

Anomalies and their implications

ER WINDER OF MES SPRING

PHENO 2021

Bhupal Dev

Washington University in St. Louis

bdev@wustl.edu

May 25, 2021

An Era of Anomalies

- A growing list of "anomalies".
- Could be due to
 - statistical fluctuations (e.g. 750 GeV diphoton)
 - systematics or background uncertainties (e.g. KOTO)
 - experimental error (e.g. OPERA)
 - unknown issues (e.g. DAMA?), or
 - genuine new physics signal?
- A good driver of scientific creativity (not just 'ambulance-chasing').

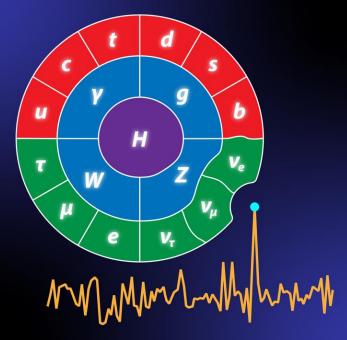


Figure credit: APS/Alan Stonebraker

Anomaly	Significance	Reference	Anomaly	Significance	Reference	
Multileptons@LHC	2 -5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405	
Dijet excess@LEP2	4-5 <i>σ</i>	1706.02255	XENON1T <i>e</i> ⁻ -recoil	2-3 σ	2006.09721	
Muon g-2	4.2 σ	2104.03281	Fermi-LAT GC excess	2- 3 σ	1704.03910	
LFUV in B-decays	3-5 σ	1909.12524	AMS e^+/\bar{p} excess	3-5 <i>σ</i>	Phys.Rep.894, 1	
CKM unitarity	4 σ	2012.01580	3.5 keV X-ray line	4 σ	2008.02283	
LFUV in tau decay	~2 σ	1909.12524	511 keV gamma-ray line	58 σ	1512.00325	
LSND/MiniBooNE	6.1 σ	2006.16883	EDGES 21cm spectrum	3.8 <i>σ</i>	1810.05912	
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 σ	1203.3551	
IceCube HESE vs TG	~2 σ	2011.03545	Hubble tension	4.4 σ	2008.11284	
ANITA upgoing events	~2 σ	2010.02869	σ_8 tension	3 σ	2005.03751	
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2 -3 σ	1510.07929	
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496	
Proton charge radius	5 σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878	

Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	See BSM V parallel talk by Bru	ice Mellado	1907.06405
Dijet excess@LEP2	4-5 <i>σ</i>	1706.02255	XENON1T <i>e</i> ⁻ -recoil	2-3 σ	2006.09721
Muon g-2	4.2 <i>σ</i>	2104.03281	Fermi-LAT GC excess	2-3 σ	1704.03910
LFUV in B-decays	3-5 σ	1909.12524	AMS e^+/\bar{p} excess	3-5 σ	Phys.Rep.894, 1
CKM unitarity	4 σ	2012.01580	3.5 keV X-ray line	4 σ	2008.02283
LFUV in tau decay	~2 <i>o</i>	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 <i>o</i>	2006.16883	EDGES 21cm spectrum	3.8 σ	1810.05912
NOvA vs T2K	~ 2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 <i>σ</i>	1203.3551
IceCube HESE vs TG	~2 σ	2011.03545	Hubble tension	4.4 σ	2008.11284
ANITA upgoing events	~2 <i>o</i>	2010.02869	σ_8 tension	3σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2-3 σ	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5 σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405
Dijet excess@LEP2	4-5 <i>σ</i>	1706.02255	XENON1T <i>e</i> -recoil	2-3 σ	2006.09721
Muon g-2	4.2 σ	2104.03281	See also plenary talk by James		
LFUV in B-decays	3-5 σ	1909.12524	Wittig and parallel talks by Big Sun, Thapa, Xu	aran, Darme, G	hosh, Jana, Melo,
CKM unitarity	4 σ	2012.01580	S.S KEV A-Tay IIITE	4 0	2000.02205
LFUV in tau decay	~2 <i>o</i>	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 <i>σ</i>	2006.16883	EDGES 21cm spectrum	3.8 σ	1810.05912
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 <i>σ</i>	1203.3551
IceCube HESE vs TG	~2 σ	2011.03545	Hubble tension	4.4 <i>σ</i>	2008.11284
ANITA upgoing events	~2 <i>o</i>	2010.02869	σ_{8} tension	3 σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2- 3 σ	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5 σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

Repository: https://github.com/hepcomm/hepmist

Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405
Dijet excess@LEP2	4-5 <i>σ</i>	1706.02255	XENON1T <i>e</i> -recoil	2-3 <i>σ</i>	2006.09721
Muon g-2	4.2 σ	2104.03281	Fermi-LAT GC excess	2-3 σ	1704.03910
LFUV in B-decays	3-5 σ	1909.12524	See also plenary talk by Christ		
CKM unitarity	4 σ	2012.01580	Darme, Ghosh, Kumbhakar, Li	, Loladze, Mitra	, Thapa, Xu
LFUV in tau decay	~2 <i>o</i>	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 <i>o</i>	2006.16883	EDGES 21cm spectrum	3.8 <i>σ</i>	1810.05912
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 σ	1203.3551
IceCube HESE vs TG	~2 <i>o</i>	2011.03545	Hubble tension	4.4 <i>σ</i>	2008.11284
ANITA upgoing events	~2 <i>o</i>	2010.02869	$\sigma_{ m 8}$ tension	3 σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2-3 <i>σ</i>	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

