\eta^{j,b,\ell}| < 2.5$ and $\Delta R^{j,b,\ell} > 0.4$, we find the dominant contribution comes from $pp \to Wj$ and $pp \to b\bar{b}j$.
- $\sigma_{SM}(pp \to b\tau\nu \to b\ell + E_T) \sim 50$ pb at $\sqrt{s} = 13$ TeV LHC.
We consider the dimension-6 NP operators $O_{V_{R,L}}$ and $O_{S_{R,L}}$.

For a typical choice $g_{NP}/\Lambda^2 = (1 \text{ TeV})^{-2}$, the signal cross section for $pp \rightarrow b\tau\nu \rightarrow b\ell + \not{E}_T$ of $\sigma_V \simeq 1.1 \text{ pb}$ (vector case) and $\sigma_S \simeq 1.8 \text{ pb}$ (scalar case), both at $\sqrt{s} = 13 \text{ TeV}$ LHC.

Can directly probe mediator masses up to around 2.4 (2.6) TeV at 3σ CL in the vector (scalar) operator case with $O(1)$ couplings at $\sqrt{s} = 13 \text{ TeV}$ LHC with $\mathcal{L} = 300 \text{ fb}^{-1}$.

The signal-to-background ratio can be significantly improved by using specialized selection cuts, e.g. $p_T^b > 100 \text{ GeV}$, $M_{b\ell} > 100 \text{ GeV}$ and $\not{E}_T > 100 \text{ GeV}$.
We consider the dimension-6 NP operators $O_{V_{R,L}}$ and $O_{S_{R,L}}$.

For a typical choice $g_{NP}/\Lambda^2 = (1 \text{ TeV})^{-2}$, the signal cross section for $pp \rightarrow b\tau\nu \rightarrow b\ell + \not{E}_T$ of $\sigma_V \simeq 1.1 \text{ pb}$ (vector case) and $\sigma_S \simeq 1.8 \text{ pb}$ (scalar case), both at $\sqrt{s} = 13 \text{ TeV}$ LHC.

Can directly probe mediator masses up to around 2.4 (2.6) TeV at 3σ CL in the vector (scalar) operator case with $O(1)$ couplings at $\sqrt{s} = 13 \text{ TeV}$ LHC with $\mathcal{L} = 300 \text{ fb}^{-1}$.

The signal-to-background ratio can be significantly improved by using specialized selection cuts, e.g. $p_T^b > 100 \text{ GeV}$, $M_{b\ell} > 100 \text{ GeV}$ and $\not{E}_T > 100 \text{ GeV}$.
Kinematic Distributions

As for the NP contribution, we consider the following

\[\Delta \rho = \frac{\sigma_{NP} - \sigma_{SM}}{\sigma_{SM}} \]

where the dominant contributions come from the dimension-6 four-fermion operators \([33]\):

\[O^V, O^S \text{ (vector and scalar) operator case with} \]

\[\Delta \rho \approx 10^{-3} \text{ for mediator masses up to} \]

\[2.4 \text{ (2.6) TeV in the vector (scalar) case with} \]

\[g \text{ coupling at} \]

\[1 \text{ TeV LHC with an integrated luminosity of} \]

\[300 \text{ fb}^{-1}. \]

The amplitudes for the collider process may be directly probed at 3
Cut Efficiency

<table>
<thead>
<tr>
<th>Observable</th>
<th>Cut value (GeV)</th>
<th>SM background</th>
<th>Efficiency</th>
<th>Signal (Vector case)</th>
<th>Signal (Scalar case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^ℓ</td>
<td>100</td>
<td>0.01</td>
<td>0.52</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.10</td>
<td>0.78</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.44</td>
<td>0.92</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>p_T^b</td>
<td>100</td>
<td>0.13</td>
<td>0.99</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.47</td>
<td>1.00</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.75</td>
<td>1.00</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>$M_{bl\ell}$</td>
<td>100</td>
<td>0.18</td>
<td>0.96</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.63</td>
<td>0.99</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.88</td>
<td>1.00</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>\not{E}_T</td>
<td>100</td>
<td>0.01</td>
<td>0.54</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.09</td>
<td>0.70</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.29</td>
<td>0.79</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>
Possible Hint for Natural SUSY with RPV

- Anomaly involved 3rd generation of the SM.
- Speculation: May be related to Higgs naturalness?
- An obvious UV-complete candidate: **Natural SUSY** with light 3rd generation. [Brust, Katz, Lawrence, Sundrum (JHEP ’12); Papucci, Ruderman, Weiler (JHEP ’12)]
- Coupling unification still preserved, even with RPV.

