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Too crazy?

n  n transitions — “too crazy”?

But neutral meson |qq〉 states oscillate -

K0, B0
K0, B0

2nd order weak 

  interactions

And neutral fermions can oscillate too -

νµ ντ
…

So why not -

n n
New 

physics
?

Such systems are interferometers, sensitive to small effects. Neutron is

a long-lived neutral particle (qn<10-21e) with a distinct antiparticle and

so can oscillate. No oscillations have been seen yet.

Need interaction beyond the Standard Model that violates Baryon

number (B) by 2 units. Why should such an interaction exist?
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Conservation of Baryon Number

In the Standard Model (SM), conservation of baryon number forbids a neutron
(B = 1) from transforming into an antineutron (B = −1).

Also forbids the decay of the lightest baryon, i.e. proton.

Just like the conservation of electric charge forbids the decay of electron.

But conservation of electric charge is closely connected with U(1)em gauge
symmetry (Noether’s theorem).

If same idea worked for B, we expect conservation of “baryonic” charge to be
associated with a new long-range force coupled to B.

No experimental evidence so far!

Strong constraints on any new long-range force coupled to B.
[Schlamminger et al. (PRL ’08); Cowsik et al. ’18; Agarwalla, Bustamante (PRL ’18)]
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Baryon Number Violation

From the SM point of view, both B and L are
“accidental” global symmetries.

No special reason why they should be conserved
beyond SM.

Even in the SM, B + L is violated by
non-perturbative sphaleron processes, and it’s only
the B − L combination that is conserved.

Sphalerons play an important role in explaining the
primordial baryon asymmetry (baryogenesis).

However, the sphaleron-induced B-violation is
negligible for T � vEW to have any observable
effects in lab.
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Selection Rules

Conservation of angular momentum requires that spin of nucleon should be
transferred to another fermion (lepton or baryon).

Leads to the selection rule ∆B = ±∆L, or |∆(B − L)| = 0, 2.

In the SM, ∆(B − L) = 0, or ∆B = +∆L = 0 (e.g. neutron decay).

Second possibility: |∆(B − L)| = 2, which can be realized in three ways:

∆B = −∆L = 1 (e.g. proton decay)
|∆B| = 2 (e.g. dinucleon decay, n− n̄ oscillation) – This talk

|∆L| = 2 (e.g. Majorana mass for neutrino, 0νββ) – Talk by E. Mereghetti

Conservation or violation of B − L determines the mechanism of baryon
instability.

Connected with the Majorana nature of neutrino mass. [Mohapatra, Marshak (PRL ’80)]
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∆B = 1 versus ∆B = 2

∆B = 1

Proton decay

Induced by dimension-6 operator
QQQL.

Amplitude ∝ Λ−2.

τp & 1034 yr implies Λ & 1015 GeV.

Proton decay requires GUT-scale
physics.

[Nath, Perez (Phys. Rep. ’07)]
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Figure 1: Diagrams responsible for (a) p ! e+⇡0 decay; (b) n ! e�⇡+ decay; and (c) n� n̄
oscillations.

suppressed by two powers of the cuto↵ ⇤p. Here color contraction, which is unique, should

be understood. Similarly the decay n ! e�⇡+ arises from the dimension seven e↵ective

Lagrangian given by [7, 8]

Le↵(n ! e�⇡+) =
hH0i
⇤3

n

[ĉ5 (dRdR)(dLec
L) + ĉ6 (dRdR)(dc

LeL)⇤]

+
1

⇤3
n

⇥
ĉ7 (ēL�µdL)(dc

L@
µdc

L)⇤ + ĉ8 (dc
L@µeL)⇤(d̄c

L�
µdL) + ĉ9 (dc

L@µd
c
L)⇤(d̄c

L�
µec

L)
⇤
. (3)

Note that these Lagrangian terms involve a vacuum expectation value of the Standard Model

Higgs field, hH0i ' 174 GeV, or a derivative which would yield a light fermion mass in

the decay amplitude, and thus are suppressed by three powers of a cuto↵ scale ⇤n. (For

applications of such d = 7 terms to nucleon decay, baryogenesis and collider signals see Ref.

[8, 9].) Neutron-antineutron oscillations arise from the dimension nine e↵ective Lagrangian

suppressed by five powers of a cuto↵ scale ⇤nn̄ and is given by

Le↵(n � n̄) =
1

⇤5
nn̄

[c01 (uRdR)(uRdR)(dRdR) + ...] . (4)

Here there are a total of eighteen terms [10] which obey four constraint equations [11]. For

brevity we have not displayed them all. These terms are all similar to the term shown in

Eq. (4), but di↵er in their chiral structure, Lorentz contraction as well as color contraction.

For our purpose an illustrative term is su�cient.
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∆B = 2

Di-nucleon decay and n− n̄
Induced by dimension-9 operator
QQQQQQ.

Amplitude ∝ Λ−5.

Λ & 100 TeV enough to satisfy
experimental constraints.

n− n̄ oscillation (and conversion)
could come from a TeV-scale new
physics.

[Phillips et al. (Phys. Rep ’16)]
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General Formalism of n− n̄ Oscillation

Start with the Schrödinger equation

i
∂

∂t

(
|n〉
|n̄〉

)
=
(
M11 δm

δm M22

)
︸ ︷︷ ︸

Heff

(
|n〉
|n̄〉

)

with Im(Mjj) = −iλ/2, where λ−1 = τn ' 880 sec is the mean lifetime of a free
neutron.

The difference ∆M ≡M11 −M22 incorporates any interaction effects that
distinguish neutron and antineutron (e.g. ambient external magnetic field).
Mass eigenstates(

|n1〉
|n2〉

)
=
(

cos θ sin θ
− sin θ cos θ

)(
|n〉
|n̄〉

)
with tan(2θ) = 2δm

∆M

Real energy eigenvalues:

E1,2 = 1
2

M11 +M22 ±
√

(∆M)2 + 4(δm)2︸ ︷︷ ︸
∆E


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Transition Probability

Starting with a pure |n〉 state at t = 0, the probability to evolve into the |n̄〉 state at
a later time t is

Pn̄(t) = |〈n̄|n(t)〉|2 = sin2(2θ) sin2
(

∆E t

2

)
e−λt

=
[

4(δm)2

(∆E)2

]
sin2

(
∆E t

2

)
e−λt

Quasi-free limit ∆E t� 1:

Pn̄(t) ∼ (δm t)2e−λt =
(

t

τnn̄

)2
e−λt

where τnn̄ = 1/|δm| is the oscillation lifetime.