Repository: https://github.com/hepcomm/hepmist

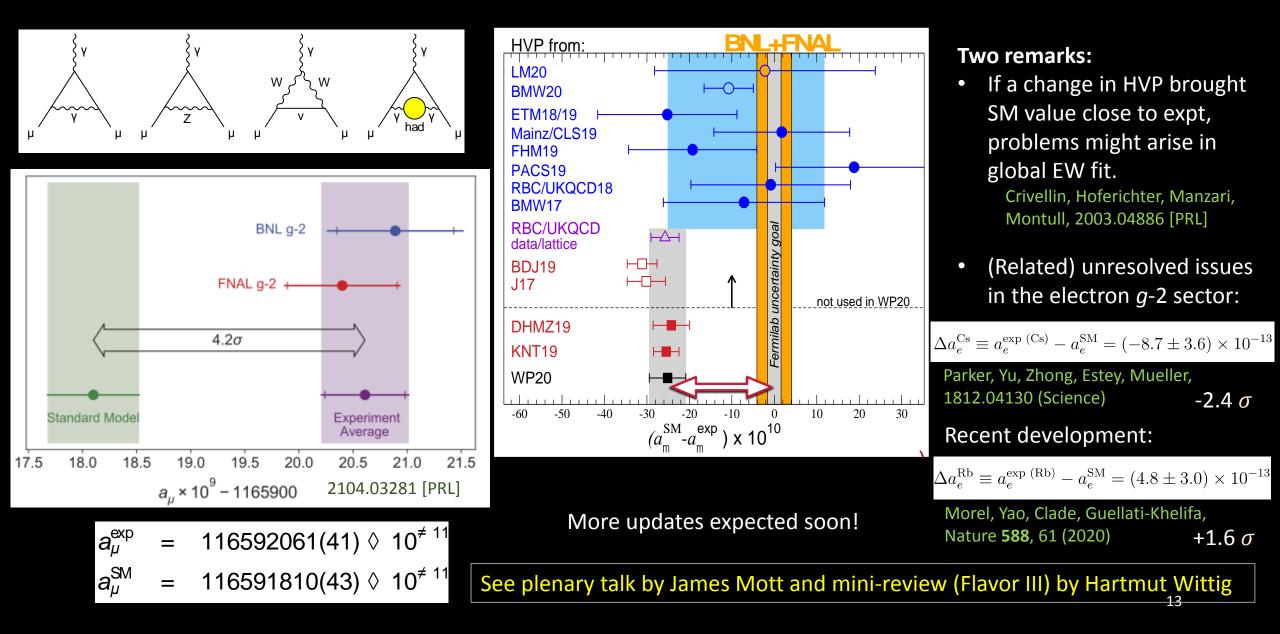
Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405
Dijet excess@LEP2	4-5 σ	1706.02255	XENON1T <i>e</i> -recoil	2- 3 σ	2006.09721
Muon g-2	4.2 <i>σ</i>	2104.03281	Fermi-LAT GC excess	2-3 σ	1704.03910
LFUV in B-decays	3-5 <i>σ</i>	1909.12524	AMS e^+/\bar{p} excess	3-5 <i>σ</i>	Phys.Rep.894, 1
CKM unitarity	4 σ	2012.01580	3.5 keV X-ray line	4 σ	2008.02283
LFUV in tau decay	~2 σ	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 σ	2006.16883	See Neutrino III parallel talk b	y Nicholas Kam	p 1810.05912
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 <i>σ</i>	1203.3551
IceCube HESE vs TG	~2 σ	2011.03545	Hubble tension	4.4 σ	2008.11284
ANITA upgoing events	~2 σ	2010.02869	σ_8 tension	3σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2- 3 σ	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5 σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 σ	1907.06405
See plenary talk by Knut Mora and DM V parallel talks by		XENON1T <i>e</i> ⁻ -recoil	2-3 σ	2006.09721	
Dutta and Mahapatra			Fermi-LAT GC excess	2-3 σ	1704.03910
LFUV in B-decays	3-5 σ	1909.12524	AMS $e^+/ar{p}$ excess	3-5 σ	Phys.Rep.894, 1
CKM unitarity	4 σ	2012.01580	3.5 keV X-ray line	4 σ	2008.02283
LFUV in tau decay	~2 <i>o</i>	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 <i>o</i>	2006.16883	EDGES 21cm spectrum	3.8 <i>σ</i>	1810.05912
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 σ	1203.3551
IceCube HESE vs TG	~2 σ	2011.03545	Hubble tension	4.4 σ	2008.11284
ANITA upgoing events	~2 <i>o</i>	2010.02869	σ_8 tension	3σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2-3 σ	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5 σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

