

Neutrinoless Double Beta Decay via Light Neutralinos

Bhupal Dev

(bdev@wustl.edu)

Washington University in St. Louis

with Patrick Bolton (SISSA) and Frank Deppisch (UCL), 2112.12658 (JHEP '22)

7th Symposium on Neutrinos and Dark Matter in Nuclear Physics (NDM22) Asheville May 17, 2022

Outline

- R-parity Violating SUSY
- RPV Contributions to $0\nu\beta\beta$
- Light vs. Heavy Neutralinos
- Experimental Constraints
- Connection to Muon g-2

Conclusion

Neutrinoless Double Beta Decay

- ***** Profound implications:
 - $\Delta L = 2$ Process.
 - Majorana nature of neutrinos.
 - Neutrino mass ordering.
 - Absolute neutrino mass scale and CP phases.
 - Leptogenesis and matter-antimatter asymmetry.

Neutrinoless Double Beta Decay

- * Profound implications:
 - $\Delta L = 2$ Process.
 - Majorana nature of neutrinos.
 - Neutrino mass ordering.
 - Absolute neutrino mass scale and CP phases.

• Leptogenesis and matter-antimatter asymmetry.

* Tremendous theory and experimental effort. [Snowmass whitepaper: 2203.12169]

[Schechter, Valle (PRD '82); Rodejohann (1106.1334)]

Important to look for complementarity with collider and/or other low-energy probes.

Supersymmetry

Supersymmetry

- Solution to the hierarchy problem.
- Unification of gauge couplings.
- Radiative EW symmetry breaking
- Vacuum stability
- Dark matter
- Gravity

$$W \supset \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c + \kappa_iL_iH_u,$$

- Typically a Z_2 symmetry $R_p = (-1)^{3B+L+2S}$ is imposed to forbid these terms.
- Makes the lightest SUSY particle stable.
- If the lightest neutralino is the LSP, a natural WIMP dark matter candidate.
- However, there is no rigorous theoretical argument for *R*-parity conservation.
- More natural to include the RPV couplings rather than imposing *R*-parity by hand. [Brust, Katz, Lawrence, Sundrum (1110.6670); BD, Soni, Xu (2106.15647)]
- Requirement from proton decay constraints: Cannot simultaneously have *L* and *B* violating terms large.
- We will focus on the λ' couplings only.
- Recent phenomenological interest in the context of flavor anomalies. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); Trifinopoulos (EPJC '18); Altmannshofer, BD, Soni, Sui (PRD '20)]

RPV Contributions to $0\nu\beta\beta$

RPV Contributions to $0\nu\beta\beta$

7

RPV Contributions to $0\nu\beta\beta$

Only the short-range case (with heavy mediator $m_{\widetilde{X}} \gg p_F \sim 100$ MeV) had been considered before. [Mohapatra (PRD '86); Vergados (PLB '87); Hirsch, Klapdor-Kleingrothaus, Kovalenko (PRD '96); Faessler, Kovalenko, simkovic

(PRD '98); Allanach, Kom, Pas (JHEP '09)]

Light vs. Heavy Neutralino Exchange

With Different Isotopes

Collider Constraints

[Particle Data Group '22]

Collider Constraints

$ ilde{X}$	$m_{ ilde{X}}$ Lower Bound [GeV]		
	pMSSM [80]	$m_{ ilde{\chi}_1^0}=0$	Experiment
$ ilde{e}_L$	~ 90	700 (700)	$\tilde{e}_L \rightarrow e \tilde{\chi}_1^0$, ATLAS [94] (CMS [95])
$ ilde{u}_L, ilde{d}_R$	~ 600	$1900\ (1750)$	$\tilde{q} \rightarrow q \tilde{\chi}_1^0$, ATLAS [96] (CMS [97])
$ ilde{g}$	~ 1200	$2350\ (2000)$	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$, ATLAS [96] (CMS [98])
$ ilde{\psi}$	1.35×10^{-14}		$e^+e^- ightarrow ilde{\psi} ilde{\gamma} \gamma, { m L3} [99]$

[[]Bolton, Deppisch, BD (2112.12658)]

Neutralino can be essentially massless in the general MSSM. [Hooper, Plehn (PLB '03); Belanger, Boudjema,

Cottrant (JHEP '04); Dreiner, Heinemeyer, Kittel, Langenfeld, Weber and Weiglein (EPJC '09)]

Complementarity of $0\nu\beta\beta$ with Other Constraints

Complementarity of $0\nu\beta\beta$ with Other Constraints

Complementarity of $0\nu\beta\beta$ with Other Constraints

Complementarity with Muon g-2

Conclusions

- New contribution to $0\nu\beta\beta$ in RPV SUSY via neutralino exchange.
- Can be either short-range or long-range, depending on the neutralino mass.
- We derived new constraints on RPV parameter space using current limits on $0\nu\beta\beta$ half-life.
- Current limits exclude λ'_{111} down to $\lesssim 10^{-3}$ for $m_{\tilde{\chi}^0_1} \approx 100$ MeV, and future $0\nu\beta\beta$ searches can improve this to $\lambda'_{111} \lesssim 10^{-4}$.
- Observed anomalous magnetic moment of the muon can be related to an observable $0\nu\beta\beta$ decay rate in future ton-scale experiments.

Conclusions

- New contribution to $0\nu\beta\beta$ in RPV SUSY via neutralino exchange.
- Can be either short-range or long-range, depending on the neutralino mass.
- We derived new constraints on RPV parameter space using current limits on $0\nu\beta\beta$ half-life.
- Current limits exclude λ'_{111} down to $\lesssim 10^{-3}$ for $m_{\tilde{\chi}^0_1} \approx 100$ MeV, and future $0\nu\beta\beta$ searches can improve this to $\lambda'_{111} \lesssim 10^{-4}$.
- Observed anomalous magnetic moment of the muon can be related to an observable $0\nu\beta\beta$ decay rate in future ton-scale experiments.