Current experimental limits give τnn̄ & 108 sec (or |δm| . 10−29 MeV), so
τnn̄ � τn.
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In Field-Free Vacuum

In this case, ∆M = 0 and

Heff =
(
mn − iλ/2 δm

δm mn − iλ/2

)
Leads to the mass eigenstates |n±〉 = (|n〉 ± |n̄〉)/

√
2 with eigenvalues

(mn ± δm)− iλ/2 and maximal mixing θ = π/4.

The oscillation probability is simply

Pn̄(t) = sin2
(

t

τnn̄

)
e−λt

Never realized in practice.
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In a Static Ambient Magnetic Field

The n and n̄ interact with the external ~B field via their magnetic dipole moments
~µn,n̄, where µn = −µn̄ = −1.91µN and µN = e/(2mN ) = 3.15× 10−14 MeV/T.

Heff =
(
mn − ~µn · ~B − iλ/2 δm

δm mn + ~µn · ~B − iλ/2

)
Leads to ∆M = −2 ~µn · ~B � δm, even for a reduced magnetic field of | ~B| ∼ 10−8

T (as in the ILL experiment), for which |~µn · ~B| ' 10−21 MeV, as opposed to
|δm| . 10−29 MeV.

∆E ' 2|~µn · ~B| and to realize the quasi-free limit, need to arrange an observation
time t such that |~µn · ~B|t� 1 and also t� τn.

The transition probability reduces to

Pn̄(t) '
(

t

τnn̄

)2

Number of n̄’s produced by n− n̄ oscillation is essentially

Nn̄ = Pn̄(t)Nn = Pn̄(t)φnTrun

Main challenge: Need to establish smaller magnetic fields.
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ILL/Grenoble n− n̄ Oscillation Search Experiment

Figure 1: The ILL n�n̄ oscillation search experiment. Details of the detector
are included in Fig. 7 [90].

~ 600 m/s
n
v

Bent n-guide 58Ni coated,
L ~ 63 m, 6 q12 cm2

Figure 2: Configuration of the horizontal n � n̄ search experiment at
ILL/Grenoble [63].

32
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In Bound Nuclei

Heff =
(
mn + Vn δm

δm mn + Vn̄

)
≡
(
mn,eff δm

δm mn̄,eff

)
The nuclear potential is practically real, Vn = VnR, but Vn̄ has a large imaginary
part Vn̄ = Vn̄R − iVn̄I with VnR, Vn̄R, Vn̄I ∼ O(100) MeV. [Dover, Gal, Richard (PRC ’85);

Friedman, Gal (PRD ’08)]

The mixing is strongly suppressed:

tan(2θ) = 2δm
mn,eff −mn̄,eff

= 2δm√
(VnR − Vn̄R)2 + V 2

n̄I

� 1

Energy eigenvalue for the mostly n mass eigenstate is

E1 ' mn + Vn − i
(δm)2Vn̄I

(VnR − Vn̄R)2 + V 2
n̄I

The imaginary part leads to matter instability via n− n̄ annihilation, whose rate is

Γm = 1
τm

=
2(δm)2|Vn̄I|

(VnR − Vn̄R)2 + V 2
n̄I
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In Bound Nuclei

Since τm ∝ (δm)−2 ∝ τ2
nn̄, we can write

τm = R τ2
nn̄

The exact value of R depends on the nucleus, but is of order 1023 sec−1 (∼ 100
MeV).
The lower limit on τnn̄ from free neutron experiments can be translated into a
lower bound on τm and vice versa.

τm > (1.6× 1031 yr)
(

τnn̄
108 sec

)2 ( R

0.5× 1023 sec−1

)

Experiment 1032 n-yr ⌧m(1032 yr) R(1023/s) ⌧n�n̄(108 s)
ILL (free-n) [63] n/a n/a n/a 0.86
IMB (16O) [96] 3.0 0.24 1.0 0.88

Kamiokande (16O) [97] 3.0 0.43 1.0 1.2
Frejus (56Fe) [98] 5.0 0.65 1.4 1.2

Soudan-2 (56Fe) [92] 21.9 0.72 1.4 1.3
SNO (2H) [94] 0.54 0.30 0.25 1.96

Super-K (16O) [93] 245 1.9 0.517 2.7

Table 1: Neutron-antineutron lifetime lower limits (90% CL).

oscillation time from the measured lifetime limit for the absence of 56Fe nuclei
decaying into multi-pion final states of ⌧m > 0.72⇥1032 years. This limit and
the limits from other previous and more recent bound neutron experiments
are given in Table 1 along with the best limit for free neutron oscillation time
obtained in the ILL reactor experiment [63].

All experiments in this table possess detection e�ciencies from 10-50%
and su↵er from irreducible backgrounds generated by the interactions of at-
mospheric neutrinos in the underground detectors. In the presence of irre-
ducible backgrounds it is possible to set higher limits for the nuclear lifetime,
but it is impossible to discover a new e↵ect unambiguously with a modest
improvement of detector mass or exposure time.

Table 1 also gives limits obtained recently by the SNO [94] (preliminary
result based on a fraction of total statistics) and Super-K [93] collaborations.
The limit from the SNO detector is close to the limit obtained by the much
larger Super-K experiment partially due to smaller nuclear suppression factor
for deuterium. A more recent evaluation of this factor from a field-theoretical
approach is given in recent publications [99], where the role of the possible
spin structure of the p � n̄ annihilation amplitude has been studied as well.
The SNO result can be improved using the complete SNO data set, which is
a factor of 4 times larger than the sample used in the existing analysis. A
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the deuteron is a simple enough system to imagine the possibility of a much
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The limit on the free n � n̄ oscillation time from the recent Super-
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In Bound Nuclei

Since τm ∝ (δm)−2 ∝ τ2
nn̄, we can write

τm = R τ2
nn̄
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(

τnn̄
108 sec

)2 ( R

0.5× 1023 sec−1
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Free versus Bound n− n̄ Limits

Figure 2: :

Comparision of free neutron oscillation time vs nuclear instability life time
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EFT of n− n̄ Oscillation

At the quark level, the n→ n̄ transition is (udd)→ (ucdcdc).
Mediated by color-singlet, electrically-neutral six-quark operators Oi.
Heff =

∫
d3xHeff with Heff =

∑
i
ciOi and ci ∼ κi/Λ5.