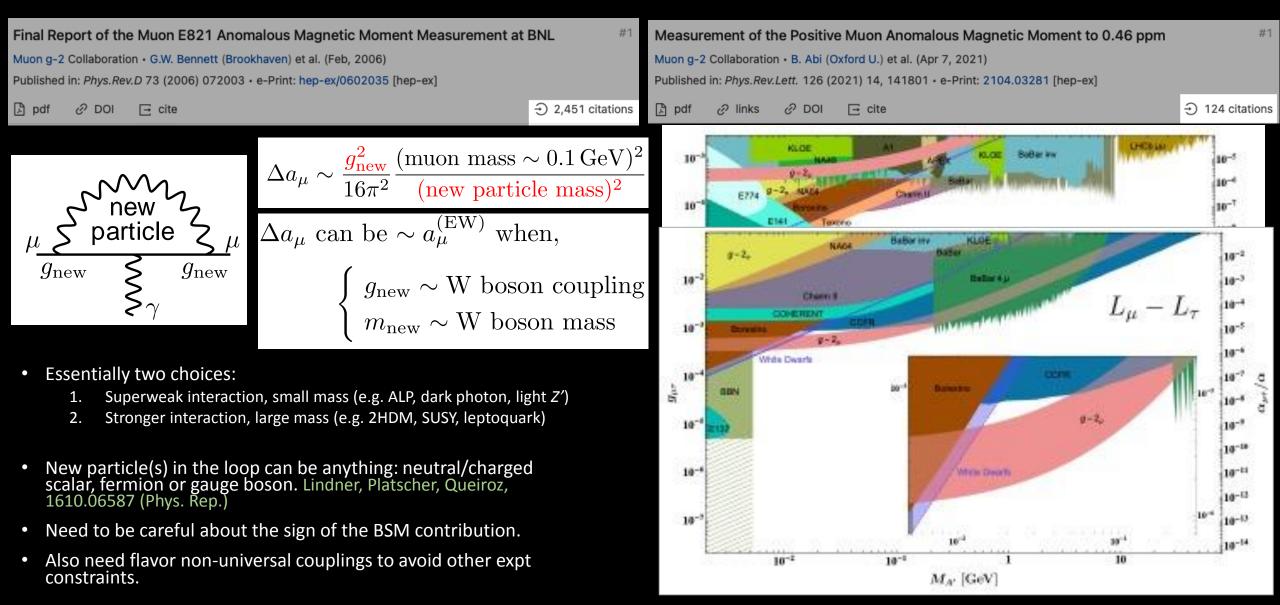
Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405
Dijet excess@LEP2	4-5 <i>σ</i>	1706.02255	XENON1T <i>e</i> -recoil	2-3 σ	2006.09721
Muon g-2	4.2 <i>σ</i>	2104.03281	Fermi-LAT GC excess	2- 3 σ	1704.03910
LFUV in B-decays	3-5 <i>σ</i>	1909.12524	AMS $e^+/ar{p}$ excess	3-5 <i>σ</i>	Phys.Rep.894, 1
CKM unitarity	4 σ	2012.01580	3.5 keV X-ray line	4 σ	2008.02283
LFUV in tau decay See DM VIII parallel talk by Celeste Keith			511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 <i>o</i>	2006.16883	EDGES 21cm spectrum	3.8 <i>σ</i>	1810.05912
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 <i>σ</i>	1203.3551
IceCube HESE vs TG	~2 σ	2011.03545	Hubble tension	4.4 <i>σ</i>	2008.11284
ANITA upgoing events	~2 σ	2010.02869	σ_8 tension	3 σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2- 3 σ	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5 σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405
Dijet excess@LEP2	4-5 <i>σ</i>	1706.02255	XENON1T <i>e</i> -recoil	2-3 σ	2006.09721
Muon g-2	4.2 σ	2104.03281	Fermi-LAT GC excess	2-3 σ	1704.03910
LFUV in B-decays	3-5 <i>σ</i>	1909.12524	AMS e^+/\bar{p} excess	3-5 <i>σ</i>	Phys.Rep.894, 1
CKM unitarity	4 σ	2012.01580	3.5 keV X-ray line	4 σ	2008.02283
LFUV in tau decay	~2 <i>o</i>	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 <i>σ</i>	2006.16883	EDGES 21cm spectrum	3.8 σ	1810.05912
NOvA vs T2K	~2 σ	Neutrino 2020	Primordial ⁷ Li problem	4-5 σ	1203.3551
See plenary talk by Elizat	oeth Krause and	d Cosmology II parallel	Hubble tension	4.4 σ	2008.11284
talks by Roy Choudhury and Toda			$\sigma_{ m 8}$ tension	3 σ	2005.03751
Neutron lifetime	3.6 <i>σ</i>	2011.13272	CMB anomalies	2-3 σ	1510.07929
⁸ Be transition	7.2 σ	1910.10459	NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878

Anomaly	Significance	Reference	Anomaly	Significance	Reference
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405
Dijet excess@LEP2	4-5 σ	1706.02255	XENON1T <i>e</i> ⁻ -recoil	2- 3 σ	2006.09721
Muon g-2	4.2 σ	2104.03281	Fermi-LAT GC excess	2- 3 σ	1704.03910
LFUV in B-decays	3-5 <i>σ</i>	1909.12524	AMS $e^*/ar{p}$ excess	3-5 <i>σ</i>	Phys.Rep.894, 1
CKM unitarity	4 σ	2012.01580		4 σ	2008.02283
LFUV in tau decay	~2 <i>σ</i>	1909.12524	511 keV gamma-ray line	58 σ	1512.00325
LSND/MiniBooNE	6.1 <i>σ</i>	2006.16883	EDGES 21cm spectrum	3.8 <i>σ</i>	1810.05912
NOvA vs T2K	~2 <i>σ</i>	Neutrino 2020	Primordial ⁷ Li problem	4-5 <i>σ</i>	1203.3551
IceCube HESE vs TG	~2 <i>o</i>	2011.03545	Hubble tension	4.4 <i>σ</i>	2008.11284
ANITA upgoing events	~2 <i>σ</i>	2010.02869	σ_8 tension	3 σ	2005.03751
Neutron lifetime	3.6 σ	2011.13272	CMB anomalies	2-3 σ	1510.07929
⁸ Be transition	See plenary talk by Maura Mclaughlin		NANOGRAV	>> 5 <i>o</i>	2009.04496
Proton charge radius	5σ	2105.00571	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878



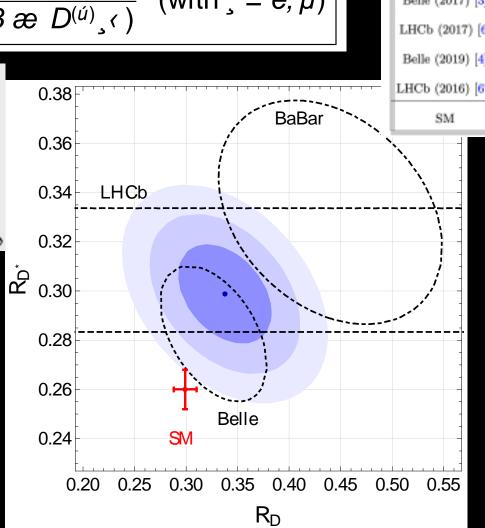
Repository: https://github.com/hepcomm/hepmist


Outline

- *B*-anomalies: $R_D^{(*)}$ and $R_K^{(*)}$
 - Common NP explanation
 - Complementary high- p_T LHC tests
- Muon *g*-2 anomaly:
 - Connection to *B*-anomalies?
 - Tests at LHC and future colliders
- Connection to neutrino mass

