

Leptophilic Dark Matter at Linear Collider

Bhupal Dev

Washington University in St. Louis

(based on) P. K. Das, BD, A. Guha and S. Kundu, arXiv: 2107.abcde

Sixteenth Marcel Grossmann Meeting

DM6: Dark Matter and Rare Processes

July 7, 2021

Outline

• Why Leptophilic DM?

EFT Approach

Mono-photon Channel

• Mono-Z Channel

Conclusion

Evidence for Dark Matter

Image Credit: Caty Pilachowsk

Bhupal Dev (WashU)

Leptophilic Dark Matter at Linear Collider

What could it be?

Bertone, Tait, 1810.01668 (Nature '18)

Hints from Anomalies

Siegert et al, 1512.00325 (A&A)

AMS-02, Phys. Rep. 894, 1 (2021)

Fermi-LAT, 1704.03910 (ApJ); talk by M. Ricci

Bhupal Dev (WashU)

Leptophilic Dark Matter at Linear Collider

Case for Leptophilic DM

Kopp, Niro, Schwetz, Zupan, 0907.3159 (PRD)

BD, Ghosh, Okada, Saha, 1307.6204 (PRD)

Many other examples: Bernabei et al (PRD '08); Fox, Poppitz (PRD '09); Ibarra, Ringwald, Tran, Weniger (JCAP '09); Cohen, Zurek (PRL '10); Agrawal, Chacko, Verhaaren (JHEP '14); Lu, Zong (PRD '16); Athron, Balazs, Fowlie, Zhang (JHEP '17); Foot (2011.02590); Garani et al (2105.12116); ...

Complementary WIMP Search at Colliders

DM-nucleon interactions are loop suppressed

Lepton colliders provide an ideal testing ground

$$\mathcal{L} = rac{1}{\Lambda^2} \sum_j (ar{\chi} \Gamma^j_\chi \chi) (ar{e} \Gamma^j_e e)$$

Scalar - Pseudoscalar (S-P) type : Vector - Axial vector (V-A) type : Tensor - Axial Tensor (T-AT) type :

$$\begin{split} & \Gamma_{\chi} = \boldsymbol{c}_{S}^{\chi} + i\boldsymbol{c}_{P}^{\chi}\gamma_{5} \,, & \Gamma_{\theta} = \boldsymbol{c}_{S}^{\theta} + i\boldsymbol{c}_{P}^{\theta}\gamma_{5} \\ & \Gamma_{\chi}^{\mu} = \gamma^{\mu} \left(\boldsymbol{c}_{V}^{\chi} + \boldsymbol{c}_{A}^{\chi}\gamma_{5} \right) \,, & \Gamma_{\theta\mu} = \gamma^{\mu} \left(\boldsymbol{c}_{V}^{\theta} + \boldsymbol{c}_{A}^{\theta}\gamma_{5} \right) \\ & \Gamma_{\chi}^{\mu\nu} = \left(\boldsymbol{c}_{T}^{\chi} + i\boldsymbol{c}_{AT}^{\chi}\gamma_{5} \right) \sigma^{\mu\nu} \,, & \Gamma_{\theta\mu\nu} = \sigma_{\mu\nu} \end{split}$$

- Model-independent analysis.
- Agnostic about mediator mass M (map $c_{\chi}c_e/\Lambda^2 \rightarrow g_e g_{\chi}/M^2$ in a given model).
- Assume $c_j = 1$ (unless otherwise specified), and derive sensitivity on Λ at future e^+e^- collider.
- Previous studies considered only one coefficient at a time. Kopp, Niro, Schwetz, Zupan, 0907.3159 (PRD); Fox, Harnik, Kopp, Tsai, 1103.0240 (PRD); Dreiner, Huck, Krämer, Schmeier, Tattersall, 1211.2254 (PRD); Dutta, Rawat, Sachdeva, 1704.03994 (EPJC); Habermehl, Berggren, List, 2001.03011 (PRD)

Bhupal Dev (WashU)