![Graph showing RG evolution of gauge couplings in the SM, MSSM, SM, and RPV]

\[
\frac{1}{\alpha_i} = \frac{1}{\alpha_{SU(3)^c}} + \frac{1}{\alpha_{SU(2)^L}} + \frac{1}{\alpha_{U(1)}},
\]

\[\mu \text{ [GeV]} \]
Explaining the $R_D(\ast)$ Anomaly

- Consider a minimal RPV SUSY setup with the λ'-couplings.

$$\mathcal{L} = \lambda'_{ijk} \left[\tilde{\nu}_{iL}\tilde{d}_{kR}d_{jL} + \tilde{d}_{jL}\tilde{d}_{kR}\nu_{iL} + \tilde{d}^*_{kR}\tilde{\nu}_{iL}d_{jL} \\ - \tilde{\nu}_{iL}\tilde{d}_{kR}u_{jL} - \tilde{u}_{jL}\tilde{d}_{kR}e_{iL} - \tilde{d}^*_{kR}\tilde{e}^c_{iL}u_{jL} \right] + \text{H.c.}$$

- Leads to the effective 4-fermion interactions: [Deshpande, He (EPJC '17)]

$$\mathcal{L}_{\text{eff}} \supset \frac{\lambda'_{ijk}\lambda'^*_{mnk}}{2m^2_{d_{kR}}} \left[\tilde{\nu}_{mL}\gamma^\mu \nu_{iL}\tilde{d}_{nL}\gamma_\mu d_{jL} \\ + \tilde{e}_{mL}\gamma^\mu e_{iL} (\tilde{u}_{L}V_{\text{CKM}})_{n} \gamma_\mu \left(V^\dagger_{\text{CKM}}u_{L} \right)_{j} \\ - \nu_{mL}\gamma^\mu e_{iL}\tilde{d}_{nL}\gamma_\mu \left(V^\dagger_{\text{CKM}}u_{L} \right)_{j} + \text{h.c.} \right]$$

- Contributes to $R_D(\ast)$ at tree-level: $b \rightarrow \tilde{b}\nu \rightarrow c\tau\nu$.
$$\frac{R_D}{R_D^{SM}} = \frac{R_D^*}{R_D^{SM}^*} = \left| 1 + \frac{v^2}{2m_{b_R}^2} X_c \right|^2,$$

$$X_c = \left| \lambda_{333}' \right|^2 + \lambda_{333}' \lambda_{323}' \frac{V_{cs}}{V_{cb}} + \lambda_{333}'^2 \lambda_{333}$$

$$\lambda_{313} = -0.05, \ \lambda_{323} = 0.01$$
Explaining the $R_D(\ast)$ Anomaly

The figure shows a plot with R_D^\ast on the y-axis and R_D on the x-axis. The graph includes data points and shaded regions representing different scenarios:

- **SM (Standard Model)**: A small, central region that likely corresponds to the SM predictions.
- **RPV$_3$** and **RPV$_4$**: Larger, blue and green shaded regions, respectively, indicating possible parameter spaces.
- **HFAG**: A green shaded region that overlaps with the RPV$_4$ region.

The figure highlights the $R_D(\ast)$ anomaly with respect to the SM predictions, showing how different models (RPV$_3$ and RPV$_4$) can accommodate this anomaly within their respective parameter spaces.
If the $R_D(*)$ anomaly is true, we should find an anomaly in the high-energy signal of $pp \to b\tau\nu$.

Provides a model-independent high-p_T test of the $R_D(*)$ anomaly at the LHC.

Since it involves the 3rd generation, the origin of the anomaly might be related to the Higgs naturalness problem.

A specific scenario that addresses this issue: Natural SUSY with RPV.

Common explanation of $R_D(*)$ and $R_K(*)$?