Muon Anomalous Magnetic Moment

New Physics Solutions to Muon g-2



 $R_D^{(*)}$ Anomaly

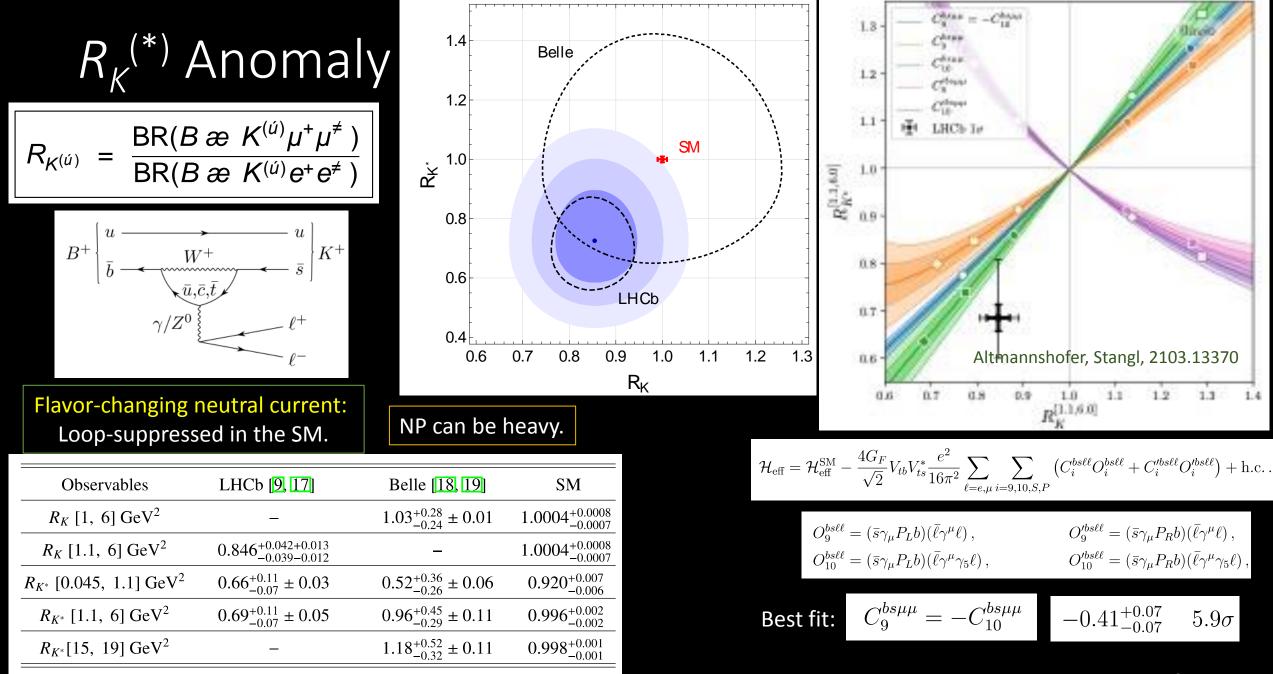
$$R_{D^{(\acute{u})}} = \frac{\mathsf{BR}(B \not\approx D^{(\acute{u})} \cdot \langle)}{\mathsf{BR}(B \not\approx D^{(\acute{u})} \backslash \langle)} \quad (\text{with} \ = e, \mu)$$

Flavor-changing charged current: happens at tree-level in the SM.

NP particle(s) must be light, i.e. below ~TeV scale.

Experiment	Tag method	τ decay mode	R_D	R_{D^*}	$R_{J/\psi}$
Babar (2012) [1]	hadronic	ℓνν	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.0.018$	
Belle (2015) [2]	hadronic	ένν	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	
LHCb (2015) [5]	hadronic	ℓνν	-	$0.336 \pm 0.027 \pm 0.030$	
Belle (2016) [2]	semileptonic	ℓνν	-	$0.302 \pm 0.030 \pm 0.011$	
Belle (2017) [3]	hadronic	$\pi(\rho)\nu$	-	$0.270 \pm 0.035 \pm 0.027$	
LHCb (2017) [6]	hadronic	$3\pi\nu$	-	$0.291 \pm 0.019 \pm 0.029$	
Belle (2019) [4]	semileptonic	ℓvv	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	
LHCb (2016) [67]	hadronic	ℓvv	-	-	$0.71 \pm 0.17 \pm 0.18$
SM	-	-	$0.299 \pm 0.011 \ [63]$	$0.260 \pm 0.008 \ [64]$	$0.26 \pm 0.02 [68]$

Altmannshofer, BD, Soni, Sui, 2002.12910 [PRD]


All experimental measurements to date are consistently above the SM prediction.

$$\frac{R_D}{R_D^{\rm SM}} = \frac{R_{D^*}}{R_{D^*}^{\rm SM}} = 1.15 \pm 0.04$$

No such deviations in charmed meson decays:

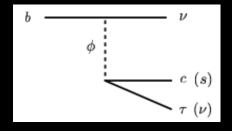
$$\frac{\mathrm{BR}(D^+ \to \omega \mu^+ \nu_\mu)}{\mathrm{BR}(D^+ \to \omega e^+ \nu_e)} = 1.05 \pm 0.14$$

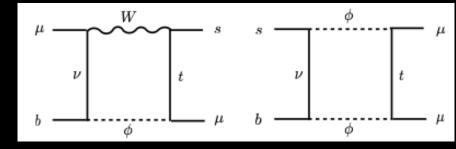
BESIII, 2002.10578 [PRD]

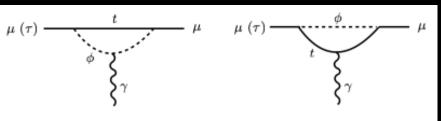
Li, Shi, Geng, 2105.06768

Common New Physics Solution?

- A popular choice: Leptoquarks.
- Single scalar LQ solution? Bauer, Neubert, 1511.01900 [PRL]
- Now disfavored by global fits.