The transition amplitude is

δm = 〈n̄|Heff |n〉 = 1
Λ5

∑
i

κi〈n̄|Oi|n〉 ∼
κΛ6

QCD

Λ5

The n− n̄ lifetime is then given by

τnn̄ = (2× 108 sec)
(

Λ
4× 105 GeV

)5( 3× 10−5 GeV6

|
∑

i
κi〈n̄|Oi|n〉|

)
Typical value for 〈n̄|Oi|n〉| ∼ O(10−4) GeV6 ' Λ6

QCD in the MIT bag model.
[Rao, Shrock (PLB ’82, NPB ’84)]

Recent progress using lattice gauge theory. [Buchoff, Schroeder, Wasem ’12; Rinaldi et al. ’19]
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EFT of n− n̄ Oscillation
A complete basis of six-quark operators can be constructed from
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I. INTRODUCTION

In the contemporary theory of particles and fields, there is no fundamental reason for baryon number B to be
conserved. Quantum e↵ects in the Standard Model (SM) can lead to B violation, and at temperatures above the
electroweak phase transition sphaleron processes can e�ciently convert baryons into antileptons while preserving
(B � L), where L is lepton number. Low-temperature B-violating e↵ects have not been observed experimentally,
and their existence would have significant implications for the stability of nuclear matter. However, the observed
baryon-antibaryon asymmetry of the universe cannot be explained within the SM, which fulfills Sakharov’s conditions
for baryogenesis [1] but does not contain enough baryon number and CP violation to reproduce the observed baryon
asymmetry of the universe [2–5]. Moreover, while (B � L) symmetry is preserved in the SM, it likely has to be
violated in its extensions (BSM theories) aimed at explaining baryogenesis, since electroweak sphaleron transitions
would otherwise “wash out” any net baryon number generated by (B�L)-conserving interactions in the early universe.

Baryon number violation might be experimentally observed in proton decays [6] or neutron-antineutron oscilla-
tions [7–10]. The implications of these two hypothetical processes are fundamentally di↵erent: proton decay changes
baryon number by |�B| = 1 unit and involves (anti)leptons, while neutron-antineutron oscillations change baryon
number by |�B| = 2 units and do not involve leptons. Proton decay, even if observed, does not necessarily violate
(B � L) and may be insu�cient to explain baryogenesis.

Despite decades of searches, neither process has been observed, constraining the strength of B-violating interactions.
In particular models of baryogenesis, this may require higher level of CP violation, which is in turn constrained by
searches for the electric dipole moments of neutrons, nuclei, and atoms. However, excluding theories of baryogenesis
using results from these experiments requires knowledge of nucleon matrix elements of B- and CP -violating e↵ective
interactions expressed in terms of fundamental fields, quarks and gluons. For neutron-antineutron transitions, these
calculations have previously been performed using nucleon models [11]. Modern lattice QCD methods permit model-
independent calculation of these matrix elements. This paper reports the first completely nonperturbative calculation
of the neutron-antineutron transition matrix elements computed in lattice QCD with physical quark masses and chiral
symmetry. In particular, we find that lattice QCD calculations result in substantially larger n-n matrix elements
compared to nucleon model calculations. Our findings imply that n-n oscillation experiments should observe 1-2
orders of magnitude more oscillation events than was previously expected for the same BSM physics parameters.

This paper describes in detail our methodology for computing neutron-antineutron matrix elements of operators
changing baryon number by |�B| = 2 units, which have already been reported in a short publication [12]. In particular,
the operator definitions, symmetry properties of their matrix elements, and their impact on phenomenology within
SU(2)L ⇥ U(1)-symmetric extensions are discussed in Sec. II. The setup for our calculation of these matrix elements
on a lattice is described in Sec. III. Extraction of ground-state matrix elements from lattice correlation functions
and analysis of potential excited state contaminations are performed in Sec. V. Nonperturbative renormalization and
matching to the MS scheme are described in Sec. V. The final results for n-n matrix elements and their uncertainties
are provided in Sec. VI. In Section VII, we discuss briefly the impact of our results in light of other potential sources
of systematic uncertainties that are not controlled in our present calculation.

II. EFFECTIVE n-n INTERACTIONS

A. Chiral basis of n-n operators

A complete basis of color-singlet, electrically-neutral six-quark operators with uudddd flavor structure can be
constructed from operators of the form [11, 13–16]

O1
�1�2�3

= (uT
i CP�1

uj)(d
T
k CP�2

dl)(d
T
mCP�3

dn)T
(symm)
{ij}{kl}{mn} ,

O2
�1�2�3

= (uT
i CP�1

dj)(u
T
k CP�2

dl)(d
T
mCP�3

dn)T
(symm)
{ij}{kl}{mn} ,

O3
�1�2�3

= (uT
i CP�1dj)(u

T
k CP�2dl)(d

T
mCP�3dn)T

(asym)
[ij][kl]{mn}

(1)

where quark spinor indices are implicitly contracted in the parentheses, the PL,R = 1
2 (1 ⌥ �5) are chiral projectors,

and the quark color tensors T are

T
(symm)
{ij}{kl}{mn} = "ikm"jln + "jkm"iln + "ilm"jkn + "jlm"ikn = TS1S2S3 , (2)

T
(asym)
[ij][kl]{mn} = "ijm"kln + "ijn"klm = TA1A2S3 , (3)

where quark spinor indices are implicitly contracted in the parentheses, the
PL,R = (1∓ γ5)/2 are chiral projectors, and the quark color tensors are
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In the irreducible representations of the chiral isospin,
(1L,3R) : Q1 = −4O3

RRR, Q2 = −4O3
LRR, Q3 = −4O3

LLR

(1L,7R) : Q4 = −
4
5
O1
RRR −
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5
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RRR,

(5L,3R) : Q5 = O1
RLL, Q6 = −4ORLL, Q7 = −

4
3
O1
LLR −

8
3
O2
LLR
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Operator MMS
I (2 GeV), MMS

I (700 TeV),
MMS

I (2 GeV)

MIT bag A

MMS
I (2 GeV)

MIT bag B

Q1 �46(13)⇥ 10�5 GeV6 �26(7)⇥ 10�5 GeV6 4.2 5.2

Q2 95(17)⇥ 10�5 GeV6 144(26)⇥ 10�5 GeV6 7.5 8.7

Q3 �50(12)⇥ 10�5 GeV6 �47(11)⇥ 10�5 GeV6 5.1 6.1

Q5 �1.06(48)⇥ 10�5 GeV6 �0.23(10)⇥ 10�5 GeV6 -0.84 1.6

TABLE V. The first column indicates the chiral basis operators with independent non-zero matrix elements in the isospin
limit. The second column shows the renormalized matrix elements and total uncertainty including statistical and systematic
uncertainties from the bare matrix elements and non-perturbative renormalization factor added in quadrature. Renormalized
results use the MS scheme with Nf = 4 active quark flavors and are obtained through nonperturbative RI-MOM renormalization
and perturbative matching to MS. The third column shows a comparison with the results of the same matrix elements in the
MIT bag model from Ref. [11].

for the electroweak-singlet operator matrix elements M1, M2, and M3 are larger than MIT bag model results with
both parametrizations by factors of 4-8.

