Neutron-Antineutron Oscillation:

Theoretical Status and Experimental Prospects

Bhupal Dev

First Nuclear and Particle Theory Meeting
Washington University in St. Louis
March 12, 2019

Too crazy?

But neutral meson $|q \bar{q}\rangle$ states oscillate -

Too crazy?

But neutral meson $|\mathrm{q} \overline{\mathrm{q}}\rangle$ states oscillate -

And neutral fermions can oscillate too -

Too crazy?

But neutral meson $|\mathrm{q} \overline{\mathrm{q}}\rangle$ states oscillate -

And neutral fermions can oscillate too -

$$
v_{\mu} \leadsto(\ldots) \Longrightarrow v_{\tau}
$$

So why not -
n $\underset{\text { physics }}{\left(\begin{array}{l}\text { New }\end{array}\right)} \sim \bar{n}$

Conservation of Baryon Number

- In the Standard Model (SM), conservation of baryon number forbids a neutron ($B=1$) from transforming into an antineutron ($B=-1$).
- Also forbids the decay of the lightest baryon, i.e. proton.
- Just like the conservation of electric charge forbids the decay of electron.

Conservation of Baryon Number

- In the Standard Model (SM), conservation of baryon number forbids a neutron ($B=1$) from transforming into an antineutron ($B=-1$).
- Also forbids the decay of the lightest baryon, i.e. proton.
- Just like the conservation of electric charge forbids the decay of electron.
- But conservation of electric charge is closely connected with $U(1)_{\text {em }}$ gauge symmetry (Noether's theorem).
- If same idea worked for B, we expect conservation of "baryonic" charge to be associated with a new long-range force coupled to B.
- No experimental evidence so far!
- Strong constraints on any new long-range force coupled to B.
[Schlamminger et al. (PRL '08); Cowsik et al. '18; Agarwalla, Bustamante (PRL '18)]

Baryon Number Violation

- From the SM point of view, both B and L are "accidental" global symmetries.
- No special reason why they should be conserved beyond SM.
- Even in the $\mathrm{SM}, B+L$ is violated by non-perturbative sphaleron processes, and it's only the $B-L$ combination that is conserved.
- Sphalerons play an important role in explaining the primordial baryon asymmetry (baryogenesis).
- However, the sphaleron-induced B-violation is
 negligible for $T \ll v_{\text {EW }}$ to have any observable effects in lab.

Selection Rules

- Conservation of angular momentum requires that spin of nucleon should be transferred to another fermion (lepton or baryon).
- Leads to the selection rule $\Delta B= \pm \Delta L$, or $|\Delta(B-L)|=0,2$.

Selection Rules

- Conservation of angular momentum requires that spin of nucleon should be transferred to another fermion (lepton or baryon).
- Leads to the selection rule $\Delta B= \pm \Delta L$, or $|\Delta(B-L)|=0,2$.
- In the $\mathrm{SM}, \Delta(B-L)=0$, or $\Delta B=+\Delta L=0$ (e.g. neutron decay).
- Second possibility: $|\Delta(B-L)|=2$, which can be realized in three ways:
- $\Delta B=-\Delta L=1$ (e.g. proton decay)
- $|\Delta B|=2$ (e.g. dinucleon decay, $n-\bar{n}$ oscillation) - This talk
- $|\Delta L|=2$ (e.g. Majorana mass for neutrino, $0 \nu \beta \beta$) - Talk by E. Mereghetti
- Conservation or violation of $B-L$ determines the mechanism of baryon instability.
- Connected with the Majorana nature of neutrino mass. [Mohapatra, Marshak (PRL '80)]

$\Delta B=1$ versus $\Delta B=2$

$$
\Delta B=1
$$

- Proton decay
- Induced by dimension-6 operator QQQL.
- Amplitude $\propto \Lambda^{-2}$.
- $\tau_{p} \gtrsim 10^{34} \mathrm{yr}$ implies $\Lambda \gtrsim 10^{15} \mathrm{GeV}$.
- Proton decay requires GUT-scale physics.

> [Nath, Perez (Phys. Rep. '07)]

$$
\Delta B=2
$$

- Di-nucleon decay and $n-\bar{n}$
- Induced by dimension-9 operator QQQQQQ.
- Amplitude $\propto \Lambda^{-5}$.
- $\Lambda \gtrsim 100 \mathrm{TeV}$ enough to satisfy experimental constraints.
- $n-\bar{n}$ oscillation (and conversion) could come from a TeV-scale new physics.
[Phillips et al. (Phys. Rep '16)]
n

General Formalism of $n-\bar{n}$ Oscillation

- Start with the Schrödinger equation

$$
i \frac{\partial}{\partial t}\binom{|n\rangle}{|\bar{n}\rangle}=\underbrace{\left(\begin{array}{cc}
M_{11} & \delta m \\
\delta m & M_{22}
\end{array}\right)}_{H_{\text {eff }}}\binom{|n\rangle}{|\bar{n}\rangle}
$$

with $\operatorname{Im}\left(M_{j j}\right)=-i \lambda / 2$, where $\lambda^{-1}=\tau_{n} \simeq 880 \mathrm{sec}$ is the mean lifetime of a free neutron.

