

A New Idea for Relic Neutrino Detection

Bhupal Dev

(bdev@wustl.edu)

Washington University in St. Louis

with V. Brdar, R. Plestid and A. Soni, arXiv: 2206.abcde

The Mitchell Conference on Collider, Dark Matter, and Neutrino Physics 2022

May 26, 2022

Why Relic Neutrinos?

- 'Holy Grail' of Neutrino Physics.
- Detection of cosmic neutrino background (CvB) will provide strong validation of our current cosmological model.
- And provide a window into the first second of creation.
- Indirect evidence for C*v*B from CMB, BBN and large-scale structure data.
- But direct detection remains a challenge.

Figure from J. Formaggio

Why Relic Neutrinos?

- 'Holy Grail' of Neutrino Physics.
- Detection of cosmic neutrino background (CvB) will provide strong validation of our current cosmological model.
- And provide a window into the first second of creation.
- Indirect evidence for C*v*B from CMB, BBN and large-scale structure data.
- But direct detection remains a challenge.

Figure from J. Formaggio

Why is it so hard?

- $C\nu B$ inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945 \text{ K} = 1.7 \times 10^{-4} \text{ eV}.$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T_{\nu,0}^3 = 56/\text{cm}^3 \text{ per}$ flavor (and similarly for $\bar{\nu}$).
- Most intense natural neutrino source.

- $C\nu B$ inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945 \text{ K} = 1.7 \times 10^{-4} \text{ eV}.$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T_{\nu,0}^3 = 56/\text{cm}^3 \text{ per}$ flavor (and similarly for $\bar{\nu}$).
- Most intense natural neutrino source.

Flux on earth of neutrinos from various sources, in function of energy

- $C\nu B$ inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945 \text{ K} = 1.7 \times 10^{-4} \text{ eV}.$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T_{\nu,0}^3 = 56/\text{cm}^3 \text{ per}$ flavor (and similarly for $\bar{\nu}$).
- Most intense natural neutrino source.

So what's the problem?

Flux on earth of neutrinos from various sources, in function of energy

- $C\nu B$ inherently connected to CMB: $T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma,0} = 1.945 \text{ K} = 1.7 \times 10^{-4} \text{ eV}.$
- Essentially a fermion gas obeying Fermi-Dirac statistics.
- Number density: $n_{\nu,0} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} g T_{\nu,0}^3 = 56/\text{cm}^3 \text{ per}$ flavor (and similarly for $\bar{\nu}$).
- Most intense natural neutrino source.

So what's the problem?

Small kinetic energy.

Flux on earth of neutrinos from various sources, in function of energy

Several Ideas on the Table

• Mechanical force due to coherent scattering of neutrino wind against a macroscopic object.

• Scattering on accelerator beam

• Scattering on ultra-high energy neutrinos/cosmic rays

• Neutrino capture on beta nuclei

Z-burst

[T. Weiler (PRL '82)]

[Eberle, Ringwald, Song, Weiler (PRD '04)]

• Resonant absorption happens at

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} = (4.2 \times 10^{22} \text{ eV}) \left(\frac{0.1 \text{ eV}}{m_{\nu}}\right) \quad \text{Beyond the GZK cut-off}$$

Z-burst

[T. Weiler (PRL '82)]

[Eberle, Ringwald, Song, Weiler (PRD '04)]

• Resonant absorption happens at

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} = (4.2 \times 10^{22} \text{ eV}) \left(\frac{0.1 \text{ eV}}{m_{\nu}}\right) \quad \text{Beyond the GZK cut-off}$$

- But the cross-section is large: $\langle \sigma_{\nu\bar{\nu}}^{\text{ann}} \rangle = 2\pi\sqrt{2}G_F = 40.4 \text{ nb.}$
- Observable effect, depending on redshift and source energy distribution of the (unknown) super-GZK cosmic ray sources.

Z-burst

[T. Weiler (PRL '82)]

[Eberle, Ringwald, Song, Weiler (PRD '04)]

Resonant absorption happens at

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} = (4.2 \times 10^{22} \text{ eV}) \left(\frac{0.1 \text{ eV}}{m_{\nu}}\right) \quad \text{Beyond the GZK cut-off}$$

- But the cross-section is large: $\langle \sigma_{\nu\bar{\nu}}^{\text{ann}} \rangle = 2\pi\sqrt{2}G_F = 40.4 \text{ nb.}$
- Observable effect, depending on redshift and source energy distribution of the (unknown) super-GZK cosmic ray sources.
- Resonance energy can be sub-GZK for secret neutrino interactions with light mediators. [Ioka, Murase (PTEP '14); Araki et al (PRD '15); DiFranzo, Hooper (PRD '15); Cherry, Friedland, Shoemaker (1605.06506); Altmannshofer, Chen, BD, Soni (PLB '16); Barenboim, Denton, Oldengott (PRD '19); Esteban, Pandey, Brdar, Beacom (PRD '21);...]

