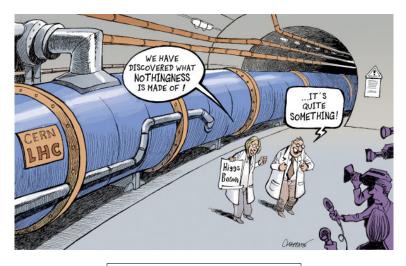


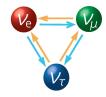
LHC tests of low scale neutrino mass generation

Bhupal Dev

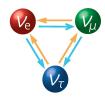
Washington University in St. Louis


XXVIII International Conference on Neutrino Physics and Astrophysics

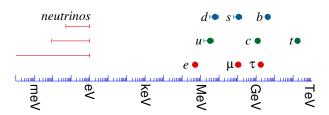
Heidelberg, Germany


June 8, 2018

Largest Microscope

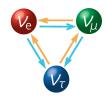

What could it tell about **neutrinos**?

Harbinger of New Physics



Non-zero neutrino mass \Longrightarrow physics beyond the Standard Model

Harbinger of New Physics



Non-zero neutrino mass ⇒ physics beyond the Standard Model

Perhaps something beyond the standard Higgs mechanism...

Harbinger of New Physics

Non-zero neutrino mass ⇒ physics beyond the Standard Model

Perhaps something beyond the standard Higgs mechanism...

Can the LHC test the origin of neutrino mass?

Neutrino Mass Models

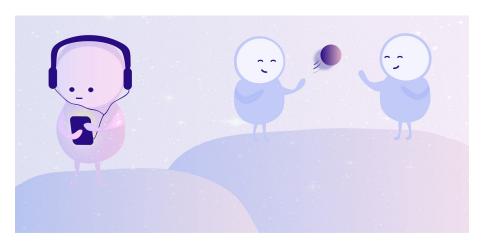
For overview, see Tuesday talk by L. Everett

- From pheno point of view, can broadly categorize into
 - Tree-level (seesaw) vs loop-level (radiative)
 - Minimal (SM gauge group) vs gauge-extended [e.g. $U(1)_{B-L}$, Left-Right, SO(10)]
 - Non-supersymmetric vs Supersymmetric

Neutrino Mass Models

For overview, see Tuesday talk by L. Everett

- From pheno point of view, can broadly categorize into
 - Tree-level (seesaw) vs loop-level (radiative)
 - Minimal (SM gauge group) vs gauge-extended [e.g. $U(1)_{B-L}$, Left-Right, SO(10)]
 - Non-supersymmetric vs Supersymmetric
- Usually introduces new fermions, gauge bosons, and/or scalars messengers of neutrino mass physics.
- Rich phenomenology.
- For messenger scale $\lesssim \mathcal{O}(\text{few TeV})$, accessible at the LHC.


Neutrino Mass Models

For overview, see Tuesday talk by L. Everett

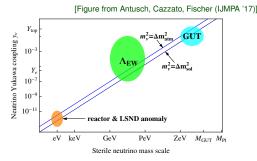
- From pheno point of view, can broadly categorize into
 - Tree-level (seesaw) vs loop-level (radiative)
 - Minimal (SM gauge group) vs gauge-extended [e.g. $U(1)_{B-L}$, Left-Right, SO(10)]
 - Non-supersymmetric vs Supersymmetric
- Usually introduces new fermions, gauge bosons, and/or scalars messengers of neutrino mass physics.
- Rich phenomenology.
- For messenger scale $\lesssim \mathcal{O}(\text{few TeV})$, accessible at the LHC.
- This talk:
 - Tree-level [See next talk by R. Volkas for radiative models]
 - SM gauge group and two extensions [U(1) and Left-Right]
 - Non-supersymmetric

New Fermions

(aka sterile neutrinos/heavy neutrinos/heavy neutral leptons)

Type-I Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79;


Gell-Mann, Ramond, Slansky '79; Glashow '80; Schechter, Valle (PRD '80)]

Introduce SM-singlet Majorana fermions (N).

