

ModelOne Size Fits All:A Minimal R-parity Violating Supersymmetric Model for the Flavor
Anomalies, Muon g - 2 and ANITA

Bhupal Dev

Washington University in St. Louis

W. Altmannshofer, BD, A. Soni, Y. Sui, arXiv: 2002.12910 [hep-ph]

PHENO 2020

University of Pittsburgh

May 5, 2020

Outline

- The Anomalies
- The RPV3 Framework
- Three Benchmark Cases
- Conclusion

(see Flavor mini-review by J. Brod and LHCb plenary talk by K. Mueller)

$$R_{D^{(*)}} = \frac{\mathsf{BR}(B \to D^{(*)}\tau\nu)}{\mathsf{BR}(B \to D^{(*)}\ell\nu)} \quad (\text{with } \ell = e, \mu)$$

B-Anomalies

(see Flavor mini-review by J. Brod and LHCb plenary talk by K. Mueller)

(see plenary talk by J. Kasper)

(see plenary talk by J. Kasper)

ANITA

TABLE I: ANITA-I,-III anomalous upward air showers. ANITA Collaboration, PRL'18

event, flight	3985267, ANITA-I	15717147, ANITA-III
date, time	2006-12-28,00:33:20UTC	2014-12-20,08:33:22.5UTC
Lat., Lon.(1)	-82.6559, 17.2842	-81.39856, 129.01626
Altitude	2.56 km	2.75 km
Ice depth	3.53 km	3.22 km
El., Az. 🔇	$-27.4 \pm 0.3^{\circ}$, 59.62 $\pm 0.7^{\circ}$	$-35.0\pm0.3^{\circ}$ 1.41 $\pm0.7^{\circ}$
RA, Dec ⁽²⁾	282.14064, +20.33043	50.78203, +38.65498
$E_{shower}^{(3)}$	0.6 ± 0.4 EeV	$0.56^{+0.3}_{-0.2}$ EeV

¹ Latitude, Longitude of the estimated ground position of the event.

² Sky coordinates projected from event arrival angles at ANITA.

³ For upward shower initiation at or near ice surface.

ANITA

TABLE I: ANITA-I,-III anomalous upward air showers. ANITA Collaboration, PRL'18

event, flight	3985267, ANITA-I	15717147, ANITA-III
date, time	2006-12-28,00:33:20UTC	2014-12-20,08:33:22.5UTC
Lat., Lon.(1)	-82.6559, 17.2842	-81.39856, 129.01626
Altitude	2.56 km	2.75 km
Ice depth	3.53 km	3.22 km
El., Az. 🔇	$-27.4 \pm 0.3^{\circ}$, 59.62 $\pm 0.7^{\circ}$	$-35.0\pm0.3^{\circ}$ 1.41 $\pm0.7^{\circ}$
RA, Dec ⁽²⁾	282.14064, +20.33043	50.78203, +38.65498
E _{shower} ⁽³⁾	0.6 ± 0.4 EeV	$0.56^{+0.3}_{-0.2}$ EeV

¹ Latitude, Longitude of the estimated ground position of the event.

² Sky coordinates projected from event arrival angles at ANITA.

3 For upward shower initiation at or near ice surface.

This talk: A SUSY solution to ANITA, muon g - 2 and the *B*-anomalies!

Natural SUSY

Natural SUSY

[Papucci, Ruderman, Weiler (JHEP '12); Brust, Katz, Lawrence, Sundrum (JHEP '12)]

RPV3 SUSY

- More natural to include RPV couplings. [Brust, Katz, Lawrence, Sundrum (JHEP '12)]
- Preserves gauge coupling unification. [Altmannshofer, BD, Soni (PRD '17)]
- RPV3: RPV SUSY with light 3rd-generation sfermions.
- Can naturally accommodate $R_{D^{(*)}}$ ($b \rightarrow c \tau \nu$) via LQD interactions. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); Trifinopoulos (EPJC '18); Hu, Li, Muramatsu, Yang (PRD '19)]

$$\mathcal{L}_{LQD} = \lambda'_{ijk} \left[\widetilde{\nu}_{iL} \overline{d}_{kR} d_{jL} + \widetilde{d}_{jL} \overline{d}_{kR} \nu_{iL} + \widetilde{d}^*_{kR} \overline{\nu}^{c}_{iL} d_{jL} - \widetilde{e}_{iL} \overline{d}_{kR} u_{jL} - \widetilde{u}_{jL} \overline{d}_{kR} e_{iL} - \widetilde{d}^*_{kR} \overline{e}^{c}_{iL} u_{jL} \right] + \text{H.c.}$$