The e↵ective Lagrangian for n-n oscillations given in Eq. (30) can be used to parameterize the n-n vacuum transition
rate for a generic BSM theory as

⌧�1
n-n =

��Mn-n

�� = 1

⇤5
BSM

���
X

I=1,2,3

⇣
eCI � ⌘ eCP

I

⌘
MI +

⇣
⌘2 eC5 � ⌘ eCP

5

⌘
M5

��� , (65)

where ⌘ = v2/⇤2
BSM is the ratio of the Higgs v.e.v. and the BSM scale squared. Both the matrix elements M and

the Wilson coe�cients eC(P) are scheme- and scale-dependent, and these dependencies must cancel in ⌧n-n. Below

we present results with coe�cients eC defined in MS scheme. The Wilson coe�cients in Eq. (65) are predicted to be
non-zero in various BSM theories, see Refs. [45–47] for reviews and further refences, and are calculable at tree-level
in QCD at BSM scales µ = ⇤BSM. The n-n vacuum transition rate is given in terms of the above results by

⌧�1
n-n = (10�9 s�1)

✓
700 TeV

⇤BSM

◆5 ��� 4.2(1.1)
⇣
eCMS
1 (µ)� ⌘ eCMS,P

1 (µ)
⌘
� 8.6(1.5)

⇣
eCMS
2 (µ)� ⌘ eCMS,P

2 (µ)
⌘

+ 4.5(1.1)
⇣
eCMS
3 (µ)� ⌘ eCMS,P

3 (µ)
⌘

+ 0.096(43)
⇣
⌘2 eCMS

5 (µ)� ⌘ eCMS,P
5 (µ)

⌘���
µ=2 GeV

.

(66)

To make the prefactor dimensionless, we use the “reference” normalization scale of 700 TeV. Estimates based on
Eq. (66) put BSM theories with scales of ⇤BSM ⇠ 700 TeV and O(1) matching coe�cients within reach of next-
generation experiments that will be able to detect baryon number violation with ⌧�1

n-n � 109 s [48–51]. To more
precisely assess the expected signatures of theories with B-violation at ⇤BSM ⇠ 700 TeV, the operators can be evolved
to µ = ⇤BSM using the results of Refs. [16, 17],

MMS
1 (700 TeV) = �26(7)(1)⇥ 10�5 GeV6

MMS
2 (700 TeV) = 144(23)(11)⇥ 10�5 GeV6

MMS
3 (700 TeV) = �47(9)(6)⇥ 10�5 GeV6

MMS
5 (700 TeV) = �0.23(10)(3)⇥ 10�5 GeV6.

(67)

The n-n transition rate can be expressed in terms of the matrix elements at this scale as

⌧�1
n-n = (10�9 s�1)

✓
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5 (µ)

⌘���
µ=700 TeV

.

(68)

This result can be combined with tree-level BSM matching results for CMS
I (700 TeV) to extract constraints on BSM

theory parameters from experimental constraints on n-n oscillations.

VII. CONCLUSION

We have performed the first lattice QCD calculation of the renormalized neutron-antineutron transition matrix
elements needed to extract BSM physics constraints from n-n oscillation experiments. The precision of our final results

[Rinaldi et al. ’19]
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where quark spinor indices are implicitly contracted in the parentheses, the PL,R = 1
2 (1 ⌥ �5) are chiral projectors,

and the quark color tensors T are
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(symm)
{ij}{kl}{mn} = "ikm"jln + "jkm"iln + "ilm"jkn + "jlm"ikn = TS1S2S3 , (2)

T
(asym)
[ij][kl]{mn} = "ijm"kln + "ijn"klm = TA1A2S3 , (3)

In the irreducible representations of the chiral isospin,
(1L,3R) : Q1 = −4O3

RRR, Q2 = −4O3
LRR, Q3 = −4O3

LLR

(1L,7R) : Q4 = −
4
5
O1
RRR −

16
5
O2
RRR,

(5L,3R) : Q5 = O1
RLL, Q6 = −4ORLL, Q7 = −

4
3
O1
LLR −

8
3
O2
LLR

22

Operator MMS
I (2 GeV), MMS

I (700 TeV),
MMS

I (2 GeV)

MIT bag A

MMS
I (2 GeV)

MIT bag B

Q1 �46(13)⇥ 10�5 GeV6 �26(7)⇥ 10�5 GeV6 4.2 5.2

Q2 95(17)⇥ 10�5 GeV6 144(26)⇥ 10�5 GeV6 7.5 8.7

Q3 �50(12)⇥ 10�5 GeV6 �47(11)⇥ 10�5 GeV6 5.1 6.1

Q5 �1.06(48)⇥ 10�5 GeV6 �0.23(10)⇥ 10�5 GeV6 -0.84 1.6

TABLE V. The first column indicates the chiral basis operators with independent non-zero matrix elements in the isospin
limit. The second column shows the renormalized matrix elements and total uncertainty including statistical and systematic
uncertainties from the bare matrix elements and non-perturbative renormalization factor added in quadrature. Renormalized
results use the MS scheme with Nf = 4 active quark flavors and are obtained through nonperturbative RI-MOM renormalization
and perturbative matching to MS. The third column shows a comparison with the results of the same matrix elements in the
MIT bag model from Ref. [11].

for the electroweak-singlet operator matrix elements M1, M2, and M3 are larger than MIT bag model results with
both parametrizations by factors of 4-8.

The e↵ective Lagrangian for n-n oscillations given in Eq. (30) can be used to parameterize the n-n vacuum transition
rate for a generic BSM theory as

⌧�1
n-n =

��Mn-n

�� = 1

⇤5
BSM

���
X

I=1,2,3

⇣
eCI � ⌘ eCP

I

⌘
MI +

⇣
⌘2 eC5 � ⌘ eCP

5

⌘
M5

��� , (65)

where ⌘ = v2/⇤2
BSM is the ratio of the Higgs v.e.v. and the BSM scale squared. Both the matrix elements M and

the Wilson coe�cients eC(P) are scheme- and scale-dependent, and these dependencies must cancel in ⌧n-n. Below

we present results with coe�cients eC defined in MS scheme. The Wilson coe�cients in Eq. (65) are predicted to be
non-zero in various BSM theories, see Refs. [45–47] for reviews and further refences, and are calculable at tree-level
in QCD at BSM scales µ = ⇤BSM. The n-n vacuum transition rate is given in terms of the above results by
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⌘���
µ=2 GeV

.