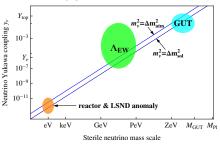
$$-\mathcal{L} \supset Y_{\nu} \bar{L} \phi^{c} N + \frac{1}{2} M_{N} \bar{N}^{c} N + \text{H.c.}$$

• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$, where $M_D = v Y_{\nu}$.

Type-I Seesaw

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79;

Gell-Mann, Ramond, Slansky '79; Glashow '80; Schechter, Valle (PRD '80)]

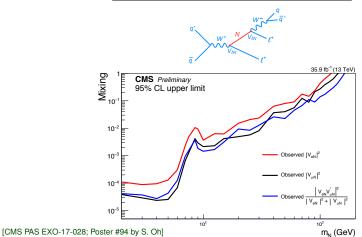

Introduce SM-singlet Majorana fermions (N).

$$-\mathcal{L} \supset Y_{\nu} \bar{L} \phi^{c} N + \frac{1}{2} M_{N} \bar{N}^{c} N + \text{H.c.}$$

• After EWSB, $m_{\nu} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$, where $M_D = v Y_{\nu}$.

[Figure from Antusch, Cazzato, Fischer (IJMPA '17)]

• Naturalness of Higgs mass suggests $M_N \lesssim 10^7$ GeV. [see talk by R. Volkas]


[Vissani (PRD '98); Clarke, Foot, Volkas (PRD '15); Bambhaniya, BD, Goswami, Khan, Rodejohann (PRD '17)]

Heavy Majorana Neutrinos at the LHC

[Keung, Senjanović (PRL '83); Datta, Guchait, Pilaftsis (PRD '94); Panella, Cannoni, Carimalo, Srivastava (PRD '02);

Han, Zhang (PRL '06); del Aguila, Aguilar-Saavedra, Pittau (JHEP '07); Atre, Han, Pascoli, Zhang (JHEP '09)]

Same-sign dilepton plus jets without $\not\! E_{\it T}$

Probes (sub) TeV scale heavy Majorana neutrinos with 'large' active-sterile mixing.

Low-scale Type-I Seesaw

Naively, active-sterile neutrino mixing is small for EW-scale seesaw:

$$V_{\ell N} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{m_{\nu}}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

• 'Large' mixing effects possible with special structures of M_D and M_N .

[Pilaftsis (ZPC '92); Gluza (APPB '02); de Gouvea '07; Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez,
Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani
(NPB '12); BD, Lee, Mohapatra (PRD '13);...]

Low-scale Type-I Seesaw

Naively, active-sterile neutrino mixing is small for EW-scale seesaw:

$$V_{\ell N} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{m_{\nu}}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

- 'Large' mixing effects possible with special structures of M_D and M_N .

 [Pilaftsis (ZPC '92); Gluza (APPB '02); de Gouvea '07; Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez,
 Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani
 (NPB '12); BD, Lee, Mohapatra (PRD '13);...]
- One example: [Kersten, Smirnov (PRD '07)]

$$M_D = \begin{pmatrix} m_1 & \delta_1 & \epsilon_1 \\ m_2 & \delta_2 & \epsilon_2 \\ m_3 & \delta_3 & \epsilon_3 \end{pmatrix} \text{ and } M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix} \text{ with } \epsilon_i, \delta_i \ll m_i.$$

Low-scale Type-I Seesaw

Naively, active-sterile neutrino mixing is small for EW-scale seesaw:

$$V_{\ell N} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{m_{\nu}}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

- 'Large' mixing effects possible with special structures of M_D and M_N .