• Can simultaneously explain $R_{K^{(*)}}$ ($b \rightarrow s\ell\ell$) by invoking *LLE* interactions, together with *LQD*. [Das, Hati, Kumar, Mahajan (PRD '17); Earl, Grégoire (JHEP '18); Trifinopoulos (EPJC '18); Hu, Huang (PRD '20); Altmannshofer, BD, Soni, Sui '20]

$$\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \left[\widetilde{\nu}_{iL} \bar{\mathbf{e}}_{kR} \mathbf{e}_{jL} + \widetilde{\mathbf{e}}_{jL} \bar{\mathbf{e}}_{kR} \nu_{iL} + \widetilde{\mathbf{e}}_{kR}^* \bar{\nu}_{iL}^c \mathbf{e}_{jL} - (i \leftrightarrow j) \right] + \text{H.c.}$$

• Restricting to RPV3 and using some ansatz, we'll limit the number of independent λ' and λ couplings.

B-anomalies in RPV3

Figure: RPV3 contributions to $R_{D^{(*)}}$. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); · · ·]

B-anomalies in RPV3

Figure: RPV3 contributions to $R_{D^{(*)}}$. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); · · ·]

Figure: RPV3 contributions to $R_{K^{(*)}}$. [Das, Hati, Kumar, Mahajan (PRD '17); Trifinopoulos (EPJC '18)]

Muon g - 2 and ANITA

Figure: RPV3 contributions to $(g-2)_{\mu}.$ [Kim, Kyae, Lee (PLB '01)]

Muon g - 2 and ANITA

Figure: RPV3 contributions to $(g-2)_{\mu}$. [Kim, Kyae, Lee (PLB '01)]

Figure: RPV3 contributions to ANITA anomalous events. [Collins, BD, Sui (PRD '19)]

Three Benchmark Cases

• Case 1: CKM-like Structure

$$\lambda'_{ijk} \; = \; \lambda'_{333} \, \epsilon^{(3-i)+(3-j)+(3-k)} \,, \qquad \lambda_{ijk} \; = \; \lambda_{233} \, \epsilon^{(2-i)+(3-j)+(3-k)} \,.$$

Only 3 independent coupling parameters: $\{\lambda'_{333}, \lambda_{233}, \epsilon\}$.

Three Benchmark Cases

Case 1: CKM-like Structure

$$\lambda'_{ijk} \ = \ \lambda'_{333} \, \epsilon^{(3-i)+(3-j)+(3-k)} \,, \qquad \lambda_{ijk} \ = \ \lambda_{233} \, \epsilon^{(2-i)+(3-j)+(3-k)} \,.$$

Only 3 independent coupling parameters: $\{\lambda'_{333}, \lambda_{233}, \epsilon\}$.

• Case 2: $U(2)_q \times U(2)_\ell$ Flavor Symmetry

$$\begin{split} \lambda'_{1jk} &= \lambda'_{211} = \lambda'_{231} = \lambda'_{213} = \lambda'_{311} = \lambda'_{331} = \lambda'_{313} \simeq \mathbf{0}, \qquad \lambda'_{233} \simeq \lambda'\epsilon_{\ell}, \\ \lambda'_{221} &= \lambda'_{212} \simeq \lambda'\epsilon_{\ell}\epsilon'_{q}, \qquad \lambda'_{321} = \lambda'_{312} \simeq \lambda'\epsilon'_{q}, \\ \lambda'_{222} &= \lambda'_{223} = \lambda'_{232} \simeq \lambda'\epsilon_{\ell}\epsilon_{q}, \qquad \lambda'_{322} = \lambda'_{323} = \lambda'_{332} \simeq \lambda'\epsilon_{q}, \\ \lambda_{121} &= \lambda_{131} = \lambda_{133} \simeq \mathbf{0}, \qquad \lambda_{123} = \lambda_{132} = \lambda_{231} \simeq \lambda\epsilon'_{\ell}, \\ \lambda_{232} \simeq \lambda\epsilon_{\ell S}, \quad \lambda_{122} \simeq \lambda\epsilon_{\ell}\epsilon'_{\ell}, \qquad \lambda_{233} \simeq \lambda\epsilon_{\ell}, \end{split}$$