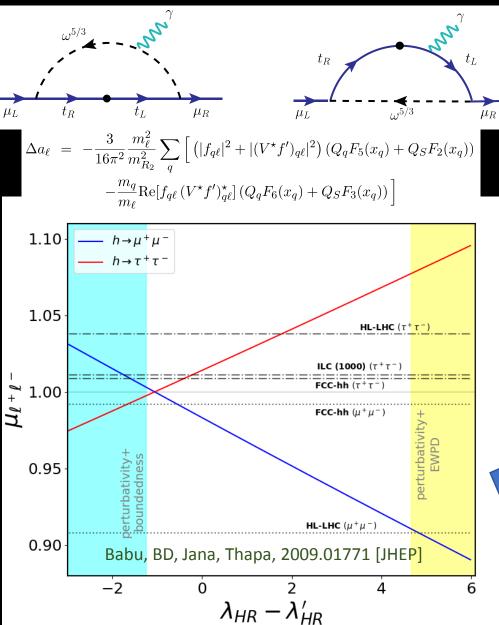

Angelescu, Becirevic, Faroughy, Jaffredo, Sumensari, 2103.12504

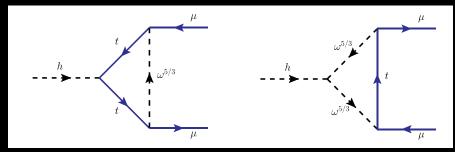

• Single vector LQ still a viable option, but must be embedded into some UV-completion.


Crivellin, Greub, Mueller, Saturnino, 1807.02068 [PRL]; Fornal, Gadam, Grinstein, 1812.01603 [PRD]; Cornella, Fuentes-Martin, Isidori, 1903.11517 [JHEP]; BD, Mohanta, Patra, Sahoo, 2004.09464 [PRD]; Iguro, Kawamura, Okawa, Omura, 2103.11889; Perez, Murgui, Plascencia, 2104.11229; ...

• Or invoke more than one scalar LQ.

Chen, Nomura, Okada, 1703.03251 [PLB]; Bigaran, Gargalionis, Volkas, 1906.01870 [JHEP]; Saad, 2005.04352 [PRD]; Babu, BD, Jana, Thapa, 2009.01771 [JHEP]; ...