General Formalism of $n-\bar{n}$ Oscillation

- Start with the Schrödinger equation

$$
i \frac{\partial}{\partial t}\binom{|n\rangle}{|\bar{n}\rangle}=\underbrace{\left(\begin{array}{cc}
M_{11} & \delta m \\
\delta m & M_{22}
\end{array}\right)}_{H_{\text {eff }}}\binom{|n\rangle}{|\bar{n}\rangle}
$$

with $\operatorname{Im}\left(M_{j j}\right)=-i \lambda / 2$, where $\lambda^{-1}=\tau_{n} \simeq 880 \mathrm{sec}$ is the mean lifetime of a free neutron.

- The difference $\Delta M \equiv M_{11}-M_{22}$ incorporates any interaction effects that distinguish neutron and antineutron (e.g. ambient external magnetic field).

General Formalism of $n-\bar{n}$ Oscillation

- Start with the Schrödinger equation

$$
i \frac{\partial}{\partial t}\binom{|n\rangle}{|\bar{n}\rangle}=\underbrace{\left(\begin{array}{cc}
M_{11} & \delta m \\
\delta m & M_{22}
\end{array}\right)}_{H_{\text {eff }}}\binom{|n\rangle}{|\bar{n}\rangle}
$$

with $\operatorname{Im}\left(M_{j j}\right)=-i \lambda / 2$, where $\lambda^{-1}=\tau_{n} \simeq 880$ sec is the mean lifetime of a free neutron.

- The difference $\Delta M \equiv M_{11}-M_{22}$ incorporates any interaction effects that distinguish neutron and antineutron (e.g. ambient external magnetic field).
- Mass eigenstates

$$
\binom{\left|n_{1}\right\rangle}{\left|n_{2}\right\rangle}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{|n\rangle}{|\bar{n}\rangle} \quad \text { with } \tan (2 \theta)=\frac{2 \delta m}{\Delta M}
$$

General Formalism of $n-\bar{n}$ Oscillation

- Start with the Schrödinger equation

$$
i \frac{\partial}{\partial t}\binom{|n\rangle}{|\bar{n}\rangle}=\underbrace{\left(\begin{array}{cc}
M_{11} & \delta m \\
\delta m & M_{22}
\end{array}\right)}_{H_{\mathrm{eff}}}\binom{|n\rangle}{|\bar{n}\rangle}
$$

with $\operatorname{Im}\left(M_{j j}\right)=-i \lambda / 2$, where $\lambda^{-1}=\tau_{n} \simeq 880 \mathrm{sec}$ is the mean lifetime of a free neutron.

- The difference $\Delta M \equiv M_{11}-M_{22}$ incorporates any interaction effects that distinguish neutron and antineutron (e.g. ambient external magnetic field).
- Mass eigenstates

$$
\binom{\left|n_{1}\right\rangle}{\left|n_{2}\right\rangle}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{|n\rangle}{|\bar{n}\rangle} \quad \text { with } \tan (2 \theta)=\frac{2 \delta m}{\Delta M}
$$

- Real energy eigenvalues:

$$
E_{1,2}=\frac{1}{2}[M_{11}+M_{22} \pm \underbrace{\sqrt{(\Delta M)^{2}+4(\delta m)^{2}}}_{\Delta E}]
$$

Transition Probability

- Starting with a pure $|n\rangle$ state at $t=0$, the probability to evolve into the $|\bar{n}\rangle$ state at a later time t is

$$
\begin{aligned}
P_{\bar{n}}(t)=|\langle\bar{n} \mid n(t)\rangle|^{2} & =\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta E t}{2}\right) e^{-\lambda t} \\
& =\left[\frac{4(\delta m)^{2}}{(\Delta E)^{2}}\right] \sin ^{2}\left(\frac{\Delta E t}{2}\right) e^{-\lambda t}
\end{aligned}
$$

- Quasi-free limit $\Delta E t \ll 1$:

$$
P_{\bar{n}}(t) \sim(\delta m t)^{2} e^{-\lambda t}=\left(\frac{t}{\tau_{n \bar{n}}}\right)^{2} e^{-\lambda t}
$$

where $\tau_{n \bar{n}}=1 /|\delta m|$ is the oscillation lifetime.

- Current experimental limits give $\tau_{n \bar{n}} \gtrsim 10^{8} \sec \left(\right.$ or $|\delta m| \lesssim 10^{-29} \mathrm{MeV}$), so $\tau_{n \bar{n}} \gg \tau_{n}$.

