Doubly-charged scalars at high-energy and high-precision experiments

BHUPAL DEV

Washington University in St. Louis

with M. J. Ramsey-Musolf (UMass) and Y. Zhang (WashU), arXiv:1806.0xxxx

MASS 2018

CP3-Origins, Odense, Denmark

June 1, 2018

- Introduction: Energy versus Precision Frontier
- Example: LHC versus MOLLER
- Case study: Doubly charged scalar
- Conclusion

Energy versus Precision

[Le Dall, Pospelov, Ritz (PRD '15)]

Energy versus Precision

Complementary and intertwined. Need input from both to probe new physics.

Energy versus Precision

Example: LHC versus MOLLER

MOLLER Experiment

Measurement Of a Lepton Lepton Electroweak Reaction

Scattering of longitudinally polarized electrons off unpolarized electrons.

Upgraded 11 GeV electron beam in Hall A at JLab.

http://hallaweb.jlab.org/12GeV/Moller/pubs/moller_proposal.pdf

Parity-Violating Asymmetry

$$A_{PV} = \frac{G_R - C_L}{\sigma_R + \sigma_L}$$

 $\sigma_{\rm D} - \sigma_{\rm I}$

- For the MOLLER design, $A_{\rm PV}^{\rm SM} \approx 33$ ppb (including 1-loop effect).
- Goal: $\delta A_{\rm PV} = 0.7$ ppb. [Benesch *et al.* [MOLLER Collaboration], arXiv:1411.4088 [nucl-ex]]
- Achieve a 2.4% precision in the measurement of Q^e_W.

Sensitive to New Physics

$$\frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2|}} = \frac{1}{\sqrt{\sqrt{2}G_F |\Delta Q_W^e|}} \simeq 7.5 \text{ TeV}$$

Case Study: Doubly Charged Scalar

$$\mathcal{M}_{\mathrm{PV}} \sim \frac{|(f_L)_{ee}|^2}{2M_{H_L^{\pm\pm}}^2} (\bar{e}_L \gamma^{\mu} e_L) (\bar{e}_L \gamma_{\mu} e_L) + (L \leftrightarrow R).$$

MOLLER Sensitivity :
$$\frac{M_{H_{L,R}^{\pm\pm}}}{|(f_{L,R})_{ee}|} \gtrsim 5.3 \text{ TeV}.$$

. .

Case Study: Doubly Charged Scalar

Case Study: Doubly Charged Scalar

Why Doubly Charged Scalar?

Explains neutrino mass via Type-II Seesaw

$$\mathcal{L}_Y = -(f_L)_{ij} \psi_{L,i}^{\mathsf{T}} C \mathrm{i} \sigma_2 \Delta_L \psi_{L,j} + \mathrm{H.c.}$$

$$m_{\nu} = \sqrt{2} f_L v_L = U_{\text{PMNS}} \widehat{m}_{\nu} U_{\text{PMNS}}^{\mathsf{T}}$$
.

[Schechter, Valle (PRD '80); Mohapatra, Senjanović (PRD '81); Lazarides, Shafi, Wetterich (NPB '81)]

Fixes all the elements of f_L

(up to an overall scale, depending on the absolute neutrino mass)

LFV Constraints

[BD, Rodejohann, Vila (NPB '17)]

Process	Experimental limit on BR	Constraint on	$Bound \times \left(\frac{M_{H_L}}{100 \text{ GeV}}\right)^2$
$\mu ightarrow e \gamma$	$< 4.2 \times 10^{-13}$	$ (f_L^{\dagger}f_L)_{e\mu} $	$< 2.4 imes 10^{-6}$
$\mu ightarrow 3e$	$< 1.0 \times 10^{-12}$	$ (f_L)_{\mu e} (f_L)_{ee} $	$< 2.3 imes 10^{-7}$
$ au o e\gamma$	$< 3.3 imes 10^{-8}$	$ (f_L^{\dagger}f_L)_{e au} $	$< 1.6 \times 10^{-3}$
$\tau \to \mu \gamma$	$< 4.4 imes 10^{-8}$	$ (f_L^\dagger f_L)_{\mu au} $	$< 1.9 imes 10^{-3}$
$\tau \to e^+ e^- e^-$	$< 2.7 imes 10^{-8}$	$ (f_L)_{\tau e} (f_L)_{ee} $	$< 9.2 \times 10^{-5}$
$ au ightarrow \mu^+ \mu^- e^-$	$< 2.7 imes 10^{-8}$	$ (f_L)_{\tau\mu} (f_L)_{\mu e} $	$< 6.5 imes 10^{-5}$
$ au ightarrow e^+ \mu^- \mu^-$	$< 1.7 imes 10^{-8}$	$ (f_L)_{\tau e} (f_L)_{\mu\mu} $	$< 7.3 \times 10^{-5}$
$\tau \to e^+ e^- \mu^-$	$< 1.8 imes 10^{-8}$	$ (f_L)_{\tau e} (f_L)_{\mu e} $	$< 5.3 imes 10^{-5}$
$ au ightarrow \mu^+ e^- e^-$	$< 1.5 imes 10^{-8}$	$ (f_L)_{\tau\mu} (f_L)_{ee} $	$< 6.9 imes 10^{-5}$
$\tau \to \mu^+ \mu^- \mu^-$	$< 2.1 \times 10^{-8}$	$ (f_L)_{\tau\mu} (f_L)_{\mu\mu} $	$< 8.1 \times 10^{-5}$

MOLLER versus LFV

MOLLER versus LFV

Left-Right Symmetric Model

[Pati, Salam '74; Mohapatra, Pati '75; Mohapatra, Senjanović '75]

$$\mathcal{L}_{Y} = -(f_{L})_{ij} \psi_{L,i}^{\mathsf{T}} C \mathrm{i} \sigma_{2} \Delta_{L} \psi_{L,j} - (f_{R})_{ij} \psi_{R,i}^{\mathsf{T}} C \mathrm{i} \sigma_{2} \Delta_{R} \psi_{R,j} + \mathrm{H.c.}$$

- L-R symmetry demands that $f_L = f_R$ (and $g_L = g_R$).
- Similar neutrino mass and LFV constraints also apply to f_R.

Parity-Violating Left-Right Model

- Discrete *P*-symmetry breaking scale could be decoupled from the $SU(2)_R$ -breaking scale. [Chang, Mohapatra, Parida (PRL '84)]
- No Δ_L in the low-energy theory.

$$\mathcal{L}_Y = -(f_R)_{ij} \psi_{R,i}^{\mathsf{T}} C i \sigma_2 \Delta_R \psi_{R,j} + \text{H.c.}.$$

- Allows $f_R \neq f_L$ (and $g_L \neq g_R$) at low scale.
- f_R is not related to the neutrino oscillation data.
- LFV constraints do not restrict $(f_R)_{ee}$ anymore.

Neutrinoless Double Beta Decay

MOLLER Prospects

Conclusion

- Complementarity between the high-energy and high-precision experiments.
- We considered a case study of doubly-charged scalars.
- Can be probed at the MOLLER experiment up to ~ 20 TeV.
- For the minimal type-II seesaw, LFV constraints are stronger.
- For the parity-violating left-right scenario, MOLLER can go well beyond the current constraints, as well as the future collider prospects.