 [Pilaftsis (ZPC '92); Gluza (APPB '02); de Gouvea '07; Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez,
 Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani
 (NPB '12); BD, Lee, Mohapatra (PRD '13);...]
- One example: [Kersten, Smirnov (PRD '07)]

$$M_D = \begin{pmatrix} m_1 & \delta_1 & \epsilon_1 \\ m_2 & \delta_2 & \epsilon_2 \\ m_3 & \delta_3 & \epsilon_3 \end{pmatrix} \text{ and } M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix} \text{ with } \epsilon_i, \delta_i \ll m_i.$$

- But the steriles with large mixing are 'quasi-Dirac' with suppressed LNV.
- Generally true in order to satisfy neutrino oscillation data and $0\nu\beta\beta$ constraints. [Abada, Biggio, Bonnet, Gavela, Hambye (JHEP '07); Ibarra, Molinaro, Petcov (JHEP '10); Fernandez-Martinez, Hernandez-Garcia, Lopez-Pavon, Lucente (JHEP '15); Drewes, Garbrecht, Gueter, Klaric (JHEP '16)]
- Should also look for lepton number conserving channels at the LHC.

Inverse Seesaw

- Provides a (technically) natural low-scale seesaw framework. [Mohapatra, Valle (PRD '86)]
- Two sets of SM-singlet fermions with opposite lepton numbers.

$$-\mathcal{L}_{Y} \supset Y_{\nu}\bar{L}\phi^{c}N + M_{N}\bar{S}N + \frac{1}{2}\mu_{S}\bar{S}S^{c} + \text{H.c.}$$

$$m_{\nu} \simeq (M_{D}M_{N}^{-1})\mu_{S}(M_{D}M_{N}^{-1})^{\mathsf{T}}$$

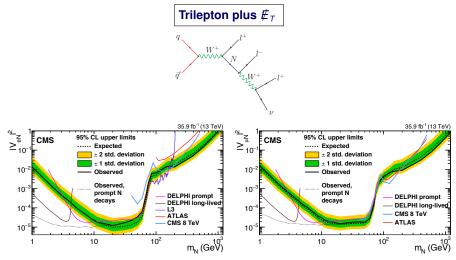
Naturally allows for large mixing:

$$V_{\ell N} \simeq \sqrt{\frac{m_{\nu}}{\mu_{\mathcal{S}}}} \approx 10^{-2} \sqrt{\frac{1 \text{ keV}}{\mu_{\mathcal{S}}}}$$

Inverse Seesaw

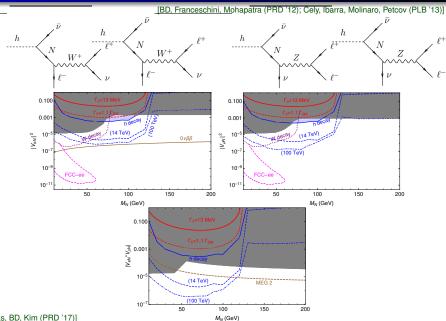
- Provides a (technically) natural low-scale seesaw framework. [Mohapatra, Valle (PRD '86)]
- Two sets of SM-singlet fermions with opposite lepton numbers.

$$\begin{array}{lll} -\mathcal{L}_{Y} & \supset & Y_{\nu} \bar{L} \phi^{c} N + M_{N} \bar{S} N + \frac{1}{2} \mu_{S} \bar{S} S^{c} + \mathrm{H.c.} \\ \\ m_{\nu} & \simeq & \left(M_{D} M_{N}^{-1} \right) \mu_{S} \left(M_{D} M_{N}^{-1} \right)^{\mathsf{T}} \end{array}$$

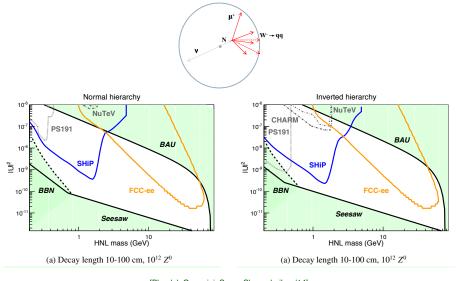

Naturally allows for large mixing:

$$V_{\ell N} \simeq \sqrt{\frac{m_{\nu}}{\mu_{\mathcal{S}}}} \approx 10^{-2} \sqrt{\frac{1 \text{ keV}}{\mu_{\mathcal{S}}}}$$