In Field-Free Vacuum

- In this case, $\Delta M=0$ and

$$
H_{\mathrm{eff}}=\left(\begin{array}{cc}
m_{n}-i \lambda / 2 & \delta m \\
\delta m & m_{n}-i \lambda / 2
\end{array}\right)
$$

- Leads to the mass eigenstates $\left|n_{ \pm}\right\rangle=(|n\rangle \pm|\bar{n}\rangle) / \sqrt{2}$ with eigenvalues ($m_{n} \pm \delta m$) - i入/2 and maximal mixing $\theta=\pi / 4$.
- The oscillation probability is simply

$$
P_{\bar{n}}(t)=\sin ^{2}\left(\frac{t}{\tau_{n \bar{n}}}\right) e^{-\lambda t}
$$

- Never realized in practice.

In a Static Ambient Magnetic Field

- The n and \bar{n} interact with the external \vec{B} field via their magnetic dipole moments $\vec{\mu}_{n, \bar{n}}$, where $\mu_{n}=-\mu_{\bar{n}}=-1.91 \mu_{N}$ and $\mu_{N}=e /\left(2 m_{N}\right)=3.15 \times 10^{-14} \mathrm{MeV} / \mathrm{T}$.

$$
H_{\mathrm{eff}}=\left(\begin{array}{cc}
m_{n}-\vec{\mu}_{n} \cdot \vec{B}-i \lambda / 2 & \delta m \\
\delta m & m_{n}+\vec{\mu}_{n} \cdot \vec{B}-i \lambda / 2
\end{array}\right)
$$

- Leads to $\Delta M=-2 \vec{\mu}_{n} \cdot \vec{B} \gg \delta m$, even for a reduced magnetic field of $|\vec{B}| \sim 10^{-8}$ T (as in the ILL experiment), for which $\left|\vec{\mu}_{n} \cdot \vec{B}\right| \simeq 10^{-21} \mathrm{MeV}$, as opposed to $|\delta m| \lesssim 10^{-29} \mathrm{MeV}$.

In a Static Ambient Magnetic Field

- The n and \bar{n} interact with the external \vec{B} field via their magnetic dipole moments $\vec{\mu}_{n, \bar{n}}$, where $\mu_{n}=-\mu_{\bar{n}}=-1.91 \mu_{N}$ and $\mu_{N}=e /\left(2 m_{N}\right)=3.15 \times 10^{-14} \mathrm{MeV} / \mathrm{T}$.

$$
H_{\mathrm{eff}}=\left(\begin{array}{cc}
m_{n}-\vec{\mu}_{n} \cdot \vec{B}-i \lambda / 2 & \delta m \\
\delta m & m_{n}+\vec{\mu}_{n} \cdot \vec{B}-i \lambda / 2
\end{array}\right)
$$

- Leads to $\Delta M=-2 \vec{\mu}_{n} \cdot \vec{B} \gg \delta m$, even for a reduced magnetic field of $|\vec{B}| \sim 10^{-8}$ T (as in the ILL experiment), for which $\left|\vec{\mu}_{n} \cdot \vec{B}\right| \simeq 10^{-21} \mathrm{MeV}$, as opposed to $|\delta m| \lesssim 10^{-29} \mathrm{MeV}$.
- $\Delta E \simeq 2\left|\vec{\mu}_{n} \cdot \vec{B}\right|$ and to realize the quasi-free limit, need to arrange an observation time t such that $\left|\vec{\mu}_{n} \cdot \vec{B}\right| t \ll 1$ and also $t \ll \tau_{n}$.
- The transition probability reduces to

$$
P_{\bar{n}}(t) \simeq\left(\frac{t}{\tau_{n \bar{n}}}\right)^{2}
$$

- Number of \bar{n} 's produced by $n-\bar{n}$ oscillation is essentially

$$
N_{\bar{n}}=P_{\bar{n}}(t) N_{n}=P_{\bar{n}}(t) \phi_{n} T_{\text {run }}
$$

- Main challenge: Need to establish smaller magnetic fields.

ILL/Grenoble $n-\bar{n}$ Oscillation Search Experiment

In Bound Nuclei

$$
H_{\mathrm{eff}}=\left(\begin{array}{cc}
m_{n}+V_{n} & \delta m \\
\delta m & m_{n}+V_{\bar{n}}
\end{array}\right) \equiv\left(\begin{array}{cc}
m_{n, \mathrm{eff}} & \delta m \\
\delta m & m_{\bar{n}, \mathrm{eff}}
\end{array}\right)
$$

- The nuclear potential is practically real, $V_{n}=V_{n R}$, but $V_{\bar{n}}$ has a large imaginary part $V_{\bar{n}}=V_{\bar{n} R}-i V_{\bar{n} I}$ with $V_{n R}, V_{\bar{n} R}, V_{\bar{n} I} \sim \mathcal{O}(100) \mathrm{MeV}$. [Dover, Gal, Richard (PRC '85); Friedman, Gal (PRD '08)]