(66)

To make the prefactor dimensionless, we use the “reference” normalization scale of 700 TeV. Estimates based on
Eq. (66) put BSM theories with scales of ⇤BSM ⇠ 700 TeV and O(1) matching coe�cients within reach of next-
generation experiments that will be able to detect baryon number violation with ⌧�1

n-n � 109 s [48–51]. To more
precisely assess the expected signatures of theories with B-violation at ⇤BSM ⇠ 700 TeV, the operators can be evolved
to µ = ⇤BSM using the results of Refs. [16, 17],

MMS
1 (700 TeV) = �26(7)(1)⇥ 10�5 GeV6

MMS
2 (700 TeV) = 144(23)(11)⇥ 10�5 GeV6

MMS
3 (700 TeV) = �47(9)(6)⇥ 10�5 GeV6

MMS
5 (700 TeV) = �0.23(10)(3)⇥ 10�5 GeV6.

(67)

The n-n transition rate can be expressed in terms of the matrix elements at this scale as
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(68)

This result can be combined with tree-level BSM matching results for CMS
I (700 TeV) to extract constraints on BSM

theory parameters from experimental constraints on n-n oscillations.

VII. CONCLUSION

We have performed the first lattice QCD calculation of the renormalized neutron-antineutron transition matrix
elements needed to extract BSM physics constraints from n-n oscillation experiments. The precision of our final results
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EFT of n− n̄ Oscillation
A complete basis of six-quark operators can be constructed from
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I. INTRODUCTION

In the contemporary theory of particles and fields, there is no fundamental reason for baryon number B to be
conserved. Quantum e↵ects in the Standard Model (SM) can lead to B violation, and at temperatures above the
electroweak phase transition sphaleron processes can e�ciently convert baryons into antileptons while preserving
(B � L), where L is lepton number. Low-temperature B-violating e↵ects have not been observed experimentally,
and their existence would have significant implications for the stability of nuclear matter. However, the observed
baryon-antibaryon asymmetry of the universe cannot be explained within the SM, which fulfills Sakharov’s conditions
for baryogenesis [1] but does not contain enough baryon number and CP violation to reproduce the observed baryon
asymmetry of the universe [2–5]. Moreover, while (B � L) symmetry is preserved in the SM, it likely has to be
violated in its extensions (BSM theories) aimed at explaining baryogenesis, since electroweak sphaleron transitions
would otherwise “wash out” any net baryon number generated by (B�L)-conserving interactions in the early universe.

Baryon number violation might be experimentally observed in proton decays [6] or neutron-antineutron oscilla-
tions [7–10]. The implications of these two hypothetical processes are fundamentally di↵erent: proton decay changes
baryon number by |�B| = 1 unit and involves (anti)leptons, while neutron-antineutron oscillations change baryon
number by |�B| = 2 units and do not involve leptons. Proton decay, even if observed, does not necessarily violate
(B � L) and may be insu�cient to explain baryogenesis.

Despite decades of searches, neither process has been observed, constraining the strength of B-violating interactions.
In particular models of baryogenesis, this may require higher level of CP violation, which is in turn constrained by
searches for the electric dipole moments of neutrons, nuclei, and atoms. However, excluding theories of baryogenesis
using results from these experiments requires knowledge of nucleon matrix elements of B- and CP -violating e↵ective
interactions expressed in terms of fundamental fields, quarks and gluons. For neutron-antineutron transitions, these
calculations have previously been performed using nucleon models [11]. Modern lattice QCD methods permit model-
independent calculation of these matrix elements. This paper reports the first completely nonperturbative calculation
of the neutron-antineutron transition matrix elements computed in lattice QCD with physical quark masses and chiral
symmetry. In particular, we find that lattice QCD calculations result in substantially larger n-n matrix elements
compared to nucleon model calculations. Our findings imply that n-n oscillation experiments should observe 1-2
orders of magnitude more oscillation events than was previously expected for the same BSM physics parameters.

This paper describes in detail our methodology for computing neutron-antineutron matrix elements of operators
changing baryon number by |�B| = 2 units, which have already been reported in a short publication [12]. In particular,
the operator definitions, symmetry properties of their matrix elements, and their impact on phenomenology within
SU(2)L ⇥ U(1)-symmetric extensions are discussed in Sec. II. The setup for our calculation of these matrix elements
on a lattice is described in Sec. III. Extraction of ground-state matrix elements from lattice correlation functions
and analysis of potential excited state contaminations are performed in Sec. V. Nonperturbative renormalization and
matching to the MS scheme are described in Sec. V. The final results for n-n matrix elements and their uncertainties
are provided in Sec. VI. In Section VII, we discuss briefly the impact of our results in light of other potential sources
of systematic uncertainties that are not controlled in our present calculation.

II. EFFECTIVE n-n INTERACTIONS

A. Chiral basis of n-n operators

A complete basis of color-singlet, electrically-neutral six-quark operators with uudddd flavor structure can be
constructed from operators of the form [11, 13–16]

O1
�1�2�3

= (uT
i CP�1

uj)(d
T
k CP�2

dl)(d
T
mCP�3

dn)T
(symm)
{ij}{kl}{mn} ,
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= (uT
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dj)(u
T
k CP�2

dl)(d
T
mCP�3

dn)T
(symm)
{ij}{kl}{mn} ,

O3
�1�2�3

= (uT
i CP�1dj)(u

T
k CP�2dl)(d

T
mCP�3dn)T

(asym)
[ij][kl]{mn}

(1)

where quark spinor indices are implicitly contracted in the parentheses, the PL,R = 1
2 (1 ⌥ �5) are chiral projectors,

and the quark color tensors T are

T
(symm)
{ij}{kl}{mn} = "ikm"jln + "jkm"iln + "ilm"jkn + "jlm"ikn = TS1S2S3 , (2)

T
(asym)
[ij][kl]{mn} = "ijm"kln + "ijn"klm = TA1A2S3 , (3)

where quark spinor indices are implicitly contracted in the parentheses, the
PL,R = (1∓ γ5)/2 are chiral projectors, and the quark color tensors are
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Operator MMS
I (2 GeV), MMS

I (700 TeV),
MMS

I (2 GeV)

MIT bag A

MMS
I (2 GeV)

MIT bag B

Q1 �46(13)⇥ 10�5 GeV6 �26(7)⇥ 10�5 GeV6 4.2 5.2

Q2 95(17)⇥ 10�5 GeV6 144(26)⇥ 10�5 GeV6 7.5 8.7

Q3 �50(12)⇥ 10�5 GeV6 �47(11)⇥ 10�5 GeV6 5.1 6.1

Q5 �1.06(48)⇥ 10�5 GeV6 �0.23(10)⇥ 10�5 GeV6 -0.84 1.6

TABLE V. The first column indicates the chiral basis operators with independent non-zero matrix elements in the isospin
limit. The second column shows the renormalized matrix elements and total uncertainty including statistical and systematic
uncertainties from the bare matrix elements and non-perturbative renormalization factor added in quadrature. Renormalized
results use the MS scheme with Nf = 4 active quark flavors and are obtained through nonperturbative RI-MOM renormalization
and perturbative matching to MS. The third column shows a comparison with the results of the same matrix elements in the
MIT bag model from Ref. [11].

for the electroweak-singlet operator matrix elements M1, M2, and M3 are larger than MIT bag model results with
both parametrizations by factors of 4-8.

