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Why Relic Neutrinos?

‘Holy Grail’ of Neutrino Physics.

Detection of cosmic neutrino
background (CνB) will provide
strong validation of our current
cosmological model.

And provide a window into the first
second of creation.

Indirect evidence for CνB from
CMB, BBN and large-scale structure
data.

But direct detection remains a
challenge.

• The combination of the standard model 
of particle physics and general relativity 
allows us to relate events taking place at 
different epochs together.

• Observation of the cosmological 
neutrinos would then provide a window 
into the 1st second of creation

The Triumph of 
Cosmology
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CνB Characteristics

CνB inherently connected to CMB:
Tν,0 =

(
4
11

)1/3
Tγ,0 = 1.945 K =

1.7× 10−4 eV.

Essentially a fermion gas obeying
Fermi-Dirac statistics.

Number density:
nν,0 = 3

4
ζ(3)
π2 gT

3
ν,0 = 56/cm3 per

flavor (and similarly for ν̄).

Most intense natural neutrino source.

New Frontiers
Knowledge of the 
Relic Neutrino 
Spectrum

• After neutrinos decouple, photons can 
still continue heating.  

• Photon/neutrino temperature directly 
related to each other.
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Why is it so 
hard???

• Cosmological neutrinos comprise 
the most intense natural source of 
neutrinos available to us from nature.

• The cosmological photon 
background has been measured 
incredibly well.  The noise from the 
early big bang still rings today.

So??

What’s the problem?!

So what’s the problem?

Small kinetic energy.
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Several Ideas on the Table

Mechanical force due to coherent scattering of
neutrino wind against a macroscopic object.

Scattering on accelerator beam

Scattering on ultra-high energy neutrinos/cosmic
rays

Neutrino capture on beta nuclei

Coherent Elastic 
Scattering

• Effect takes advantage of a macroscopic de 
Broglie wavelength (for these momenta).

• Equivalent to measuring a small acceleration 
on a macroscopic object.

• Currently can measure accelerations down 
to 10-13 cm/s2.  Can push this down to 10-23 
cm/s2 in the future.

Eot-Wash 
Pendulum

at ⇥ (10�46 � 10�54)
A

100
cm s�2

High Energy 
Scattering : Beams

• Take advantage of cross-section growth 
with energy, using very high energy isotopes 
as probes.

• Two possible sources:  high energy 
accelerators & cosmic rays.

• Most parameters necessary for relic 
neutrino detection beyond scope of 
conventional machines. 

R� = 2 � 10�9 · m�

eV

A2

Z

En

10TeV

L

km

I

A
[yr�1]

ULHC???

Neutrino Capture

The process is energetically allowed even at zero momentum.  

This threshold-less reaction allows for relic neutrino detection

3H ➟ 3He+ + e-  + νe 3H + νe ➟ 3He+ + e-  

...look for neutrino 
capture

[G. Gelmini (Phys.Scripta ’05); C. Yanagisawa (Front. Phys ’14); P. Vogel (AIP Conf. Proc. ’15)]
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Z-burst

[T. Weiler (PRL ’82)] [Eberle, Ringwald, Song, Weiler (PRD ’04)]

Resonant absorption happens at

Eres
ν = m2

Z

2mν
= (4.2× 1022 eV)

(0.1 eV
mν

)
Beyond the GZK cut-off!

But the cross-section is large: 〈σann
νν̄ 〉 = 2π

√
2GF = 40.4 nb.

Observable effect, depending on redshift and source energy distribution of the (unknown)
super-GZK cosmic ray sources.
Resonance energy can be sub-GZK for secret neutrino interactions with light mediators.
[Ioka, Murase (PTEP ’14); Araki et al (PRD ’15); DiFranzo, Hooper (PRD ’15); Cherry, Friedland, Shoemaker (1605.06506);

Altmannshofer, Chen, BD, Soni (PLB ’16); Barenboim, Denton, Oldengott (PRD ’19); Esteban, Pandey, Brdar, Beacom (PRD ’21);...]
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New Idea: Use SM Meson Resonances

Recall vector meson resonances in e+e− scattering. [Lee, Zumino (PR ’67); Gounaris, Sakurai (PRL ’68)]

Apply it to UHE neutrino scattering off CνB. [Bander, Rubinstein (PRD ’95); Paschos, Lalakulich

(hep-ph/0206273); BD, Soni (2112.01424)]

For s� m2
Z , expect vector-current to be dominated by vector meson resonance

(JPC = 1−−) and axial-vector current to be dominated by axial-vector resonance
(JPC = 1++).

Eres
ν =

m2
ρ

2mν
= (3.0× 1018 eV)
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)
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Interlude: Charged Meson Resonances

[Brdar, de Gouvea, Machado, Plestid, 2112.03283 (PRD ’22)]
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But not enough for CνB Detection /

N = T · nν · Ω · V︸ ︷︷ ︸
Nν�Ne

·
∫ Emax

Emin

dEΦ(E)σ(E)

Z (IC 10 yr)

total (IC 10 yr)

Z (IC-II 10 yr)

total (IC-II 10 yr)

107 108 109 1010 1011 1012 1013

10-39

10-37

10-35

10-33

10-31

10-29

Eν (GeV)

N
um
be
r
of
ev
en
ts

Any hope?
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Attenuation of GZK Neutrinos

Attenuation: R = e−L/λ.
Inverse MFP: λ−1 = σnν = σnν,0ξ(1 + z)3.
Cloud length: L = c

H0
ξ−1/3.
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Observable Effect in GZK Neutrino Flux
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Complementary to KATRIN
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What are we asking for?

Large overdensity ξ ≡ nν
nν,0

& 1010.

Mass-varying neutrinos or non-standard cosmology to avoid
∑

mν . 0.1 eV (Planck).
[Fardon, Nelson, Weiner (JCAP ’04); Krnjaic, Machado, Necib (PRD ’18); Alvey, Escudero, Sabti, Schwetz (PRD ’22);...]
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Neutrino Clustering

[Ringwald, Wong, hep-ph/0412256]

Gravitational clustering is not enough /

But new neutrino interactions could help
efficient clustering.

E.g., [Smirnov, Xu (2201.00939)]

L =1
2∂

µφ∂µφ−
1
2m

2
φφ

2

+ ν̄i/∂ν −mν ν̄ν − yν̄φν

Condition for bound state:
Ekin ≤ −V =⇒ y2

8π
mν
mφ

& 0.7.

Strong limits on yφ force mφ . 10−17 eV.
[Smirnov, Xu (JHEP ’19); Babu, Chauhan, BD (PRD ’20)]
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Conclusion

Detection of CνB is an important unsolved problem in neutrino physics.

A new idea for CνB detection via resonant scattering off GZK neutrinos through neutral
vector (axial-vector) mesons in the SM.

Observable effect, provided there is a large overdensity of CνB along the line-of-sight.

Can probe CνB overdensity at higher redshifts.

Complementary to KATRIN which is only sensitive to local overdensity.
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