In Bound Nuclei

$$
H_{\mathrm{eff}}=\left(\begin{array}{cc}
m_{n}+V_{n} & \delta m \\
\delta m & m_{n}+V_{\bar{n}}
\end{array}\right) \equiv\left(\begin{array}{cc}
m_{n, \mathrm{eff}} & \delta m \\
\delta m & m_{\bar{n}, \mathrm{eff}}
\end{array}\right)
$$

- The nuclear potential is practically real, $V_{n}=V_{n R}$, but $V_{\bar{n}}$ has a large imaginary part $V_{\bar{n}}=V_{\bar{n} R}-i V_{\bar{n} I}$ with $V_{n R}, V_{\bar{n} R}, V_{\bar{n} I} \sim \mathcal{O}(100) \mathrm{MeV}$. [Dover, Gal, Richard (PRC '85); Friedman, Gal (PRD '08)]
- The mixing is strongly suppressed:

$$
\tan (2 \theta)=\frac{2 \delta m}{m_{n, \text { eff }}-m_{\bar{n}, \mathrm{eff}}}=\frac{2 \delta m}{\sqrt{\left(V_{n R}-V_{\bar{n} R}\right)^{2}+V_{\bar{n} I}^{2}}} \ll 1
$$

- Energy eigenvalue for the mostly n mass eigenstate is

$$
E_{1} \simeq m_{n}+V_{n}-i \frac{(\delta m)^{2} V_{\bar{n} I}}{\left(V_{n R}-V_{\bar{n} R}\right)^{2}+V_{\bar{n} I}^{2}}
$$

- The imaginary part leads to matter instability via $n-\bar{n}$ annihilation, whose rate is

$$
\Gamma_{\mathrm{m}}=\frac{1}{\tau_{\mathrm{m}}}=\frac{2(\delta m)^{2}\left|V_{\bar{n} I}\right|}{\left(V_{n R}-V_{\bar{n} R}\right)^{2}+V_{\bar{n} I}^{2}}
$$

In Bound Nuclei

- Since $\tau_{\mathrm{m}} \propto(\delta m)^{-2} \propto \tau_{n \bar{n}}^{2}$, we can write

$$
\tau_{\mathrm{m}}=R \tau_{n \bar{n}}^{2}
$$

- The exact value of R depends on the nucleus, but is of order $10^{23} \sec ^{-1}(\sim 100$ MeV).
- The lower limit on $\tau_{n \bar{n}}$ from free neutron experiments can be translated into a lower bound on τ_{m} and vice versa.

$$
\tau_{\mathrm{m}}>\left(1.6 \times 10^{31} \mathrm{yr}\right)\left(\frac{\tau_{n \bar{n}}}{10^{8} \mathrm{sec}}\right)^{2}\left(\frac{R}{0.5 \times 10^{23} \mathrm{sec}^{-1}}\right)
$$

In Bound Nuclei

- Since $\tau_{\mathrm{m}} \propto(\delta m)^{-2} \propto \tau_{n \bar{n}}^{2}$, we can write

$$
\tau_{\mathrm{m}}=R \tau_{n \bar{n}}^{2}
$$

- The exact value of R depends on the nucleus, but is of order $10^{23} \sec ^{-1}(\sim 100$ MeV).
- The lower limit on $\tau_{n \bar{n}}$ from free neutron experiments can be translated into a lower bound on τ_{m} and vice versa.

$$
\tau_{\mathrm{m}}>\left(1.6 \times 10^{31} \mathrm{yr}\right)\left(\frac{\tau_{n \bar{n}}}{10^{8} \mathrm{sec}}\right)^{2}\left(\frac{R}{0.5 \times 10^{23} \mathrm{sec}^{-1}}\right)
$$

Experiment	$10^{32} n$-yr	$\tau_{m}\left(10^{32} \mathrm{yr}\right)$	$R\left(10^{23} / \mathrm{s}\right)$	$\tau_{n-\bar{n}}\left(10^{8} \mathrm{~s}\right)$
ILL (free- $n)[63]$	n / a	n / a	n / a	0.86
IMB $\left({ }^{16} \mathrm{O}\right)[96]$	3.0	0.24	1.0	0.88
Kamiokande $\left({ }^{16} \mathrm{O}\right)[97]$	3.0	0.43	1.0	1.2
Frejus $\left({ }^{56} \mathrm{Fe}\right)[98]$	5.0	0.65	1.4	1.2
Soudan-2 $\left({ }^{56} \mathrm{Fe}\right)[92]$	21.9	0.72	1.4	1.3
SNO $\left({ }^{2} \mathrm{H}\right)[94]$	0.54	0.30	0.25	1.96
Super-K $\left({ }^{16} \mathrm{O}\right)[93]$	245	1.9	0.517	2.7

