

Current Anomalies: From Muon g-2 to B-physics and Neutrinos

Bhupal Dev

Washington University in St. Louis

bdev@wustl.edu

XIV INTERNATIONAL CONFERENCE ON INTERCONNECTIONS BETWEEN PARTICLE PHYSICS AND COSMOLOGY The UNIVERSITY of OKLAHOMA

May 17, 2021

An Era of Anomalies

- A growing list of "anomalies".
- Could be due to
 - statistical fluctuations (e.g. 750 GeV diphoton)
 - systematics or background uncertainties (e.g. KOTO)
 - experimental error (e.g. OPERA)
 - unknown issues (e.g. DAMA?), or
 - genuine new physics signal?
- A good driver of scientific creativity (not just 'ambulance-chasing').

Figure credit: APS/Alan Stonebraker

(Partial) List of Existing Anomalies

Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 σ	1907.06405
Dijet excess@LEP2	4-5 <i>σ</i>	1706.02255	XENON1T <i>e</i> -recoil	2-3 σ	2006.09721
Muon g-2	4.2 σ	2104.03281	Fermi-LAT GC excess	2-3 σ	1704.03910
LFUV in B-decays	3-5 σ	1909.12524	AMS e^+/\bar{p} excess	3-5 σ	Phys.Rep.894, 1
CKM unitarity	4 σ	2012.01580	3.5 keV X-ray line	4 σ	2008.02283
LFUV in tau decay	~2 <i>σ</i>	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 σ	2006.16883	EDGES 21cm spectrum	3.8 σ	1810.05912
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 σ	1203.3551
IceCube HESE vs TG	~2 σ	2011.03545	Hubble tension	4.4 σ	2008.11284
ANITA upgoing events	~2 σ	2010.02869	σ_8 tension	3 σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2-3 σ	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

Repository: <u>https://github.com/hepcomm/hepmist</u>

Outline

- *B*-anomalies: $R_D^{(*)}$ and $R_K^{(*)}$ (see also Friday plenary talks by S. Stone and D. Robinson)
 - Complementary high- p_T LHC tests
 - Common NP explanation
- Muon *g*-2: Recent update
 - Tests at LHC and future colliders
 - Connection to *B*-anomalies? (see also parallel talks by A. Thapa and F. Xu)
- Connection to neutrino mass (see also Monday plenary talk by K.S. Babu)

Muon Anomalous Magnetic Moment

 $R_D^{(*)}$ Anomaly

$$R_{D^{(*)}} = \frac{\mathsf{BR}(B \to D^{(*)} \tau \nu)}{\mathsf{BR}(B \to D^{(*)} \ell \nu)} \quad (\text{with } \ell = e, \mu)$$

Flavor-changing charged current: happens at tree-level in the SM.

Experiment	Tag method	au decay mode	R_D	R_{D^*}	$R_{J/\psi}$
Babar (2012) [1]	hadronic	$\ell u u$	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.0.018$	
Belle (2015) [2]	hadronic	$\ell u u$	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	
LHCb (2015) [5]	hadronic	$\ell u u$	-	$0.336 \pm 0.027 \pm 0.030$	
Belle (2016) [2]	semileptonic	$\ell u u$	-	$0.302 \pm 0.030 \pm 0.011$	
Belle (2017) [3]	hadronic	$\pi(ho) u$	-	$0.270 \pm 0.035 \pm 0.027$	
LHCb (2017) [6]	hadronic	$3\pi\nu$	-	$0.291 \pm 0.019 \pm 0.029$	
Belle (2019) [4]	semileptonic	$\ell u u$	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	
LHCb (2016) [67]	hadronic	$\ell u u$	-	-	$0.71 \pm 0.17 \pm 0.18$
SM	-	-	0.299 ± 0.011 [63]	0.260 ± 0.008 [64]	0.26 ± 0.02 [68]

Altmannshofer, BD, Soni, Sui, 2002.12910 [PRD]

All experimental measurements to date are consistently above the SM prediction.

$$\frac{R_D}{R_D^{\rm SM}} = \frac{R_{D^*}}{R_{D^*}^{\rm SM}} = 1.15 \pm 0.04$$

No such deviations in charmed meson decays:

$$\frac{\mathrm{BR}(D^+ \to \omega \mu^+ \nu_\mu)}{\mathrm{BR}(D^+ \to \omega e^+ \nu_e)} = 1.05 \pm 0.14$$

BESIII, 2002.10578 [PRD]

Flavor-changing neutral current: Loop-suppressed in the SM.