where $\epsilon_q \approx m_s/m_b \simeq 0.025$, $\epsilon'_q \approx \epsilon_q \sqrt{m_d/m_s} \simeq 0.005$, $\epsilon_\ell \simeq 1$, $\epsilon'_\ell \simeq 0.004$ and $\epsilon_{\ell S} \simeq 0.06$ [Trifinopoulos (EPJC '18)]. Again, 3 independent couplings: $\{\lambda'_{333}, \lambda', \lambda\}$.

Three Benchmark Cases

Case 1: CKM-like Structure

$$\lambda'_{ijk} \ = \ \lambda'_{333} \, \epsilon^{(3-i)+(3-j)+(3-k)} \,, \qquad \lambda_{ijk} \ = \ \lambda_{233} \, \epsilon^{(2-i)+(3-j)+(3-k)} \,.$$

Only 3 independent coupling parameters: $\{\lambda'_{333}, \lambda_{233}, \epsilon\}$.

• Case 2: $U(2)_q \times U(2)_\ell$ Flavor Symmetry

$$\begin{split} \lambda'_{1jk} &= \lambda'_{211} = \lambda'_{231} = \lambda'_{213} = \lambda'_{311} = \lambda'_{331} = \lambda'_{313} \simeq \mathbf{0}, \qquad \lambda'_{233} \simeq \lambda'\epsilon_{\ell}, \\ \lambda'_{221} &= \lambda'_{212} \simeq \lambda'\epsilon_{\ell}\epsilon'_{q}, \qquad \lambda'_{321} = \lambda'_{312} \simeq \lambda'\epsilon'_{q}, \\ \lambda'_{222} &= \lambda'_{223} = \lambda'_{232} \simeq \lambda'\epsilon_{\ell}\epsilon_{q}, \qquad \lambda'_{322} = \lambda'_{323} = \lambda'_{332} \simeq \lambda'\epsilon_{q}, \\ \lambda_{121} &= \lambda_{131} = \lambda_{133} \simeq \mathbf{0}, \qquad \lambda_{123} = \lambda_{132} = \lambda_{231} \simeq \lambda\epsilon'_{\ell}, \\ \lambda_{232} \simeq \lambda\epsilon_{\ell}s, \quad \lambda_{122} \simeq \lambda\epsilon_{\ell}\epsilon'_{\ell}, \qquad \lambda_{233} \simeq \lambda\epsilon_{\ell}, \end{split}$$

where $\epsilon_q \approx m_s/m_b \simeq 0.025$, $\epsilon'_q \approx \epsilon_q \sqrt{m_d/m_s} \simeq 0.005$, $\epsilon_\ell \simeq 1$, $\epsilon'_\ell \simeq 0.004$ and $\epsilon_{\ell S} \simeq 0.06$ [Trifinopoulos (EPJC '18)]. Again, 3 independent couplings: $\{\lambda'_{333}, \lambda', \lambda\}$.

• Case 3: No Symmetry Also choose 3 independent couplings:

$$\{\lambda'_{223}\,,\quad \lambda'\,\equiv\,\lambda'_{123}\,=\,\lambda'_{233}\,=\,\lambda'_{323}\,,\quad \lambda\,\equiv\,\lambda_{132}\,=\,\lambda_{231}\,=\,\lambda_{232}\},$$

• In each case, six free mass parameters: $\{m_{\widetilde{b}_R}, m_{\widetilde{t}_L}, m_{\widetilde{\tau}_L}, m_{\widetilde{\tau}_R}, m_{\widetilde{\nu}_{\tau}}, m_{\widetilde{\chi}_1}^0\}$.