Free versus Bound $n-\bar{n}$ Limits

τ (free neutron), seconds

EFT of $n-\bar{n}$ Oscillation

- At the quark level, the $n \rightarrow \bar{n}$ transition is $(u d d) \rightarrow\left(u^{c} d^{c} d^{c}\right)$.
- Mediated by color-singlet, electrically-neutral six-quark operators \mathcal{O}_{i}.
- $H_{\text {eff }}=\int d^{3} x \mathcal{H}_{\text {eff }}$ with $\mathcal{H}_{\text {eff }}=\sum_{i} c_{i} \mathcal{O}_{i}$ and $c_{i} \sim \kappa_{i} / \Lambda^{5}$.
- The transition amplitude is

$$
\delta m=\langle\bar{n}| \mathcal{H}_{\mathrm{eff}}|n\rangle=\frac{1}{\Lambda^{5}} \sum_{i} \kappa_{i}\langle\bar{n}| \mathcal{O}_{i}|n\rangle \sim \frac{\kappa \Lambda_{\mathrm{QCD}}^{6}}{\Lambda^{5}}
$$

- The $n-\bar{n}$ lifetime is then given by

$$
\tau_{n \bar{n}}=\left(2 \times 10^{8} \mathrm{sec}\right)\left(\frac{\Lambda}{4 \times 10^{5} \mathrm{GeV}}\right)^{5}\left(\frac{3 \times 10^{-5} \mathrm{GeV}^{6}}{\left.\left|\sum_{i} \kappa_{i}\langle\bar{n}| \mathcal{O}_{i}\right| n\right\rangle \mid}\right)
$$

- Typical value for $\langle\bar{n}| \mathcal{O}_{i}|n\rangle \mid \sim \mathcal{O}\left(10^{-4}\right) \mathrm{GeV}^{6} \simeq \Lambda_{\mathrm{QCD}}^{6}$ in the MIT bag model. [Rao, Shrock (PLB '82, NPB '84)]
- Recent progress using lattice gauge theory. [Buchoft, Schroeder, Wasem ' '12; Rinaldi et al. '19]

EFT of $n-\bar{n}$ Oscillation

- A complete basis of six-quark operators can be constructed from

$$
\begin{aligned}
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{1}=\left(u_{i}^{T} C P_{\chi_{1}} u_{j}\right)\left(d_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{\{i j\}\{k\}\}\{m n\}}^{(\text {symm })}, \\
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{2}=\left(u_{i}^{T} C P_{\chi_{1}} d_{j}\right)\left(u_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{\{i j\}\{k\}\}\{m n\}}^{(s y m m)}, \\
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{3}=\left(u_{i}^{T} C P_{\chi_{1}} d_{j}\right)\left(u_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{[i j][k]\{m n\}}^{\text {(asym }}
\end{aligned}
$$

where quark spinor indices are implicitly contracted in the parentheses, the $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$ are chiral projectors, and the quark color tensors are

$$
\begin{aligned}
T_{\{i j\}\{k l\}\{m n\}}^{(\mathrm{symm})} & =\varepsilon_{i k m} \varepsilon_{j l n}+\varepsilon_{j k m} \varepsilon_{i l n}+\varepsilon_{i l m} \varepsilon_{j k n}+\varepsilon_{j l m} \varepsilon_{i k n}=T^{S_{1} S_{2} S_{3}}, \\
T_{[i j][k l]\{m n\}}^{(\mathrm{asym})} & =\varepsilon_{i j m} \varepsilon_{k l n}+\varepsilon_{i j n} \varepsilon_{k l m}=T^{A_{1} A_{2} S_{3}},
\end{aligned}
$$

EFT of $n-\bar{n}$ Oscillation

- A complete basis of six-quark operators can be constructed from

$$
\begin{aligned}
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{1}=\left(u_{i}^{T} C P_{\chi_{1}} u_{j}\right)\left(d_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{\{i j\}\{k l\}\{m n\}}^{(\mathrm{symm})}, \\
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{2}=\left(u_{i}^{T} C P_{\chi_{1}} d_{j}\right)\left(u_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{\{i j\}\{k l\}\{m n\}}^{(\mathrm{symm})}, \\
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{3}=\left(u_{i}^{T} C P_{\chi_{1}} d_{j}\right)\left(u_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{[i j][k l]\{m n\}}^{(\operatorname{sism})}
\end{aligned}
$$

where quark spinor indices are implicitly contracted in the parentheses, the $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$ are chiral projectors, and the quark color tensors are

$$
\begin{aligned}
T_{\{i j\}\{k l\}\{m n\}}^{(\mathrm{symm})} & =\varepsilon_{i k m} \varepsilon_{j l n}+\varepsilon_{j k m} \varepsilon_{i l n}+\varepsilon_{i l m} \varepsilon_{j k n}+\varepsilon_{j l m} \varepsilon_{i k n}=T^{S_{1} S_{2} S_{3}} \\
T_{[i j][k l]\{m n\}}^{(\mathrm{asym})} & =\varepsilon_{i j m} \varepsilon_{k l n}+\varepsilon_{i j n} \varepsilon_{k l m}=T^{A_{1} A_{2} S_{3}}
\end{aligned}
$$