Observables	LHCb [9, 17]	Belle [18, 19]	SM
R_K [1, 6] GeV ²	_	$1.03^{+0.28}_{-0.24}\pm0.01$	$1.0004^{+0.0008}_{-0.0007}$
R_K [1.1, 6] GeV ²	$0.846^{+0.042+0.013}_{-0.039-0.012}$	_	$1.0004^{+0.0008}_{-0.0007}$
R_{K^*} [0.045, 1.1] GeV ²	$0.66^{+0.11}_{-0.07}\pm0.03$	$0.52^{+0.36}_{-0.26}\pm0.06$	$0.920\substack{+0.007\\-0.006}$
R_{K^*} [1.1, 6] GeV ²	$0.69^{+0.11}_{-0.07}\pm0.05$	$0.96^{+0.45}_{-0.29}\pm0.11$	$0.996^{+0.002}_{-0.002}$
$R_{K^*}[15, 19] \mathrm{GeV}^2$	—	$1.18^{+0.52}_{-0.32}\pm0.11$	$0.998\substack{+0.001\\-0.001}$

$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) + \text{h.c.}$

$O_9^{bs\ell\ell} = (\bar{s}\gamma_\mu P_L b)(\ell\gamma^\mu \ell) ,$			$O_9^{bs\ell\ell} = (\bar{s}\gamma_\mu P_R b)(\ell\gamma^\mu \ell) ,$		
$O_{10}^{bs\ell\ell} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) ,$			$O_{10}^{bs\ell\ell} = (\bar{s}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) ,$		
st fit:	$C_9^{bs\mu\mu} = -0$	${\cal P}_{10}^{bs\mu\mu}$	$-0.41^{+0.07}_{-0.07}$	5.9σ	

Possible New Physics Solutions

- A popular choice: Leptoquarks.
- Single scalar LQ solution. Bauer, Neubert, 1511.01900 [PRL]
- Now disfavored by global fits.

Angelescu, Becirevic, Faroughy, Jaffredo, Sumensari, 2103.12504

• Single vector LQ still a viable option, but must be embedded into some UV-completion.

Crivellin, Greub, Mueller, Saturnino, 1807.02068 [PRL]; Fornal, Gadam, Grinstein, 1812.01603 [PRD]; Cornella, Fuentes-Martin, Isidori, 1903.11517 [JHEP]; BD, Mohanta, Patra, Sahoo, 2004.09464 [PRD]; Iguro, Kawamura, Okawa, Omura, 2103.11889.

• Or invoke more than one scalar LQ.

Chen, Nomura, Okada, 1703.03251 [PLB]; Bigaran, Gargalionis, Volkas, 1906.01870 [JHEP]; Saad, 2005.04352 [PRD]; Babu, BD, Jana, Thapa, 2009.01771 [JHEP].

Model	$R_{K^{(\ast)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \ \& \ R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	 	×	×
S_1 (3 , 1 , 1/3)	×	✓	×
R_2 (3, 2, 7/6)	×	✓	×
U_1 (3 , 1 , 2/3)	✓	~	 ✓
U_3 (3 , 3 , 2/3)	 Image: A start of the start of	×	×

Chiral Enhancement for Muon g-2

Connection with Higgs decay to dileptons Crivellin, Mueller, Saturnino, 2008.02643

$$\mu_{\mu^{+}\mu^{-}} \equiv \frac{\mathrm{BR}(h \to \mu^{+}\mu^{-})}{\mathrm{BR}(h \to \mu^{+}\mu^{-})_{\mathrm{SM}}}$$
$$= \left| 1 - \frac{3}{8\pi^{2}} \frac{m_{t}}{m_{\mu}} \frac{f_{32}(V^{\star}f')_{32}^{\star}}{m_{R_{2}}^{2}} \left\{ \frac{m_{t}^{2}}{8} \mathcal{F}\left(\frac{m_{h}^{2}}{m_{t}^{2}}, \frac{m_{t}^{2}}{m_{R_{2}}^{2}}\right) + v^{2} \left(\lambda_{HR} - \lambda'_{HR}\right) \right\} \right|$$

$$\mathcal{F}(x,y) = -8 + \frac{13}{3}x - \frac{1}{5}x^2 - \frac{1}{70}x^3 + 2(x-4)\log y.$$

Depends on quartic couplings $\lambda_{HR}(H^{\dagger}H)(R_2^{\dagger}R_2) + \lambda'_{HR}(H^{\dagger}\tau_a H)(R_2^{\dagger}\tau_a R_2)$

Leptoquark solution to muon g-2 can be tested in precision Higgs data at LHC and future colliders.

Babu, BD, Jana, Thapa, 2009.01771 [JHEP]

the allowed LQ parameter space for B-anomalies.