Case 2 (Flavor Symmetry)

Case 3 (No Symmetry)

Case 3 (No Symmetry)

Case 3 (No Symmetry)

Case 3 (No Symmetry)

Case 3 (No Symmetry)

Other Predictions

Flavor-violating	λ,λ'	RPV3 Prediction			Current experimental
decay mode	dependence	Case 1	Case 2	Case 3	bound/measurement
$\tau \rightarrow \mu \phi$	$\lambda'_{332}\lambda'_{232},\lambda_{323}\lambda'_{322}$	1.9×10^{-15}	3.8×10^{-10}	2.6×10^{-12}	$< 8.4 \times 10^{-8}$
$\tau \rightarrow \mu KK$	$\lambda_{332}^{\prime} \lambda_{232}^{\prime}, \lambda_{323}^{\prime} \lambda_{322}^{\prime}$	1.2×10^{-17}	2.4×10^{-12}	2.9×10^{-13}	$< 4.4 \times 10^{-8}$
$\tau \rightarrow \mu K_s^0$	$\lambda'_{332}\lambda'_{231}, \lambda'_{312}\lambda_{323}$	4.5×10^{-19}	8.7×10^{-12}	3.1×10^{-13}	$< 2.3 \times 10^{-8}$
$\tau \rightarrow \mu \gamma$	$\lambda'_{333}\lambda'_{233}, \lambda_{133}\lambda_{123}$	1.3×10^{-10}	1.3×10^{-8}	2.4×10^{-10}	$< 4.4 \times 10^{-8}$
$\tau \rightarrow \mu \mu \mu$	$\lambda_{323}\lambda_{322}$	1.7×10^{-11}	1.2×10^{-9}	1.2×10^{-11}	$< 2.1 \times 10^{-8}$
$B_{(s)} \rightarrow K^{(*)}(\phi)\mu\tau$	$\lambda'_{333}\lambda'_{232}, \lambda'_{233}\lambda'_{332}, \lambda'_{332}\lambda_{323}$	4.1×10^{-9}	1.2×10^{-7}	2.2×10^{-10}	$< 2.8 \times 10^{-5}$
$B_S \rightarrow \tau \mu$	$\lambda_{333}^{\prime}\lambda_{232}^{\prime},\lambda_{233}^{\prime}\lambda_{332}^{\prime},\lambda_{332}^{\prime}\lambda_{323}^{\prime}$	4.4×10^{-10}	1.3×10^{-8}	2.3×10^{-11}	$< 3.4 \times 10^{-5}$
$b \rightarrow s \tau \tau$	λ'333 λ'332	3.4×10^{-7}	2.8×10^{-8}	1.3×10^{-13}	N/A
$B \rightarrow K^{(*)} \tau \tau$	λ'333 λ'332	3.7×10^{-6}	4.2×10^{-8}	9.6×10^{-12}	$< 2.2 \times 10^{-3}$
$B_S \rightarrow \tau \tau$	λ'333 λ'332	3.7×10^{-8}	3.0×10^{-9}	1.4×10^{-14}	$< 6.8 \times 10^{-3}$
$b ightarrow s \mu \mu$	$\lambda'_{233}\lambda'_{232}, \lambda'_{332}\lambda_{232}$	5.9×10^{-9}	3.2×10^{-8}	8.8×10^{-9}	4.4×10^{-6}
$B_S \rightarrow \mu \mu$	$\lambda_{233}^{7}\lambda_{232}^{7},\lambda_{332}^{9}\lambda_{232}$	4.1×10^{-11}	6.5×10^{-11}	1.8×10^{-11}	3.0×10^{-9}