- In the irreducible representations of the chiral isospin,

$$
\begin{array}{ll}
\left(\mathbf{1}_{L}, \mathbf{3}_{R}\right): & Q_{1}=-4 \mathcal{O}_{R R R}^{3}, \quad Q_{2}=-4 \mathcal{O}_{L R R}^{3}, \quad Q_{3}=-4 \mathcal{O}_{L L R}^{3} \\
\left(\mathbf{1}_{L}, \mathbf{7}_{R}\right): & Q_{4}=-\frac{4}{5} \mathcal{O}_{R R R}^{1}-\frac{16}{5} \mathcal{O}_{R R R}^{2}, \\
\left(\mathbf{5}_{L}, \mathbf{3}_{R}\right): & Q_{5}=\mathcal{O}_{R L L}^{1}, \quad Q_{6}=-4 \mathcal{O}_{R L L}, \quad Q_{7}=-\frac{4}{3} \mathcal{O}_{L L R}^{1}-\frac{8}{3} \mathcal{O}_{L L R}^{2}
\end{array}
$$

EFT of $n-\bar{n}$ Oscillation

- A complete basis of six-quark operators can be constructed from

$$
\begin{aligned}
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{1}=\left(u_{i}^{T} C P_{\chi_{1}} u_{j}\right)\left(d_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{\{i j\}\{k l\}\{m n\}}^{(\text {symm })}, \\
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{2}=\left(u_{i}^{T} C P_{\chi_{1}} d_{j}\right)\left(u_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{\{i j\}\{k l\}\{m n\}}^{(\operatorname{symm})}, \\
& \mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{3}=\left(u_{i}^{T} C P_{\chi_{1}} d_{j}\right)\left(u_{k}^{T} C P_{\chi_{2}} d_{l}\right)\left(d_{m}^{T} C P_{\chi_{3}} d_{n}\right) T_{[i j][k l]\{m n\}}^{(\operatorname{sism})}
\end{aligned}
$$

where quark spinor indices are implicitly contracted in the parentheses, the $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$ are chiral projectors, and the quark color tensors are

$$
\begin{aligned}
T_{\{i j\}\{k l\}\{m n\}}^{(\mathrm{symm})} & =\varepsilon_{i k m} \varepsilon_{j l n}+\varepsilon_{j k m} \varepsilon_{i l n}+\varepsilon_{i l m} \varepsilon_{j k n}+\varepsilon_{j l m} \varepsilon_{i k n}=T^{S_{1} S_{2} S_{3}} \\
T_{[i j][k l]\{m n\}}^{(\mathrm{asym})} & =\varepsilon_{i j m} \varepsilon_{k l n}+\varepsilon_{i j n} \varepsilon_{k l m}=T^{A_{1} A_{2} S_{3}},
\end{aligned}
$$

- In the irreducible representations of the chiral isospin,

$$
\begin{array}{ll}
\left(\mathbf{1}_{L}, \mathbf{3}_{R}\right): & Q_{1}=-4 \mathcal{O}_{R R R}^{3}, \quad Q_{2}=-4 \mathcal{O}_{L R R}^{3}, \quad Q_{3}=-4 \mathcal{O}_{L L R}^{3} \\
\left(\mathbf{1}_{L}, \mathbf{7}_{R}\right): & Q_{4}=-\frac{4}{5} \mathcal{O}_{R R R}^{1}-\frac{16}{5} \mathcal{O}_{R R R}^{2}, \\
\left(\mathbf{5}_{L}, \mathbf{3}_{R}\right): & Q_{5}=\mathcal{O}_{R L L}^{1}, \quad Q_{6}=-4 \mathcal{O}_{R L L}, \quad Q_{7}=-\frac{4}{3} \mathcal{O}_{L L R}^{1}-\frac{8}{3} \mathcal{O}_{L L R}^{2}
\end{array}
$$