The e↵ective Lagrangian for n-n oscillations given in Eq. (30) can be used to parameterize the n-n vacuum transition
rate for a generic BSM theory as
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where ⌘ = v2/⇤2
BSM is the ratio of the Higgs v.e.v. and the BSM scale squared. Both the matrix elements M and

the Wilson coe�cients eC(P) are scheme- and scale-dependent, and these dependencies must cancel in ⌧n-n. Below

we present results with coe�cients eC defined in MS scheme. The Wilson coe�cients in Eq. (65) are predicted to be
non-zero in various BSM theories, see Refs. [45–47] for reviews and further refences, and are calculable at tree-level
in QCD at BSM scales µ = ⇤BSM. The n-n vacuum transition rate is given in terms of the above results by
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(66)

To make the prefactor dimensionless, we use the “reference” normalization scale of 700 TeV. Estimates based on
Eq. (66) put BSM theories with scales of ⇤BSM ⇠ 700 TeV and O(1) matching coe�cients within reach of next-
generation experiments that will be able to detect baryon number violation with ⌧�1

n-n � 109 s [48–51]. To more
precisely assess the expected signatures of theories with B-violation at ⇤BSM ⇠ 700 TeV, the operators can be evolved
to µ = ⇤BSM using the results of Refs. [16, 17],

MMS
1 (700 TeV) = �26(7)(1)⇥ 10�5 GeV6

MMS
2 (700 TeV) = 144(23)(11)⇥ 10�5 GeV6

MMS
3 (700 TeV) = �47(9)(6)⇥ 10�5 GeV6

MMS
5 (700 TeV) = �0.23(10)(3)⇥ 10�5 GeV6.

(67)

The n-n transition rate can be expressed in terms of the matrix elements at this scale as
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(68)

This result can be combined with tree-level BSM matching results for CMS
I (700 TeV) to extract constraints on BSM

theory parameters from experimental constraints on n-n oscillations.

VII. CONCLUSION

We have performed the first lattice QCD calculation of the renormalized neutron-antineutron transition matrix
elements needed to extract BSM physics constraints from n-n oscillation experiments. The precision of our final results
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UV-Complete Model of n− n̄ Oscillation

couplings in the model:

LY = h1Ψ̄LΦ1ΨR + h15Ψ̄LΦ15ΨR + fΨT
RC−1∆RΨR + (R ↔ L) + H.C. (15)

Using standard spontaneous breaking via the vev of (1, 3, 10) to the standard model gauge

group and Φ1,15 to give mass to both to charged fermions and Dirac mass to neutrinos,

we implement the seesaw mechanism for neutrinos. It was shown in ref.[10] that the same

(1, 3, 10) via the potential term Vm leads to n − n̄ oscillation via the diagram in Fig. 3. The

Figure 3: A Feynman diagram contributing to n − n̄ oscillation as discussed in Ref. 8.

Another class of graphs involves two ∆ucdc and one ∆dcdc scalar exchanges.

strength of n − n̄ oscillation is given by:

G∆B=2 =
λf 3

11vBL

M6
∆qq

(16)

We see the fifth power dependence on the seesaw scale since the diquarks are expected to be

17

[Mohapatra, Marshak (PRL ’80); Babu, BD, Mohapatra (PRD ’08)]

Take ∆(1,3,10)⊕ ∆̄c(1,3,10) Higgs under Pati-Salam gauge group
SU(2)L × SU(2)R × SU(4)c.
Under SM gauge group SU(2)L × U(1)Y × SU(3)c, decomposes as

conclusions are given in Section VI. In Appendix A, we present an explicit calculation of

baryon asymmetry generated by using B–conserving vertices in a toy model. This example

shows the consistency of our baryon asymmetry generation mechanism using W boson loops.

II. REVIEW OF THE MODEL

We start by reviewing the basic features of our model [3], based on the quark-lepton unified

gauge group SU(2)L ⇥ SU(2)R ⇥ SU(4)c with SM fermions plus the right-handed neutrino

belonging to (2, 1, 4) � (1, 2, 4) representations of the group in the well known left-right

symmetric way [15]. The Higgs sector of the model consists of (1, 1, 15), (1, 3, 10), (2, 2, 1)

and (2, 2, 15). The first stage of the symmetry breaking is implemented by a (1, 1, 15) Higgs

field which splits the SU(4)c scale Mc from the remaining ones with Mc
>⇠ 1400 TeV [16]

to satisfy the constraint from rare kaon decay: BR(K0
L ! µ±e⌥) < 4.7 ⇥ 10�12 [17]. The

surviving SU(2)L⇥SU(2)R⇥U(1)B�L⇥SU(3)c gauge symmetry is then broken in two stages

down to the SM, i.e. by the Higgs field (1, 3, 1) to the symmetry SU(2)L⇥U(1)I3R
⇥U(1)B�L

which subsequently breaks down to the SM by the Higgs field (1, 3, 10). The second stage

is where the B � L symmetry breaks down and the right-handed neutrinos acquire mass

by the usual seesaw mechanism [11]. We denote this scale by vBL, which is an essential

parameter in our discussion below. It is also possible that the (1, 3, 1) Higgs field is absent

in the spectrum, in which case the SU(2)L ⇥ SU(2)R ⇥ U(1)B�L gauge symmetry breaks

directly down to the SM symmetry via the vacuum expectation value (vev) of the (1, 3, 10)

field. The SM Higgs field is a linear combination of the (2, 2, 1) and (2, 2, 15) Higgs fields.