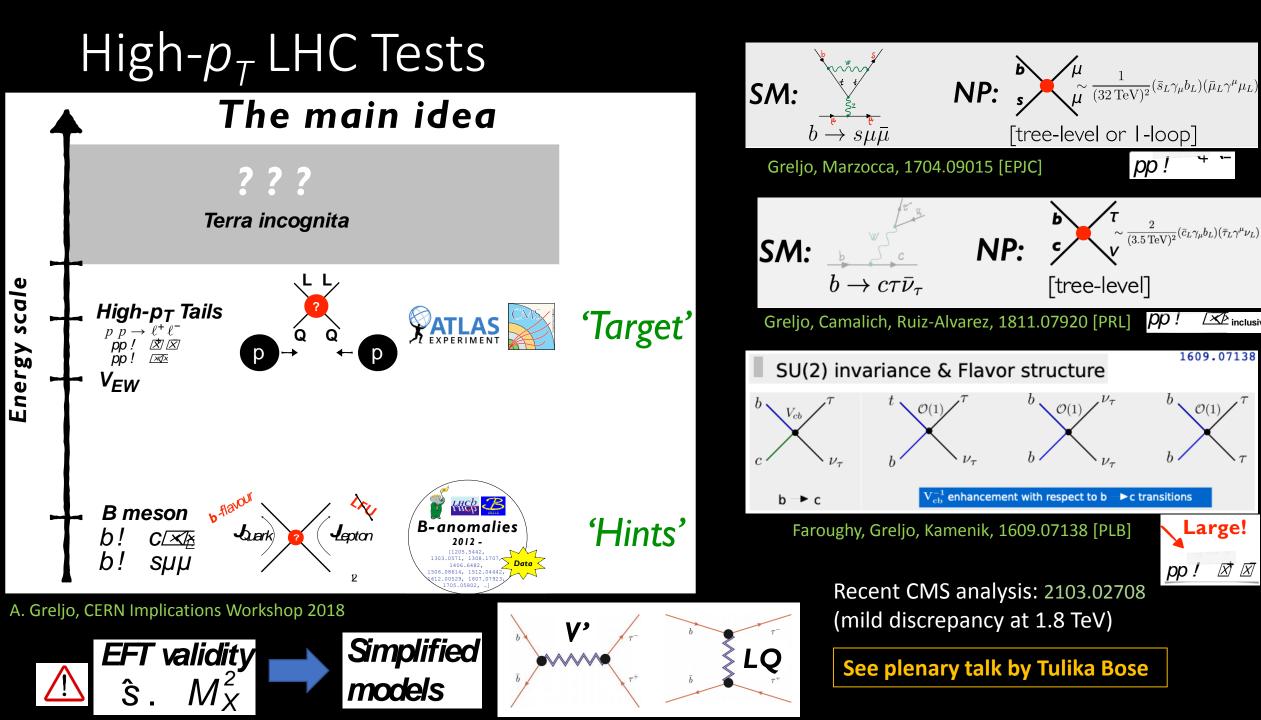




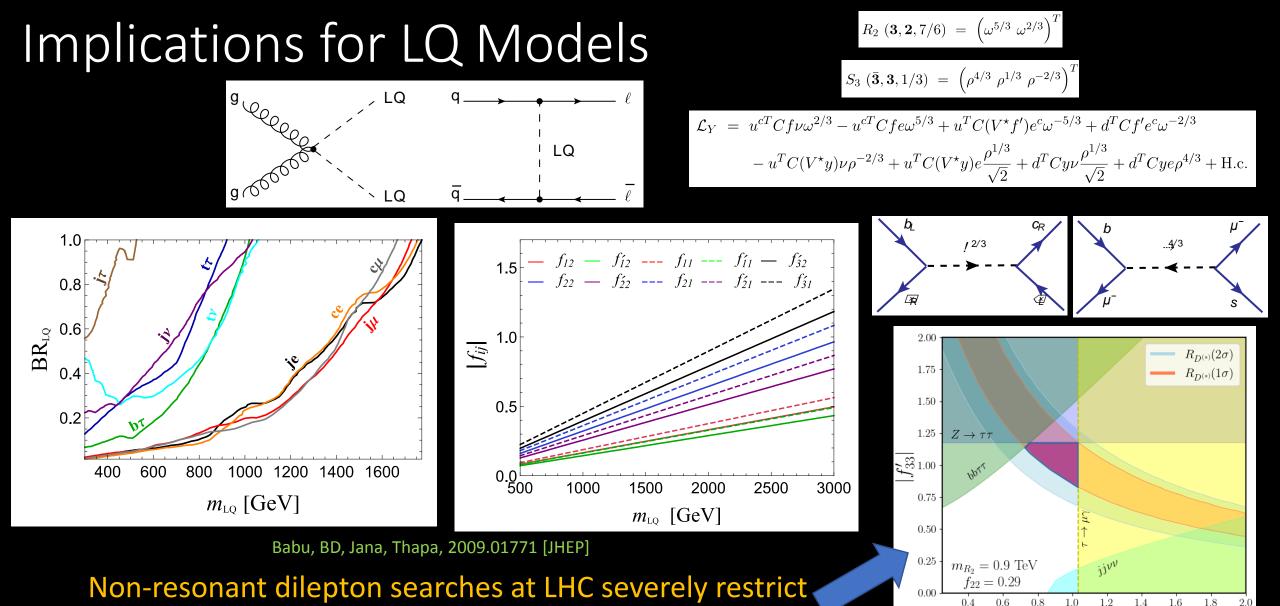
Model	$R_{K^{(\ast)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \ \& \ R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	~	×	×
S_1 ($\bar{3}, 1, 1/3$)	×	~	×
R_2 (3, 2, 7/6)	×	✓	×
U_1 (3, 1, 2/3)	\checkmark	~	\checkmark
U_3 (3 , 3 , 2/3)	✓	×	×

Chiral Enhancement for Muon g-2

Connection with Higgs decay to dileptons Crivellin, Mueller, Saturnino, 2008.02643


$$\mu_{\mu^{+}\mu^{-}} \equiv \frac{\mathrm{BR}(h \to \mu^{+}\mu^{-})}{\mathrm{BR}(h \to \mu^{+}\mu^{-})_{\mathrm{SM}}}$$
$$= \left| 1 - \frac{3}{8\pi^{2}} \frac{m_{t}}{m_{\mu}} \frac{f_{32}(V^{\star}f')_{32}^{\star}}{m_{R_{2}}^{2}} \left\{ \frac{m_{t}^{2}}{8} \mathcal{F}\left(\frac{m_{h}^{2}}{m_{t}^{2}}, \frac{m_{t}^{2}}{m_{R_{2}}^{2}}\right) + v^{2} \left(\lambda_{HR} - \lambda'_{HR}\right) \right\} \right|$$

$$\mathcal{F}(x,y) = -8 + \frac{13}{3}x - \frac{1}{5}x^2 - \frac{1}{70}x^3 + 2(x-4)\log y.$$

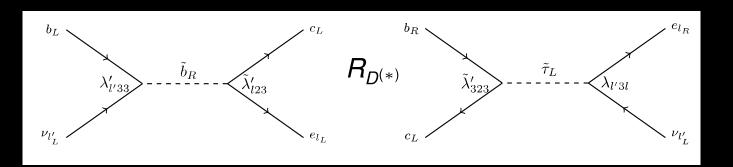

Depends on quartic couplings $\lambda_{HR}(H^{\dagger}H)(R_{2}^{\dagger}R_{2}) + \lambda'_{HR}(H^{\dagger}\tau_{a}H)(R_{2}^{\dagger}\tau_{a}R_{2})$

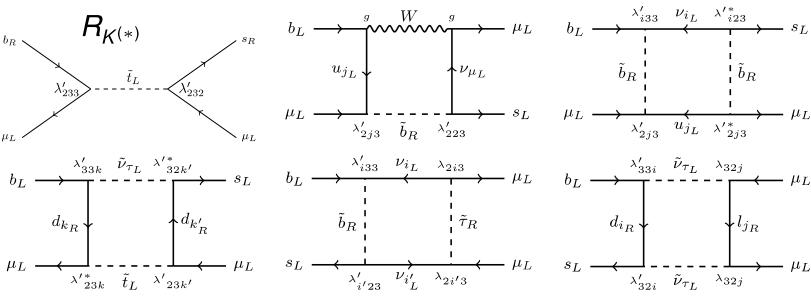
LQ solution to muon *g*-2 can be tested in precision Higgs data at LHC and future colliders.

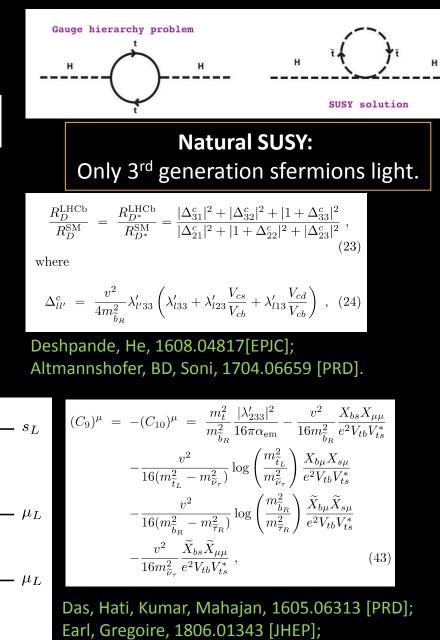
See BSM IX parallel talk (today 5.30pm) by Anil Thapa

inclusive

the allowed LQ parameter space for B-anomalies.