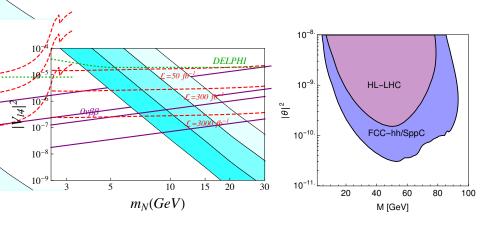
- But again quasi-Dirac heavy neutrinos.
- Should look for lepton number conserving channels at the LHC.
- Ratio of same-sign to opposite-sign dilepton signal could test the Majorana vs.
 Dirac nature. [Gluza, Jelinski (PLB '15); BD, Mohapatra (PRL '15); Gluza, Jelinski, Szafron (PRD '16); Anamiati,
 Hirsch, Nardi (JHEP '16); Das, BD, Mohapatra (PRD '17)]


Heavy Dirac Neutrinos at the LHC

[del Aguila, Aguilar-Saavedra (PLB '09; NPB '09); Chen, BD (PRD '12); Das, Okada (PRD '13); Das, BD, Okada (PLB '14); Izaguirre, Shuve (PRD '15); Dib, Kim (PRD '15); Dib, Kim, Wang (PRD '17; CPC '17); Dube, Gadkari, Thalapillil (PRD '17)]


[Phys. Rev. Lett. 120, 221801 (2018); Poster #94 by S. Oh]

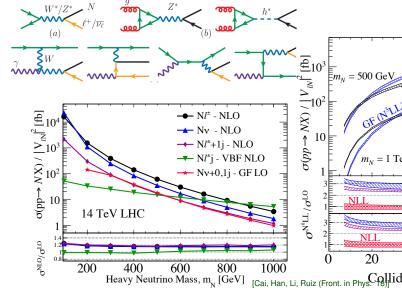
Higgs Decay


[Das, BD, Kim (PRD '17)]

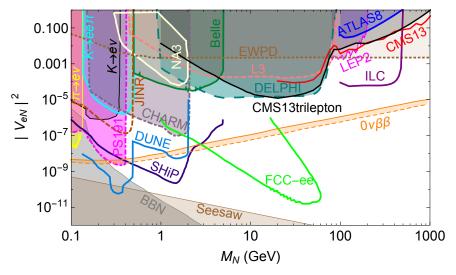
Z Decay

[Blondel, Graverini, Serra, Shaposhnikov '14]

Displaced Vertex

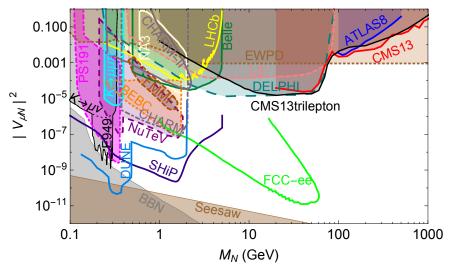


[Helo, Kovalenko, Hirsch (PRD '14)]


[Antusch, Cazzato, Fischer (IJMPA '17)]

New Contributions to Heavy Neutrino Production

[BD, Pilaftsis, Yang (PRL '14); Alva, Han, Ruiz (JHEP '15); Degrande, Mattelaer, Ruiz, Turner (PRD '16); Das, Okada (PRD '16)]



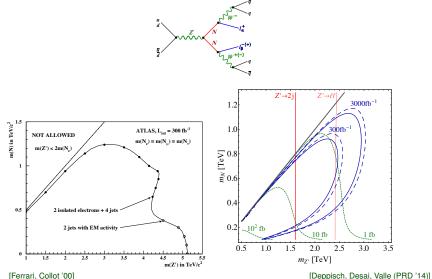
Summary of Constraints and Prospects

[updated from Deppisch, BD, Pilaftsis (New J. Phys. '15)]

Summary of Constraints and Prospects

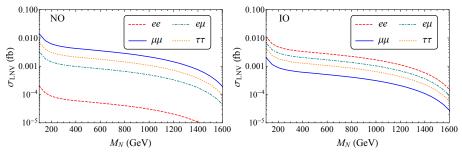
[updated from Deppisch, BD, Pilaftsis (New J. Phys. '15)]