Leptophilic Dark Matter at Linear Collider

MG16 DM6 (July 7, 2021) 9/20

Signal vs. Background

Process	Unpol.	Pol.	Cross-sections (pb) for $P(e^-, e^+)$			
Туре	Beams	Scheme	(+,+)	(+, -)	(-,+)	(-,-)
		(80,0)	1.106	-	8.506	-
$ uar{ u}\gamma$	4.782 pb	(80, 20)	1.268	0.963	10.160	6.793
		(80, 30)	1.393	0.860	10.993	5.931
		(80,0)	67.920	-	68.867	-
$oldsymbol{e}^-oldsymbol{e}^+\gamma$	68.439 pb	(80, 20)	67.909	68.386	69.285	68.297
		(80, 30)	67.809	68.566	69.502	68.181
		(80,0)	0.0255	-	0.0255	-
SP-Type	0.0255 pb	(80, 20)	0.0296	0.0214	0.0214	0.0296
		(80, 30)	0.0316	0.0194	0.0194	0.0316
		(80,0)	0.0617	-	0.0069	-
VA-Type	0.0343 pb	(80, 20)	0.0494	0.0741	0.0055	0.0082
		(80, 30)	0.0432	0.0803	0.0048	0.0089
		(80,0)	0.0365	-	0.0365	-
TAT-Type	0.0365 pb	(80, 20)	0.0423	0.0306	0.0306	0.0423
		(80, 30)	0.0452	0.0277	0.0277	0.0452
(Signal BP: $m_{\chi} = 100 \text{ GeV}, \Lambda = 3 \text{ TeV}$)						

	BP-1	BP-2	BP-3		
Definition	$M_{\chi} =$ 100 GeV, $\Lambda =$ 6 TeV	$M_\chi =$ 250 GeV, $\Lambda =$ 6 TeV	$M_{\chi}=$ 350 GeV, $\Lambda=$ 6 TeV		
Baseline-selection	$ E_{\gamma}>$ 10 GeV, $ \eta_{\gamma} <$ 2.45, $P_{T}^{miss}>$ 10 GeV				
SP-type					
Cut-1	$E_{\gamma} <$ 450 GeV	$E_{\gamma} <$ 340 GeV	$E_{\gamma} <$ 250 GeV		
Cut-2		$ \eta_{\gamma} < 1.6$			
Cut-3	P_T^{miss} < 450 GeV	$P_T^{miss} <$ 340 GeV	P_T^{miss} < 240 GeV		
Cut-4	$P_T^{frac} < 1.3$				
Cut-5	$1.1 < \Delta R_{\gamma,met} < 4.5$				
VA-type					
Cut-1	$E_{\gamma} <$ 440 GeV	$E_{\gamma} <$ 350 GeV	$E_{\gamma} <$ 250 GeV		
Cut-2	$ \eta_{\gamma} < 1.7$				
Cut-3	P_T^{miss} < 400 GeV	$P_T^{miss} <$ 340 GeV	P_T^{miss} < 250 GeV		
Cut-4	$P_T^{frac} < 1.2$				
Cut-5	$1.1 < \Delta R_{\gamma,met} < 4.5$				
TAT-type					
Cut-1	$E_{\gamma}<$ 460 GeV	$E_{\gamma}<$ 360 GeV	$E_{\gamma}<$ 230 GeV		
Cut-2		$ \eta_{\gamma} < 1.7$			
Cut-3	$P_T^{miss} < 450 { m GeV}$	P_T^{miss} < 350 GeV	P_T^{miss} < 230 GeV		
Cut-4	$P_T^{frac} < 1.2$				
Cut-5	$1.1 < \Delta R_{\gamma,met} < 4.4$				

Results for the Mono-photon Channel

Signal vs. Background

Process	Unpol.	Pol.	Cross-sections (pb) for $P(e^-, e^+)$			
type	Beams	scheme	(+,+)	(+, -)	(-,+)	(-, -)
		(80, 0)	0.1161	_	0.7231	_
$ uar{ u}\ell^-\ell^+$	0.4205 pb	(80,20)	0.1347	0.09756	0.8556	0.5902
		(80, 30)	0.145	0.0884	0.9258	0.5234
		(80, 0)	$2.55 imes10^{-4}$	_	$2.54 imes10^{-4}$	_
SP-Type	$2.78 imes10^{-4}~{ m pb}$	(80,20)	$2.96 imes10^{-4}$	$2.15 imes10^{-4}$	$2.14 imes10^{-4}$	$2.94 imes10^{-4}$
		(80, 30)	$3.17 imes10^{-4}$	$1.93 imes10^{-4}$	$1.93 imes10^{-4}$	$3.15 imes10^{-4}$
		(80, 0)	$1.50 imes10^{-4}$	_	$1.66 imes10^{-5}$	_
VA-Type	$8.33 imes10^{-5}~{ m pb}$	(80,20)	$1.20 imes10^{-4}$	$1.79 imes10^{-4}$	$1.34 imes10^{-5}$	$1.99 imes10^{-5}$
		(80, 30)	$1.05 imes 10^{-4}$	$1.94 imes10^{-4}$	$1.16 imes10^{-5}$	$2.16 imes10^{-5}$
		(80, 0)	$6.19 imes10^{-4}$	_	$6.19 imes10^{-4}$	_
TAT-Type	$6.78 imes10^{-4}~\text{pb}$	(80,20)	$7.19 imes10^{-4}$	$5.19 imes10^{-4}$	$5.19 imes10^{-4}$	$7.19 imes10^{-4}$
		(80, 30)	$7.69 imes10^{-4}$	4.70×10^{-4}	4.71×10^{-4}	7.71×10^{-4}