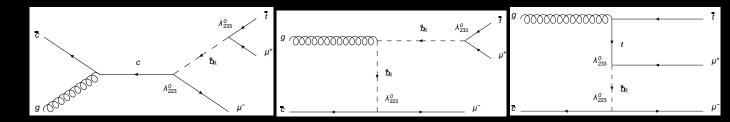

See BSM IX parallel talk (today 5.30pm) by Anil Thapa


 $Im(f_{23})$

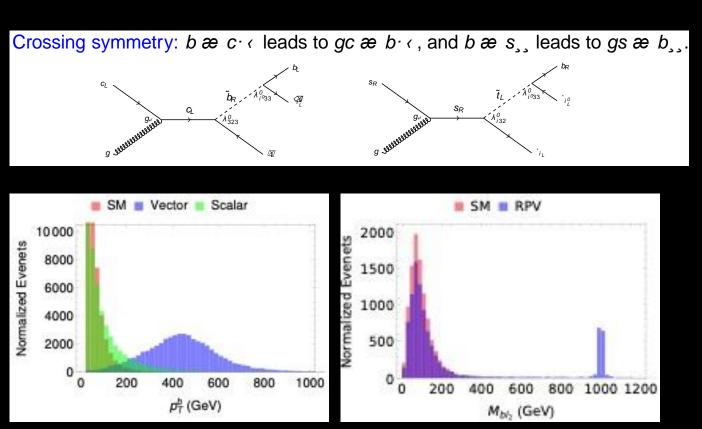

Another NP Solution: RPV SUSY

$$\mathcal{L}_{LQD} = \lambda_{ijk}' \left[\widetilde{\nu}_{iL} \overline{d}_{kR} d_{jL} + \widetilde{d}_{jL} \overline{d}_{kR} \nu_{iL} + \widetilde{d}_{kR}^* \overline{\nu}_{iL}^c d_{jL} - \widetilde{e}_{iL} \overline{d}_{kR} u_{jL} - \widetilde{u}_{jL} \overline{d}_{kR} e_{iL} - \widetilde{d}_{kR}^* \overline{e}_{iL}^c u_{jL} \right] + \text{H.c}$$

 $\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \left[\widetilde{\nu}_{iL} \bar{\boldsymbol{e}}_{kR} \boldsymbol{e}_{jL} + \widetilde{\boldsymbol{e}}_{jL} \bar{\boldsymbol{e}}_{kR} \nu_{iL} + \widetilde{\boldsymbol{e}}_{kR}^* \bar{\nu}_{iL}^c \boldsymbol{e}_{jL} - (i \leftrightarrow j) \right] + \text{H.c.}$



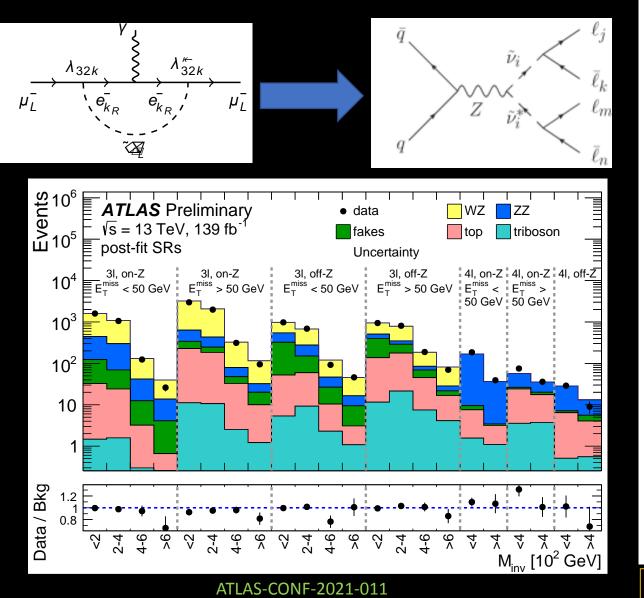
Trifinopoulos, 1807.01638 [EPJC];

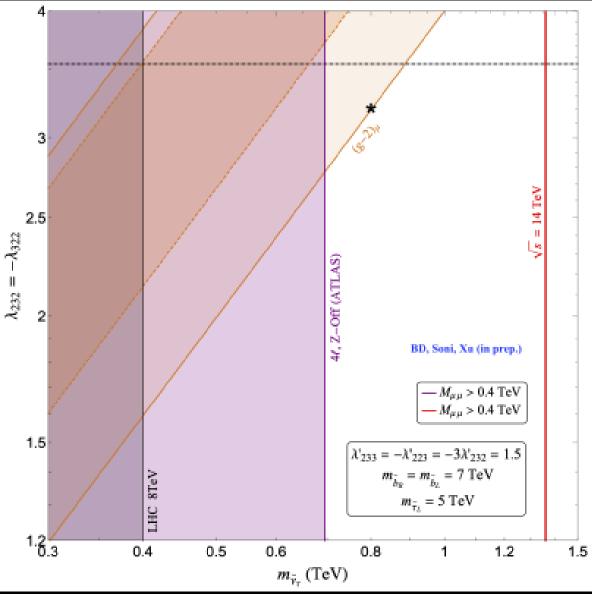

Altmannshofer, BD, Soni, Sui [PRD].

21

Distinct LHC Signals

$$R_{D^{(\acute{u})}} : O_{V_L} = (\overline{c}^{``\mu} P_L b)(\overline{\cdot}^{`'\mu} P_L \epsilon)$$
$$R_{K^{(\acute{u})}} : Q_{9(10)} = (\overline{s}^{`'\mu} P_L b)(\overline{,}^{''\mu} ("_5))$$

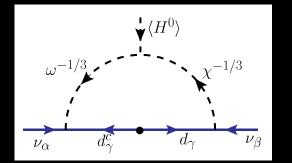



-3 λ'₂₃₂ 0.5 0.3 Ш $-\lambda'_{223}$ 0.2 λ'_{233} 0.1 BD, Soni, Xu (in prep.) 0.05 14 TeV 27 TeV 100 TeV $\lambda_{232} = -\lambda_{322} = 3.2$ $m_{\tilde{\nu}_{\tau}} = 0.8 \text{ TeV}$ 0.02 without cut $m_{\tilde{\tau}_L} = 5 \text{ TeV}$ ---- $M_{\mu^+\mu^-} > 0.15 \text{ TeV}$ 0.01⊾ 0.6 1.5 20 1 2 3 5 10 15 30 $m_{\tilde{b}_R}=m_{\tilde{b}_L}~({\rm TeV})$