New Gauge Bosons


(W',Z')

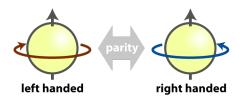
$U(1)_{B-L}$ Extension

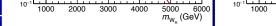
[Buchmuller, Greub (NPB '91); Fileviez Perez, Han, Li (PRD '09); Kang, Ko, Li (PRD '15); Heeck, Teresi (PRD '16);


BD, Mohapatra, Zhang (JHEP '17); Das, Okada, Raut '17; Cox, Han, Yanagida (JHEP '18); ...]

[Deppiscri, Desai, Valle (FRD 14)]

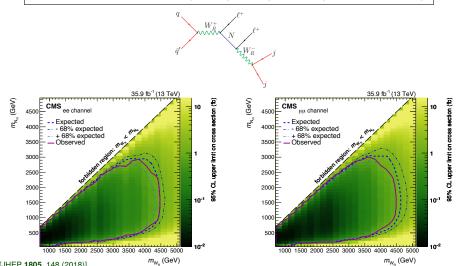
Probing Neutrino Mass Hierarchy at the LHC

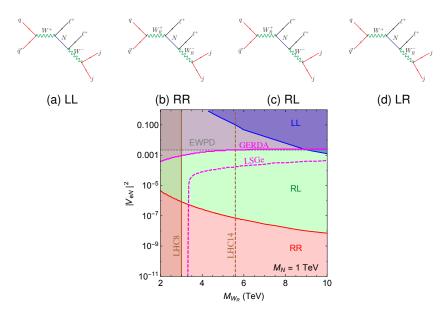

- In a symmetry-based scenario, Dirac Yukawa couplings can be directly related to the PMNS mixing matrix (á la Casas-Ibarra).
- Could give rise to either prompt or displaced vertex signals at the LHC.
- LNV cross section is sensitive to the light neutrino mass hierarchy.


[BD, Hagedorn, Molinaro (in prep.)]

Left-Right Symmetric Extension

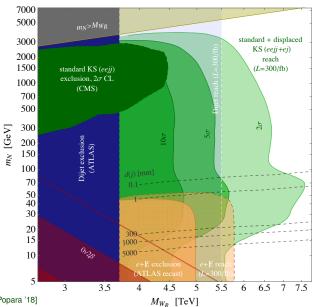
- Based on the gauge group SU(2)_L × SU(2)_R × U(1)_{B-L}.
 [Pati, Salam (PRD '74); Mohapatra, Pati (PRD '75); Senjanović, Mohapatra (PRD '75)]
- Parity restoration at high energy.


- Provides a natural framework for type-I (and type-II) seesaw embedding.
- RH neutrinos are an essential part of the theory (not put in 'by hand').
- Seesaw scale intimately connected with the $U(1)_{B-L}$ symmetry breaking.
- Can be realized at $v_R \gtrsim 5$ TeV scale, with many observable effects.

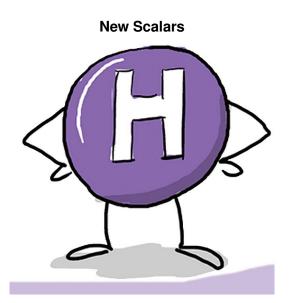

2000 3000 4000 5000 6000 m_{W_R} (GeV)

[Keung, Senjanović (PRL '83); Ferrari et al (PRD '00); Nemevsek, Nesti, Senjanović, Zhang (PRD '11); Das, Deppisch, Kittel, Valle (PRD '12); Lindner, Queiroz, Rodejohann, Yaguna (JHEP '16); Mitra, Ruiz, Scott, Spannowsky (PRD '16);...]