To discuss the mechanism for baryogenesis in the model, we first note that under SU(2)L⇥
U(1)Y ⇥ SU(3)c, the (1, 3, 10) field, denoted by �, decomposes as

�(1, 3, 10) = �uu(1,�
8

3
, 6⇤) � �ud(1,�

2

3
, 6⇤) � �dd(1, +

4

3
, 6⇤) � �ue(1,

2

3
, 3⇤)

� �u⌫(1,�
4

3
, 3⇤) � �de(1,

8

3
, 3⇤) � �d⌫(1,

2

3
, 3⇤) � �ee(1, 4, 1)

� �⌫e(1, 2, 1) � �⌫⌫(1, 0, 1) . (1)

The last field in the decomposition, �⌫⌫(1, 0, 1), is a neutral complex field whose real part

acquires a vev vBL in the ground state and can be written as �⌫⌫ = vBL + 1p
2
(S + i�). The

field � is absorbed by the B � L gauge boson, while the real scalar S remains as a physical

Higgs particle. It is the decay of this S that will generate baryon asymmetry of the universe.

4
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FIG. 7: Scatter plots for ⌧n�n̄ as a function of the � masses M�ud
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FIG. 8: Scatter plots for ⌧n�n̄ as a function of the real scalar mass MS and the B � L breaking

scale vB�L.

Using all the PSB constraints described in the previous section, we vary all the model pa-

rameters in the allowed range. In particular, we perform a numerical scan (with logarithmic

scale) over the mass parameter MS between 100 GeV and 10 TeV, the B �L breaking scale

vBL from 10 TeV upwards, and the masses M�ud,dd
between MS and vBL. We also vary the

coupling � (the allowed values were found to be between 0.01�1) as well as the overall scale

in the f -matrix given by Eq. (5) (its allowed values were between 0.5 � 1.6).

We obtain an absolute upper limit on the oscillation time of ⌧n�n̄  4.7⇥1010 sec.. This is

demonstrated in Figures 7 and 8 for the most relevant model parameters, namely vBL, M�

and MS. A probability distribution of the predictions for ⌧n�n̄ is shown in Figure 9. Note
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experiments [14]. Note that for vBL
<⇠ 200 TeV, there are no allowed points in our model

since the S ! 6q decay rate no longer remains the dominant decay mode while satisfying
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[Babu, BD, Fortes, Mohapatra (PRD ’13)]
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Simplified Model of n− n̄ Oscillation

Start with the SM gauge group and add renormalizable terms that violate baryon
number.

Gauge invariance requires introduction of new colored fields.

A minimal setup: Iso-singlet, color-triplet scalars Xα with Y = +4/3.

Allows Xαdcdc terms in the Lagrangian.

Need at least two (α = 1, 2) to produce baryon asymmetry from X decay.

Total baryon asymmetry vanishes after summing over all flavors of dc.
[Kolb, Wolfram (NPB ’80)]

Need additional /B interactions.

Introduce a SM-singlet Majorana fermion ψ (also plays the role of dark matter).

L ⊃ λαiXαψuci + λ′αijX
∗
αd

c
id
c
j + 1

2mψψ̄
cψ + H.c.

[Allahverdi, Dutta (PRD ’13); BD, Mohapatra (PRD ’15)]
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Dark Matter

Integrate out Xα to obtain ψucid
c
jd
c
k interaction (assuming mψ � mX ).

ψ decays to three quarks (baryons) if mψ � GeV.
Also ψ → p+ e− + ν̄e if mψ > mp +me.
Absolutely stable for mψ < mp +me (no discrete symmetry required).
In addition, need mp < mψ +me to avoid p→ ψ + e+ + νe.
So the viable scenario for ψ to be the DM candidate is

mp −me ≤ mψ ≤ mp +me .

[Allahverdi, BD, Dutta (PLB ’18)]

Evidence for GeV-scale DM?
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n− n̄ Oscillation

Effective /B operator ψucdcdc (integrating out Xα). [Babu, Mohapatra, Nasri (PRL ’07)]

Induces n− n̄ oscillation for Majorana ψ (N ).
Tree-level amplitude vanishes due to color-antisymmetry.

3

FIG. 1: Tree-level diagram for �B = 2 process induced
by the e↵ective operator (3). All down-type quarks are

denoted by the generic symbol dR.

Na would break both baryon and lepton number by two
units. The starting e↵ective B-violating operator in this
case is NauRdRdR [11] with a strength

LI =
�ai�

0
jk

M2
�

NauR,idR,jdR,k + H.c. (3)

Combining this with the Majorana mass of the RH neu-
trinos, we get an e↵ective �B = 2 operator at tree-level,
as shown in Fig. 1. Thus in this simple extension of SM,
�L = 2 implies �B = 2.

As noted below Eq. (1), due to color anti-symmetry of
the coupling �0, the two down-type quarks coupling to �
must involve di↵erent families. Hence, the leading tree-
level �B = 2 operator must change strange or bottom
quantum number by two units. For example, the strength
of the e↵ective operator with �s = 2 is given by3

L�B=2 =
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16⇡2M4
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✏ijk✏lmn(uT
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�1uR,l)

(dT
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�1sR,k)(dT
R,mC�1sR,n) + H.c., (4)

where i, j, k, l, m, n are color indices. This �s = 2, �B =
2 operator leads to the di-proton decay pp ! K+K+,
whose lifetime is constrained to be ⌧pp!KK � 1.7⇥ 1032

yr [8]. In order to translate this bound into bounds on
couplings, we need to go from six quarks to two pro-
tons. This transition would involve QCD dressing and
has been discussed in the context of MIT bag models [21]
as well as lattice models for QCD [22]. Using the same
dressing factor ⇠ 10�5, we find that for pp ! KK de-
cay rate to be consistent with the current experimental
limit [8], we must have �0

12�a1 . 10�4. Thus, we can
choose �0

12  10�4 to satisfy the di-proton decay con-
straint, while keeping �a1 ⇠ 1 which helps for the pur-
pose of baryogenesis, as discussed in the next section.

Note that as far as the �B = 1 operator is concerned,
there is one operator of the form ⌘LuRdRdR induced by
the exchange of � and Na fields. This could have been
seen from Z2 invariance of the model: it implies also that

3 There are similar operators involving bR. However, these ones
are not of interest for our purpose, since they do not lead to
di-proton decay.

FIG. 2: One loop diagram for n � n̄ oscillation using
�b = 2 operator.

since L is even under this symmetry, the only way it can
combine with the Z2 odd uRdRdR operator is, when it
appears together with the Z2 odd field ⌘. Since ⌘ does not
have a VEV, this operator cannot induce proton decay.
Note however that the ⌘ field could be pair-produced in
colliders via SM Z or photon exchange and would lead
to B-violating final states, as discussed later.