- Recall vector meson resonances in e^+e^- scattering. [Lee, Zumino (PR '67); Gounaris, Sakurai (PRL '68)]
- Apply it to UHE neutrino scattering off CνB. [Bander, Rubinstein (PRD '95); Paschos, Lalakulich (hep-ph/0206273); BD, Soni (2112.01424)]
- For $s \ll m_Z^2$, expect vector-current to be dominated by vector meson resonance $(J^{\rm PC} = 1^{--})$ and axial-vector current to be dominated by axial-vector resonance $(J^{\rm PC} = 1^{++})$.

- Recall vector meson resonances in e^+e^- scattering. [Lee, Zumino (PR '67); Gounaris, Sakurai (PRL '68)]
- Apply it to UHE neutrino scattering off CνB. [Bander, Rubinstein (PRD '95); Paschos, Lalakulich (hep-ph/0206273); BD, Soni (2112.01424)]
- For $s \ll m_Z^2$, expect vector-current to be dominated by vector meson resonance $(J^{\rm PC} = 1^{--})$ and axial-vector current to be dominated by axial-vector resonance $(J^{\rm PC} = 1^{++})$.

$$E_{\nu}^{\rm res} = \frac{m_{\rho}^2}{2m_{\nu}} = (3.0 \times 10^{18} \text{ eV}) \left(\frac{0.1 \text{ eV}}{m_{\nu}}\right)$$

- Recall vector meson resonances in e^+e^- scattering. [Lee, Zumino (PR '67); Gounaris, Sakurai (PRL '68)]
- Apply it to UHE neutrino scattering off CνB. [Bander, Rubinstein (PRD '95); Paschos, Lalakulich (hep-ph/0206273); BD, Soni (2112.01424)]
- For $s \ll m_Z^2$, expect vector-current to be dominated by vector meson resonance $(J^{\rm PC} = 1^{--})$ and axial-vector current to be dominated by axial-vector resonance $(J^{\rm PC} = 1^{++})$.

$$E_{\nu}^{\rm res} = \frac{m_{\rho}^2}{2m_{\nu}} = (3.0 \times 10^{18} \text{ eV}) \left(\frac{0.1 \text{ eV}}{m_{\nu}}\right)$$

- Recall vector meson resonances in e^+e^- scattering. [Lee, Zumino (PR '67); Gounaris, Sakurai (PRL '68)]
- Apply it to UHE neutrino scattering off CνB. [Bander, Rubinstein (PRD '95); Paschos, Lalakulich (hep-ph/0206273); BD, Soni (2112.01424)]
- For $s \ll m_Z^2$, expect vector-current to be dominated by vector meson resonance $(J^{\rm PC} = 1^{--})$ and axial-vector current to be dominated by axial-vector resonance $(J^{\rm PC} = 1^{++})$.

$$N_{\rm res} = N_e \int_{\frac{(M-n\Gamma/2)^2}{(2m_e)}}^{\frac{(M+n\Gamma/2)^2}{(2m_e)}} \Phi(E_{\nu}) \sigma_{\rm res}(E_{\nu}) dE_{\nu}$$

Experiment	$\rho^-, \pm \Gamma/2$	$\rho^-, \pm 2\Gamma$	$K^{-*}, \pm \Gamma/2$	$K^{-*}, \pm 2\Gamma$
$FASER\nu$	0.3	0.5	-	-
$FASER\nu_2$	23	37	0.7	3
FLArE-10	11	19	0.3	2
FLArE-100	63	103	2	8
DeepCore	3 (1)	5(2)	-	-
IceCube	8 (40)	17(83)	-	-

$$N_{\rm res} = N_e \int_{\frac{(M-n\Gamma/2)^2}{(2m_e)}}^{\frac{(M+n\Gamma/2)^2}{(2m_e)}} \Phi(E_{\nu}) \sigma_{\rm res}(E_{\nu}) dE_{\nu}$$

Experiment	$\rho^-, \pm \Gamma/2$	$\rho^-, \pm 2\Gamma$	$K^{-*}, \pm \Gamma/2$	$K^{-*}, \pm 2\Gamma$
$FASER\nu$	0.3	0.5	-	-
$FASER\nu_2$	23	37	0.7	3
FLArE-10	11	19	0.3	2
FLArE-100	63	103	2	8
DeepCore	3 (1)	5 (2)	-	-
IceCube	8 (40)	17 (83)	-	-

But not enough for $C\nu B$ Detection \odot

But not enough for $C\nu B$ Detection \otimes

Attenuation of GZK Neutrinos

Attenuation: $\mathcal{R} = e^{-L/\lambda}$. Inverse MFP: $\lambda^{-1} = \sigma n_{\nu} = \sigma n_{\nu,0} \xi (1+z)^3$. Cloud length: $L = \frac{c}{H_0} \xi^{-1/3}$.

Attenuation of GZK Neutrinos

Attenuation: $\mathcal{R} = e^{-L/\lambda}$. Inverse MFP: $\lambda^{-1} = \sigma n_{\nu} = \sigma n_{\nu,0} \xi (1+z)^3$. Cloud length: $L = \frac{c}{H_0} \xi^{-1/3}$.