	BP-1	BP-2	BP-3		
Definition	$M_\chi=$ 100 GeV,	$M_\chi=$ 250 GeV,	$M_\chi=$ 350 GeV,		
	$\Lambda = 3 \text{ TeV}$	$\Lambda = 3 \text{ TeV}$	$\Lambda = 3 \text{ TeV}$		
Baseline-selection	OSSF lepton-pairs with $P_{T,l_1} >$ 30 GeV, $P_{T,l_2} >$ 20 GeV, $ \eta_l <$ 2.45				
SP-type					
Cut-1	70 GeV $\leq M_{inv}(\ell^- \ell^+) \leq 110$ GeV				
Cut-2	160 GeV < ∉ _T	115 GeV < ∉ _T < 350 GeV	100 GeV < ∉ _T < 230 GeV		
Cut-3	$\Delta\eta_{\ell\ell} < 1.35,~~\Delta\phi_{\ell\ell} < 1.3$ rad				
Cut-4	$M_T(\ell^-\ell^+) > 60 \text{ GeV}$				
Cut-5	100 GeV < ₱ ^{axial} < 435 GeV	115 GeV $< ot P_T^{axial} <$ 350 GeV	100 GeV < ₱ ^{axial} < 230 GeV		
VA-type					
Cut-1	$70 { m GeV} \le M_{inv} (\ell^- \ell^+) \le 110 { m GeV}$				
Cut-2	$p_T^{\ell\ell} < 360~{ m GeV}$	$p_T^{\ell\ell} <$ 270 GeV	$p_T^{\ell\ell} <$ 215 GeV		
Cut-3	$\Delta\eta_{\ell\ell} <$ 1.2 , $\Delta\phi_{\ell\ell} <$ 2.6 rad				
Cut-4	$M_T(\ell^-\ell^+) > 35 \mathrm{GeV}$				
Cut-5	60 GeV < $𝒫_T^{axial}$ < 380 GeV	60 GeV $< 𝒫_T^{axial} <$ 290 GeV	60 GeV < ₱ ^{axial} < 220 GeV		
TAT-type					
Cut-1	70 GeV $\leq M_{inv}(\ell^-\ell^+) \leq 110$ GeV				
Cut-2	210 GeV < ∉ _T	165 GeV < ∉ _T < 360 GeV	110 GeV < ∉ _T < 230 GeV		
Cut-3	$\Delta\eta_{\ell\ell} <$ 1.2 , $~~\Delta\phi_{\ell\ell} <$ 1.2 rad				
Cut-4	$M_{\mathcal{T}}(\ell^-\ell^+) > 60~{ m GeV}$				
Cut-5	100 GeV < ₽ ^{axial} < 475 GeV	100 GeV $< ensuremath{P_T^{axial}} < 370$ GeV	100 GeV < ₽ ^{axial} < 240 GeV		

Kinematic Distributions

Results for the Mono-Z (leptonic) Channel

- Particle nature of DM (mass, spin, interactions with SM particles,...) remains unknown.
- Taken at face value, current DM anomalies might provide some clue.
- Leptophilic DM is a well-motivated candidate to explain some of the anomalies.
- Ideal to search for at future lepton colliders.
- In an EFT approach, found that 3σ sensitivity at √s = 1 TeV ILC can reach up to Λ ~ 6.5 TeV in the mono-photon channel and up to Λ ~ 4 TeV in the mono-*Z* channel.

- Particle nature of DM (mass, spin, interactions with SM particles,...) remains unknown.
- Taken at face value, current DM anomalies might provide some clue.
- Leptophilic DM is a well-motivated candidate to explain some of the anomalies.
- Ideal to search for at future lepton colliders.
- In an EFT approach, found that 3σ sensitivity at √s = 1 TeV ILC can reach up to Λ ~ 6.5 TeV in the mono-photon channel and up to Λ ~ 4 TeV in the mono-*Z* channel.

Thank you.

XENON100 update on Leptophilic DM

XENON100, 1507.07747 (Science)