To get n�n̄ oscillation in this model, one has to convert
two strange or bottom quarks to two down quarks. This
will need a �s = 2 or �b = 2 e↵ective interaction. Due
to the constraints from pp ! KK life time, the dominant
contribution comes from the �b = 2 operator, which can
be parameterized as (d̄R�

µbR)2/⇤2. In combination with
the �B = 2 operator shown in Fig. 1, it gives rise to
n � n̄ oscillation at one-loop level, as shown in Fig. 2.
The strength of this n � n̄ operator is given by
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Using ⇤ ⇠ 106 GeV to satisfy the constraints of Bd �Bd

mass di↵erence, we find that ⌧n�n̄ � 3 ⇥ 108 sec, as re-
quired by the current limits [7], if (�a1�

0
13)  10�1. Note

that both these couplings are unsuppressed by FCNC
constraints, and therefore, can be of order ⇠ 1, thus
giving rise to a large n � n̄ amplitude, which is in the
observable range of currently planned experiments.

Due to the fact that the Na’s are identified with RH
neutrinos, this induces a tree level leptonic B-violating
process via the diagram shown in Fig. 3. This leads to
the �B = 2, �L = 2 process pp ! K+K+⌫̄⌫̄. However,
the smallness of the �0

12 coupling as assumed above is
enough to suppress this process to an unobservable level.

IV. NEUTRINO MASS

To understand the origin of neutrino mass in this
model, we first note that the Z2 symmetry forbids the
usual Dirac mass term L�N . The leading contribution
to neutrino mass comes from a one-loop graph involving ⌘
and Na, as suggested in Ref. [9] and shown in Fig. 4. We
assume that masses of the ⌘ Higgs components (denoted

Non-zero amplitude at one-loop level: [BD, Mohapatra (PRD ’15)]
3
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since L is even under this symmetry, the only way it can
combine with the Z2 odd uRdRdR operator is, when it
appears together with the Z2 odd field ⌘. Since ⌘ does not
have a VEV, this operator cannot induce proton decay.
Note however that the ⌘ field could be pair-produced in
colliders via SM Z or photon exchange and would lead
to B-violating final states, as discussed later.

To get n�n̄ oscillation in this model, one has to convert
two strange or bottom quarks to two down quarks. This
will need a �s = 2 or �b = 2 e↵ective interaction. Due
to the constraints from pp ! KK life time, the dominant
contribution comes from the �b = 2 operator, which can
be parameterized as (d̄R�

µbR)2/⇤2. In combination with
the �B = 2 operator shown in Fig. 1, it gives rise to
n � n̄ oscillation at one-loop level, as shown in Fig. 2.
The strength of this n � n̄ operator is given by
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Using ⇤ ⇠ 106 GeV to satisfy the constraints of Bd �Bd

mass di↵erence, we find that ⌧n�n̄ � 3 ⇥ 108 sec, as re-
quired by the current limits [7], if (�a1�

0
13)  10�1. Note

that both these couplings are unsuppressed by FCNC
constraints, and therefore, can be of order ⇠ 1, thus
giving rise to a large n � n̄ amplitude, which is in the
observable range of currently planned experiments.

Due to the fact that the Na’s are identified with RH
neutrinos, this induces a tree level leptonic B-violating
process via the diagram shown in Fig. 3. This leads to
the �B = 2, �L = 2 process pp ! K+K+⌫̄⌫̄. However,
the smallness of the �0

12 coupling as assumed above is
enough to suppress this process to an unobservable level.

IV. NEUTRINO MASS

To understand the origin of neutrino mass in this
model, we first note that the Z2 symmetry forbids the
usual Dirac mass term L�N . The leading contribution
to neutrino mass comes from a one-loop graph involving ⌘
and Na, as suggested in Ref. [9] and shown in Fig. 4. We
assume that masses of the ⌘ Higgs components (denoted

Observable oscillation time for mX ∼ O(TeV):
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since L is even under this symmetry, the only way it can
combine with the Z2 odd uRdRdR operator is, when it
appears together with the Z2 odd field ⌘. Since ⌘ does not
have a VEV, this operator cannot induce proton decay.
Note however that the ⌘ field could be pair-produced in
colliders via SM Z or photon exchange and would lead
to B-violating final states, as discussed later.

To get n�n̄ oscillation in this model, one has to convert
two strange or bottom quarks to two down quarks. This
will need a �s = 2 or �b = 2 e↵ective interaction. Due
to the constraints from pp ! KK life time, the dominant
contribution comes from the �b = 2 operator, which can
be parameterized as (d̄R�

µbR)2/⇤2. In combination with
the �B = 2 operator shown in Fig. 1, it gives rise to
n � n̄ oscillation at one-loop level, as shown in Fig. 2.
The strength of this n � n̄ operator is given by
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mass di↵erence, we find that ⌧n�n̄ � 3 ⇥ 108 sec, as re-
quired by the current limits [7], if (�a1�

0
13)  10�1. Note

that both these couplings are unsuppressed by FCNC
constraints, and therefore, can be of order ⇠ 1, thus
giving rise to a large n � n̄ amplitude, which is in the
observable range of currently planned experiments.

Due to the fact that the Na’s are identified with RH
neutrinos, this induces a tree level leptonic B-violating
process via the diagram shown in Fig. 3. This leads to
the �B = 2, �L = 2 process pp ! K+K+⌫̄⌫̄. However,
the smallness of the �0

12 coupling as assumed above is
enough to suppress this process to an unobservable level.

IV. NEUTRINO MASS

To understand the origin of neutrino mass in this
model, we first note that the Z2 symmetry forbids the
usual Dirac mass term L�N . The leading contribution
to neutrino mass comes from a one-loop graph involving ⌘
and Na, as suggested in Ref. [9] and shown in Fig. 4. We
assume that masses of the ⌘ Higgs components (denoted
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neutrinos, this induces a tree level leptonic B-violating
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Constraint from n− n̄
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above QCD scale.
But the corresponding upper limit on τnn̄ is useless (1062 sec).
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Complementarity between n− n̄ and LHC
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Further Complementarity with Dark Matter and Baryogenesis
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Conclusion

Baryon number violation is expected in many well-motivated BSM/GUT scenarios.

Much attention has been given to proton decay experiments.

n− n̄ oscillation deserves equal emphasis (if not more).

Discovery of n− n̄ oscillation would constitute a result of fundamental importance
for physics.

Even a null result in the next generation experiments (like ESS or DUNE) might be
sufficient to eliminate a whole class of low-scale baryogenesis models.

From the nuclear physics side, development of improved models of the antineutron
annihilation process and of the propagation of the annihilation products through
the nuclear medium would be helpful.

Also need a more thorough and quantitative analysis of the relationship between
free and bound neutron oscillations, including uncertainties due to the strong
interaction.

Also need state-of-the-art calculations of the matrix elements of the six-quark
operators.

THANK YOU
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