[GZK flux: Ahlers, Anchordoqui, Gonzalez-Garcia, Halzen, Sarkar (1005.2620); Sensitivity curves: 2203.08096]

[GZK flux: Ahlers, Anchordoqui, Gonzalez-Garcia, Halzen, Sarkar (1005.2620); Sensitivity curves: 2203.08096]

[GZK flux: Ahlers, Anchordoqui, Gonzalez-Garcia, Halzen, Sarkar (1005.2620); Sensitivity curves: 2203.08096]

[GZK flux: Ahlers, Anchordoqui, Gonzalez-Garcia, Halzen, Sarkar (1005.2620); Sensitivity curves: 2203.08096]

Complementary to KATRIN

[KATRIN limit: 2202.04587]

Complementary to KATRIN

[KATRIN limit: 2202.04587]

- Large overdensity $\xi \equiv \frac{n_{\nu}}{n_{\nu,0}} \gtrsim 10^{10}$.
- Mass-varying neutrinos or non-standard cosmology to avoid $\sum m_{\nu} \leq 0.1$ eV (Planck). [Fardon, Nelson, Weiner (JCAP '04); Krnjaic, Machado, Necib (PRD '18); Alvey, Escudero, Sabti, Schwetz (PRD '22);...]

Neutrino Clustering

[Ringwald, Wong, hep-ph/0412256]

Gravitational clustering is not enough $\ensuremath{\textcircled{\sc s}}$

Neutrino Clustering

[Ringwald, Wong, hep-ph/0412256]

Gravitational clustering is not enough $\ensuremath{\textcircled{\sc b}}$

- But new neutrino interactions could help efficient clustering.
- E.g., [Smirnov, Xu (2201.00939)]

$$\begin{aligned} \mathcal{L} = & \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} \\ &+ \bar{\nu} i \partial \!\!\!/ \nu - m_{\nu} \bar{\nu} \nu - y \bar{\nu} \phi \nu \end{aligned}$$

- Condition for bound state: $E_{\rm kin} \leq -V \Longrightarrow \frac{y^2}{8\pi} \frac{m_{\nu}}{m_{\phi}} \gtrsim 0.7.$
- Strong limits on y_{ϕ} force $m_{\phi} \lesssim 10^{-17}$ eV. [Smirnov, Xu (JHEP '19); Babu, Chauhan, BD (PRD '20)]

Neutrino Clustering

[Ringwald, Wong, hep-ph/0412256]

Gravitational clustering is not enough ③

- But new neutrino interactions could help efficient clustering.
- E.g., [Smirnov, Xu (2201.00939)]

$$\begin{split} \mathcal{L} = & \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} \\ & + \bar{\nu} i \partial \!\!\!/ \nu - m_{\nu} \bar{\nu} \nu - y \bar{\nu} \phi \nu \end{split}$$

- Condition for bound state: $E_{\rm kin} \leq -V \Longrightarrow \frac{y^2}{8\pi} \frac{m_{\nu}}{m_{\phi}} \gtrsim 0.7.$
- Strong limits on y_{ϕ} force $m_{\phi} \lesssim 10^{-17}$ eV. [Smirnov, Xu (JHEP '19); Babu, Chauhan, BD (PRD '20)]

N	2.06 1021	1.69 1022	F 06 10 ²²	0.25 1.023	0.24 1024
11	$2.96 \cdot 10$	$1.63 \cdot 10$	$5.96 \cdot 10$	$9.35 \cdot 10^{-1}$	$2.34 \cdot 10$
p_{F0}/\tilde{m}_0	0.10	0.31	0.75	7.0	22
$ ilde{m}_0/m_ u$	0.991	0.922	0.688	0.060	0.014
$p_{F0}/m_{ u}$	0.099	0.286	0.561	0.420	0.308
$n_0 \; [{ m cm}^{-3}]$	$2.0\cdot 10^6$	$4.9\cdot 10^7$	$3.7\cdot 10^8$	$1.5\cdot 10^8$	$6.1\cdot 10^7$
$R \; [\mathrm{km}]$	1.25	0.75	0.62	1.46	2.41

Table I. Characteristics of final (degenerate) states of neutrino clusters for $y = 10^{-7}$ and $m_{\phi} = 0$.

- Detection of $C\nu B$ is an important unsolved problem in neutrino physics.
- A new idea for $C\nu B$ detection via resonant scattering off GZK neutrinos through neutral vector (axial-vector) mesons in the SM.
- Observable effect, provided there is a large overdensity of $C\nu B$ along the line-of-sight.
- Can probe $C\nu B$ overdensity at higher redshifts.
- Complementary to KATRIN which is only sensitive to local overdensity.

- Detection of $C\nu B$ is an important unsolved problem in neutrino physics.
- A new idea for $C\nu B$ detection via resonant scattering off GZK neutrinos through neutral vector (axial-vector) mesons in the SM.
- Observable effect, provided there is a large overdensity of $C\nu B$ along the line-of-sight.
- Can probe $C\nu B$ overdensity at higher redshifts.
- Complementary to KATRIN which is only sensitive to local overdensity.