Another NP Solution: RPV SUSY

$$\mathcal{L}_{LQD} = \lambda_{ijk}^{\prime} \left[\widetilde{\nu}_{iL} \overline{d}_{kR} d_{jL} + \widetilde{d}_{jL} \overline{d}_{kR} \nu_{iL} + \widetilde{d}_{kR}^{*} \overline{\nu}_{iL}^{c} d_{jL} - \widetilde{e}_{iL} \overline{d}_{kR} u_{jL} - \widetilde{u}_{jL} \overline{d}_{kR} e_{iL} - \widetilde{d}_{kR}^{*} \overline{e}_{iL}^{c} u_{jL} \right] + \text{H.c}$$

 $\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \left[\widetilde{\nu}_{iL} \bar{e}_{kR} e_{jL} + \widetilde{e}_{jL} \bar{e}_{kR} \nu_{iL} + \widetilde{e}_{kR}^* \bar{\nu}_{iL}^c e_{jL} - (i \leftrightarrow j) \right] + \text{H.c.}$

$$\frac{R_D^{\text{LHCb}}}{R_D^{\text{SM}}} = \frac{R_{D^*}^{\text{LHCb}}}{R_{D^*}^{\text{SM}}} = \frac{|\Delta_{31}^c|^2 + |\Delta_{32}^c|^2 + |1 + \Delta_{33}^c|^2}{|\Delta_{21}^c|^2 + |1 + \Delta_{22}^c|^2 + |\Delta_{23}^c|^2},$$
(23) where

$$_{\mu_L} \Delta_{ll'}^c = \frac{v^2}{4m_{\tilde{b}_R}^2} \lambda_{l'33}' \left(\lambda_{l33}' + \lambda_{l23}' \frac{V_{cs}}{V_{cb}} + \lambda_{l13}' \frac{V_{cd}}{V_{cb}} \right) , \quad (24)$$

Deshpande, He, 1608.04817[EPJC]; Altmannshofer, BD, Soni, 1704.06659 [PRD].

$$(C_{9})^{\mu} = -(C_{10})^{\mu} = \frac{m_{t}^{2}}{m_{\tilde{b}_{R}}^{2}} \frac{|\lambda'_{233}|^{2}}{16\pi\alpha_{em}} - \frac{v^{2}}{16m_{\tilde{b}_{R}}^{2}} \frac{X_{bs}X_{\mu\mu}}{e^{2}V_{tb}V_{ts}^{*}} - \frac{v^{2}}{16(m_{\tilde{t}_{L}}^{2} - m_{\tilde{\nu}_{\tau}}^{2})} \log\left(\frac{m_{\tilde{t}_{L}}^{2}}{m_{\tilde{\nu}_{\tau}}^{2}}\right) \frac{X_{b\mu}X_{s\mu}}{e^{2}V_{tb}V_{ts}^{*}} - \frac{v^{2}}{16(m_{\tilde{b}_{R}}^{2} - m_{\tilde{\tau}_{R}}^{2})} \log\left(\frac{m_{\tilde{b}_{R}}^{2}}{m_{\tilde{\tau}_{R}}^{2}}\right) \frac{\tilde{X}_{b\mu}\tilde{X}_{s\mu}}{e^{2}V_{tb}V_{ts}^{*}} - \frac{v^{2}}{16m_{\tilde{\nu}_{\tau}}^{2}} \frac{\tilde{X}_{bs}\tilde{X}_{\mu\mu}}{e^{2}V_{tb}V_{ts}^{*}} ,$$
(43)

Das, Hati, Kumar, Mahajan, 1605.06313 [PRD]; Earl, Gregoire, 1806.01343 [JHEP]; Trifinopoulos, 1807.01638 [EPJC]; Altmannshofer, BD, Soni, Sui [PRD]. 12

Distinct LHC Signals

$$\begin{aligned} R_{D^{(*)}} &: \mathcal{O}_{V_L} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu) \\ R_{\mathcal{K}^{(*)}} &: Q_{9(10)}^{\ell} = (\bar{s}\gamma^{\mu}P_Lb)(\bar{\ell}\gamma_{\mu}(\gamma_5)\ell) \end{aligned}$$

Altmannshofer, BD, Soni, 1704.06659 [PRD]; Altmannshofer, BD, Soni, Sui, 2002.12910 [PRD]

An LHC Test of Muon g-2

ATLAS-CONF-2021-011

Connection to Neutrino Physics

Babu, BD, Jana, Thapa, 1907.09498 [JHEP]

More LHC Signals

No-Lose Theorem for Muon Collider

Conclusion

- Conspicuous paths to new physics have remained stubbornly out of reach so far.
- Look for inspiration from anomalies as possible alternative routes.
- Need coherent community effort, active theory-experiment collaborations and open-access data to resolve the existing anomalies.
- Flavor anomalies might be the breadcrumps leading to the right path to new physics.
- Important to establish independent tests (at colliders and elsewhere).