Other Predictions

Flavor-violating	λ,λ'	RPV3 Prediction			Current experimental
decay mode	dependence	Case 1	Case 2	Case 3	bound/measurement
$\tau \rightarrow \mu \phi$	$\lambda'_{332}\lambda'_{232},\lambda_{323}\lambda'_{322}$	1.9×10^{-15}	3.8×10^{-10}	2.6×10^{-12}	$< 8.4 \times 10^{-8}$
$ au ightarrow \mu {\it K}{\it K}$	$\lambda_{332}^{\prime} \lambda_{232}^{\prime}, \lambda_{323}^{\prime} \lambda_{322}^{\prime}$	1.2×10^{-17}	2.4×10^{-12}	2.9×10^{-13}	$< 4.4 \times 10^{-8}$
$\tau \rightarrow \mu K_s^0$	$\lambda'_{332}\lambda'_{231}, \lambda'_{312}\lambda_{323}$	4.5×10^{-19}	8.7×10^{-12}	3.1×10^{-13}	$< 2.3 \times 10^{-8}$
$\tau \rightarrow \mu \gamma$	$\lambda'_{333}\lambda'_{233}, \lambda_{133}\lambda_{123}$	1.3×10^{-10}	1.3×10^{-8}	2.4×10^{-10}	$< 4.4 \times 10^{-8}$
$\tau \rightarrow \mu \mu \mu$	$\lambda_{323}\lambda_{322}$	1.7×10^{-11}	1.2×10^{-9}	1.2×10^{-11}	$< 2.1 \times 10^{-8}$
$B_{(s)} \rightarrow K^{(*)}(\phi)\mu\tau$	$\lambda'_{333}\lambda'_{232}, \lambda'_{233}\lambda'_{332}, \lambda'_{332}\lambda_{323}$	4.1×10^{-9}	1.2×10^{-7}	2.2×10^{-10}	$< 2.8 \times 10^{-5}$
$B_S \rightarrow \tau \mu$	$\lambda_{333}^{\prime}\lambda_{232}^{\prime},\lambda_{233}^{\prime}\lambda_{332}^{\prime},\lambda_{332}^{\prime}\lambda_{323}^{\prime}$	4.4×10^{-10}	1.3×10^{-8}	2.3×10^{-11}	$< 3.4 \times 10^{-5}$
$b \rightarrow s \tau \tau$	λ'333 λ'332	3.4×10^{-7}	2.8×10^{-8}	1.3×10^{-13}	N/A
$B \rightarrow K^{(*)} \tau \tau$	λ'333 λ'332	3.7×10^{-6}	4.2×10^{-8}	9.6×10^{-12}	$< 2.2 \times 10^{-3}$
$B_S \rightarrow \tau \tau$	λ'333 λ'332	3.7×10^{-8}	3.0×10^{-9}	1.4×10^{-14}	$< 6.8 \times 10^{-3}$
$b ightarrow s \mu \mu$	$\lambda'_{233}\lambda'_{232}, \lambda'_{332}\lambda_{232}$	5.9×10^{-9}	3.2×10^{-8}	8.8×10^{-9}	4.4×10^{-6}
$B_S \rightarrow \mu \mu$	$\lambda_{233}^{7}\lambda_{232}^{7},\lambda_{332}^{7}\lambda_{232}$	4.1×10^{-11}	6.5×10^{-11}	1.8×10^{-11}	3.0×10^{-9}

A more dedicated LHC analysis underway.

- Analyzed the possibility of a common origin of the *B*-anomalies, muon *g* 2, and ANITA anomaly in a single testable framework.
- Third-generation-centric RPV SUSY framework (RPV3), motivated by Higgs naturalness.
- Three benchmark cases, each with 9 parameters only.
- Remarkably, allowed overlap regions for all the anomalies still exist.
- Predictions for flavor-violating *B*-meson and tau decays could be tested at Belle II and LHCb.
- Complementary tests in the high- p_T LHC experiments.

- Analyzed the possibility of a common origin of the *B*-anomalies, muon *g* 2, and ANITA anomaly in a single testable framework.
- Third-generation-centric RPV SUSY framework (RPV3), motivated by Higgs naturalness.
- Three benchmark cases, each with 9 parameters only.
- Remarkably, allowed overlap regions for all the anomalies still exist.
- Predictions for flavor-violating *B*-meson and tau decays could be tested at Belle II and LHCb.
- Complementary tests in the high- p_T LHC experiments.

Thank You.