See Flavor III parallel talk (today 2.30pm) by Fang Xu 22

Altmannshofer, BD, Soni, 1704.06659 [PRD]; Altmannshofer, BD, Soni, Sui, 2002.12910 [PRD]

An LHC Test of Muon g-2

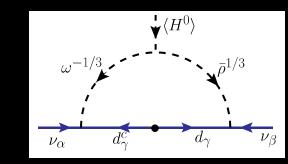


See Flavor III parallel talk (today 2.30pm) by Fang Xu

23

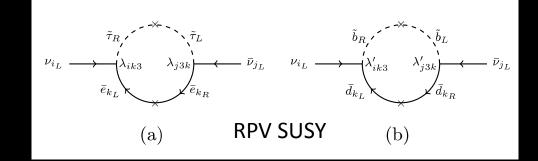
Connection to Neutrino Physics

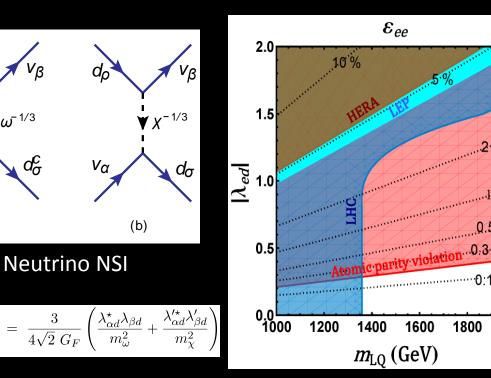
Singlet-doublet LQ

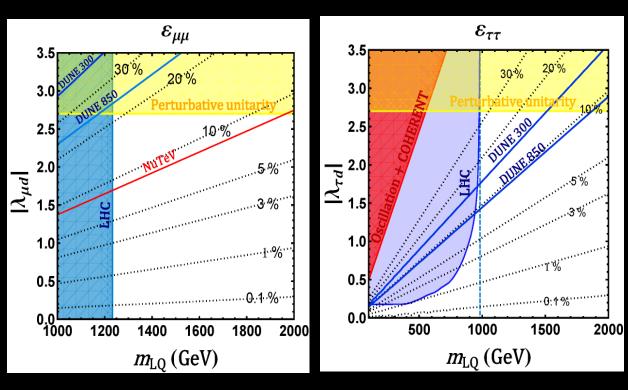

Vα

 d_{σ}^{c}

Vα

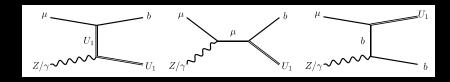

(a)

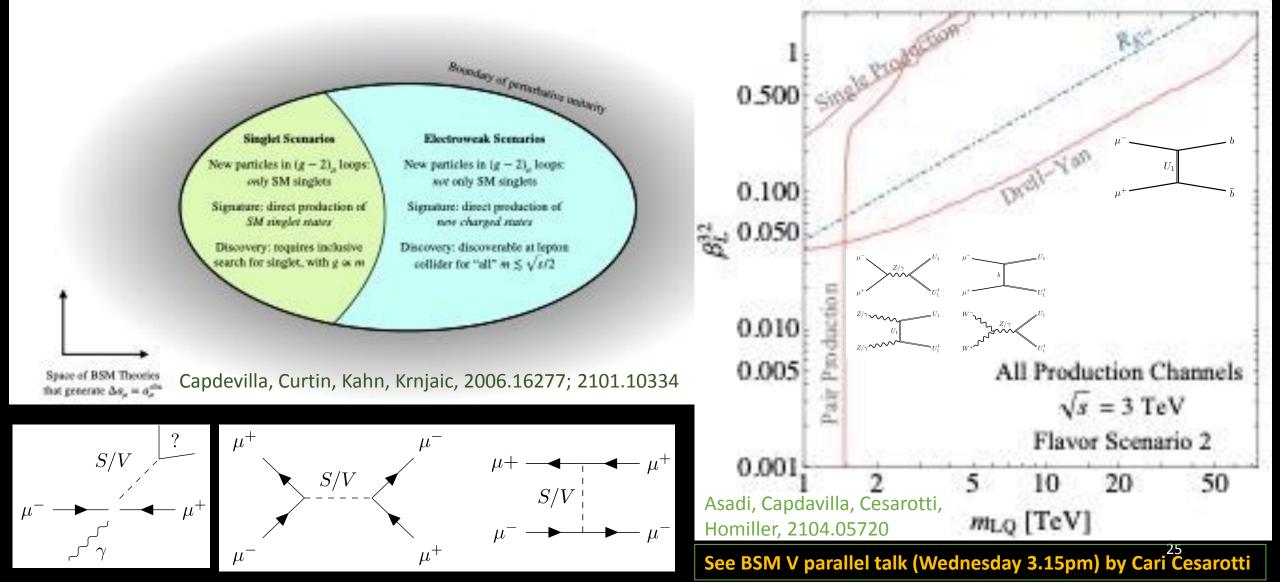

 $\varepsilon_{\alpha\beta} \equiv 3\varepsilon^d_{\alpha\beta} =$



Doublet-triplet LQ

2000





Babu, BD, Jana, Thapa, 1907.09498 [JHEP]

Far into the Future: No-Lose Theorem for Muon Collider

Conclusion

- More conspicuous paths to new physics have remained stubbornly out of reach so far.
- Following the bread crumbs (i.e. looking for inspiration from anomalies) might lead us on the right path to new physics.
- Lepton Flavor Universality Violation is a strong hint in that direction.
- Need coherent community effort, active theoryexperiment collaborations and open-access data to resolve the existing anomalies.
- Important to establish independent tests (at colliders and elsewhere).