Operator	$\mathcal{M}_{I}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})$,	$\mathcal{M}_{I}^{\overline{\mathrm{MS}}}(700 \mathrm{TeV})$,	$\frac{\mathcal{M}_{I}^{\overline{\text { MS }}}(2 \mathrm{GeV})}{\text { MIT bag A }}$	$\frac{\mathcal{M}_{I}^{\overline{\text { MS }}}(2 \mathrm{GeV})}{\text { MIT bag B }}$
Q_{1}	$-46(13) \times 10^{-5} \mathrm{GeV}^{6}$	$-26(7) \times 10^{-5} \mathrm{GeV}^{6}$	4.2	5.2
Q_{2}	$95(17) \times 10^{-5} \mathrm{GeV}^{6}$	$144(26) \times 10^{-5} \mathrm{GeV}^{6}$	7.5	8.7
Q_{3}	$-50(12) \times 10^{-5} \mathrm{GeV}^{6}$	$-47(11) \times 10^{-5} \mathrm{GeV}^{6}$	5.1	6.1
Q_{5}	$-1.06(48) \times 10^{-5} \mathrm{GeV}^{6}$	$-0.23(10) \times 10^{-5} \mathrm{GeV}^{6}$	-0.84	1.6

UV-Complete Model of $n-\bar{n}$ Oscillation

[Mohapatra, Marshak (PRL '80); Babu, BD, Mohapatra (PRD '08)]

- Take $\Delta(\mathbf{1}, \mathbf{3}, \mathbf{1 0}) \oplus \bar{\Delta}^{c}(\mathbf{1}, \mathbf{3}, \overline{\mathbf{1 0}})$ Higgs under Pati-Salam gauge group $S U(2)_{L} \times S U(2)_{R} \times S U(4)_{c}$.
- Under SM gauge group $S U(2)_{L} \times U(1)_{Y} \times S U(3)_{c}$, decomposes as

$$
\begin{aligned}
\Delta(1,3, \overline{10})= & \Delta_{u u}\left(1,-\frac{8}{3}, 6^{*}\right) \oplus \Delta_{u d}\left(1,-\frac{2}{3}, 6^{*}\right) \oplus \Delta_{d d}\left(1,+\frac{4}{3}, 6^{*}\right) \oplus \Delta_{u e}\left(1, \frac{2}{3}, 3^{*}\right) \\
& \oplus \Delta_{u \nu}\left(1,-\frac{4}{3}, 3^{*}\right) \oplus \Delta_{d e}\left(1, \frac{8}{3}, 3^{*}\right) \oplus \Delta_{d \nu}\left(1, \frac{2}{3}, 3^{*}\right) \oplus \Delta_{e e}(1,4,1) \\
& \oplus \Delta_{\nu e}(1,2,1) \oplus \Delta_{\nu \nu}(1,0,1)
\end{aligned}
$$

Upper Limit on $\tau_{n \bar{n}}$

[Babu, BD, Fortes, Mohapatra (PRD '13)]

Simplified Model of $n-\bar{n}$ Oscillation

- Start with the SM gauge group and add renormalizable terms that violate baryon number.
- Gauge invariance requires introduction of new colored fields.
- A minimal setup: Iso-singlet, color-triplet scalars X_{α} with $Y=+4 / 3$.
- Allows $X_{\alpha} d^{c} d^{c}$ terms in the Lagrangian.
- Need at least two $(\alpha=1,2)$ to produce baryon asymmetry from X decay.

Simplified Model of $n-\bar{n}$ Oscillation

- Start with the SM gauge group and add renormalizable terms that violate baryon number.
- Gauge invariance requires introduction of new colored fields.
- A minimal setup: Iso-singlet, color-triplet scalars X_{α} with $Y=+4 / 3$.
- Allows $X_{\alpha} d^{c} d^{c}$ terms in the Lagrangian.
- Need at least two ($\alpha=1,2$) to produce baryon asymmetry from X decay.
- Total baryon asymmetry vanishes after summing over all flavors of d^{c}. [Kolb, Wolfram (NPB '80)]
- Need additional $\not \mathscr{D}$ interactions.
- Introduce a SM-singlet Majorana fermion ψ (also plays the role of dark matter).

$$
\mathcal{L} \supset \lambda_{\alpha i} X_{\alpha} \psi u_{i}^{c}+\lambda_{\alpha i j}^{\prime} X_{\alpha}^{*} d_{i}^{c} d_{j}^{c}+\frac{1}{2} m_{\psi} \bar{\psi}^{c} \psi+\text { H.c. }
$$

Dark Matter

- Integrate out X_{α} to obtain $\psi u_{i}^{c} d_{j}^{c} d_{k}^{c}$ interaction (assuming $m_{\psi} \ll m_{X}$).
- ψ decays to three quarks (baryons) if $m_{\psi} \gg \mathrm{GeV}$.
- Also $\psi \rightarrow p+e^{-}+\bar{\nu}_{e}$ if $m_{\psi}>m_{p}+m_{e}$.
- Absolutely stable for $m_{\psi}<m_{p}+m_{e}$ (no discrete symmetry required).
- In addition, need $m_{p}<m_{\psi}+m_{e}$ to avoid $p \rightarrow \psi+e^{+}+\nu_{e}$.
- So the viable scenario for ψ to be the DM candidate is

$$
m_{p}-m_{e} \leq m_{\psi} \leq m_{p}+m_{e}
$$

[Allahverdi, BD, Dutta (PLB '18)]

- Evidence for GeV-scale DM?