New contribution to same-sign dilepton signal (independent of mixing)



L-R Seesaw Phase Diagram



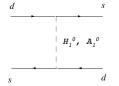
[Chen, BD, Mohapatra (PRD '13); BD, Kim, Mohapatra (JHEP '16)]

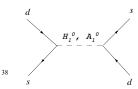
Future Prospects

[Nemevsek, Nesti, Popara '18]

L-R Seesaw Higgs Sector

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}, \quad \Delta_R = \begin{pmatrix} \frac{\Delta_R^+}{\sqrt{2}} & \Delta_R^{++} \\ \Delta_R^0 & -\frac{\Delta_R^+}{\sqrt{2}} \end{pmatrix}, \quad \Delta_L = \begin{pmatrix} \frac{\Delta_L^+}{\sqrt{2}} & \Delta_L^{++} \\ \Delta_L^0 & -\frac{\Delta_L^+}{\sqrt{2}} \end{pmatrix}$$

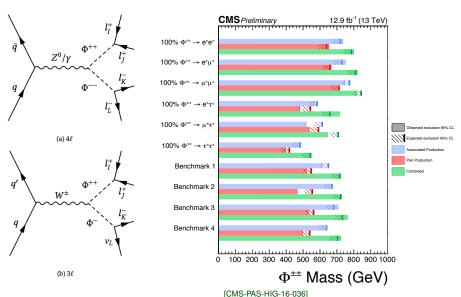

- $\langle \Delta_R^0 \rangle \equiv v_R$ gives rise to RH Majorana neutrino masses, and hence, type-I seesaw.
- $\langle \Delta_L^0 \rangle \equiv v_L$ gives rise to a type-II seesaw contribution.
- 14 physical scalar fields (compared to just 1 in the SM).
- Very rich phenomenology.


[Gunion, Grifols, Mendez, Kayser, Olness (PRD '89); Polak, Zralek (PLB '92); Akeroyd, Aoki (PRD '05); Fileviez Perez, Han, Huang, Li, Wang (PRD '08); Bambhaniya, Chakrabortty, Gluza, Kordiaczyńska, Szafron (JHEP '14); Dutta, Eusebi, Gao, Ghosh, Kamon (PRD '14); Maiezza, Nemevsek, Nesti (PRL '15); BD, Mohapatra, Zhang (JHEP '16);...]

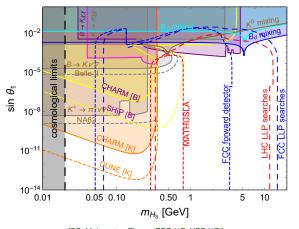
• The triplet scalar fields are *hadrophobic*.

Bidoublet Sector

• FCNC constraints require the bidoublet scalars $(H_1^0, A_1^0, H_1^{\pm})$ to be very heavy $\gtrsim 15$ TeV. [An, Ji, Mohapatra, Zhang (NPB '08); Bertolini, Maiezza, Nesti (PRD '14)]



No hope for them at the LHC. Need a 100 TeV collider!



Charged Triplet Sector

Neutral Triplet Sector

- Can be very light (GeV-scale).
- Suppressed coupling to SM particles (either loop-level or small mixing).
- Necessarily long-lived at the LHC, with displaced vertex signals.

[BD, Mohapatra, Zhang (PRD '17; NPB '17)]

Conclusion

- Understanding the neutrino mass mechanism will provide important insights into the BSM world.
- LHC provides a ripe testing ground for low-scale neutrino mass models.
- Can probe the messenger particles (new fermions/gauge bosons/scalars) in a wide range of parameter space.
- Healthy complementarity at the intensity frontier.
- Might be directly relevant for other outstanding puzzles, such as the matter-antimatter asymmetry (leptogenesis). [see afternoon talk by M. Drewes]

Conclusion

- Understanding the neutrino mass mechanism will provide important insights into the BSM world.
- LHC provides a ripe testing ground for low-scale neutrino mass models.
- Can probe the messenger particles (new fermions/gauge bosons/scalars) in a wide range of parameter space.
- Healthy complementarity at the intensity frontier.
- Might be directly relevant for other outstanding puzzles, such as the matter-antimatter asymmetry (leptogenesis). [see afternoon talk by M. Drewes]