Dark Matter

- Integrate out X_{α} to obtain $\psi u_{i}^{c} d_{j}^{c} d_{k}^{c}$ interaction (assuming $m_{\psi} \ll m_{X}$).
- ψ decays to three quarks (baryons) if $m_{\psi} \gg \mathrm{GeV}$.
- Also $\psi \rightarrow p+e^{-}+\bar{\nu}_{e}$ if $m_{\psi}>m_{p}+m_{e}$.
- Absolutely stable for $m_{\psi}<m_{p}+m_{e}$ (no discrete symmetry required).
- In addition, need $m_{p}<m_{\psi}+m_{e}$ to avoid $p \rightarrow \psi+e^{+}+\nu_{e}$.
- So the viable scenario for ψ to be the DM candidate is

$$
m_{p}-m_{e} \leq m_{\psi} \leq m_{p}+m_{e}
$$

[Allahverdi, BD, Dutta (PLB '18)]

- Evidence for GeV-scale DM?

nature
 International journal of science

Letter | Published: 28 February 2018
Possible interaction between baryons and dark-matter particles revealed by the first stars

$n-\bar{n}$ Oscillation

- Effective \mathbb{B} operator $\psi u^{c} d^{c} d^{c}$ (integrating out X_{α}). [Babu, Mohapatra, Nasri (PRL'07)]
- Induces $n-\bar{n}$ oscillation for Majorana $\psi(N)$.
- Tree-level amplitude vanishes due to color-antisymmetry.

$n-\bar{n}$ Oscillation

- Effective \mathbb{B} operator $\psi u^{c} d^{c} d^{c}$ (integrating out X_{α}). [Babu, Mohapatra, Nasri (PRL'07)]
- Induces $n-\bar{n}$ oscillation for Majorana $\psi(N)$.
- Tree-level amplitude vanishes due to color-antisymmetry.

- Non-zero amplitude at one-loop level: [BD, Mohapatra (PRD '15)]

- Observable oscillation time for $m_{X} \sim \mathcal{O}(\mathrm{TeV})$:

$$
\tau_{n \bar{n}} \simeq\left(3.0 \times 10^{8} \mathrm{sec}\right)\left(\frac{0.03}{\left|\lambda_{\alpha 1}\right|}\right)^{2}\left(\frac{0.04}{\left|\lambda_{\alpha 13}^{\prime}\right|}\right)^{4}\left(\frac{m_{X}}{1 \mathrm{TeV}}\right)^{6}
$$

Constraint from $n-\bar{n}$

Constraint from $n-\bar{n}$

- There is a lower limit on $\left|\lambda_{13}^{\prime}\right| \gtrsim 10^{-11}$ requiring that X decay temperature is above QCD scale.
- But the corresponding upper limit on $\tau_{n \bar{n}}$ is useless ($10^{62} \mathrm{sec}$).

Complementarity between $n-\bar{n}$ and LHC

[Allahverdi, BD, Dutta (PLB '18)]

Further Complementarity with Dark Matter and Baryogenesis

[Allahverdi, BD, Dutta (PLB '18)]

Further Complementarity with Dark Matter and Baryogenesis

[Allahverdi, BD, Dutta (PLB '18)]

Conclusion

- Baryon number violation is expected in many well-motivated BSM/GUT scenarios.
- Much attention has been given to proton decay experiments.
- $n-\bar{n}$ oscillation deserves equal emphasis (if not more).
- Discovery of $n-\bar{n}$ oscillation would constitute a result of fundamental importance for physics.
- Even a null result in the next generation experiments (like ESS or DUNE) might be sufficient to eliminate a whole class of low-scale baryogenesis models.
- From the nuclear physics side, development of improved models of the antineutron annihilation process and of the propagation of the annihilation products through the nuclear medium would be helpful.
- Also need a more thorough and quantitative analysis of the relationship between free and bound neutron oscillations, including uncertainties due to the strong interaction.
- Also need state-of-the-art calculations of the matrix elements of the six-quark operators.

Conclusion

- Baryon number violation is expected in many well-motivated BSM/GUT scenarios.
- Much attention has been given to proton decay experiments.
- $n-\bar{n}$ oscillation deserves equal emphasis (if not more).
- Discovery of $n-\bar{n}$ oscillation would constitute a result of fundamental importance for physics.
- Even a null result in the next generation experiments (like ESS or DUNE) might be sufficient to eliminate a whole class of low-scale baryogenesis models.
- From the nuclear physics side, development of improved models of the antineutron annihilation process and of the propagation of the annihilation products through the nuclear medium would be helpful.
- Also need a more thorough and quantitative analysis of the relationship between free and bound neutron oscillations, including uncertainties due to the strong interaction.
- Also need state-of-the-art calculations of the matrix elements of the six-quark operators.

