

Baryo/leptogenesis

Bhupal Dev Washington University in St. Louis

15th Workshop on High Energy Physics Phenomenology

IISER Bhopal

December 15, 2017

Matter-Antimatter Asymmetry

$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq 6.1 \times 10^{-10}$$

Matter-Antimatter Asymmetry

$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq 6.1 \times 10^{-10}$$

One number $\longrightarrow \mathsf{BSM}$ Physics

Baryogenesis

- Dynamical generation of baryon asymmetry.
- Basic ingredients: [Sakharov '67] B violation, C & CP violation, departure from thermal equilibrium
- Necessary but not sufficient.

Baryogenesis

- Dynamical generation of baryon asymmetry.
- **Basic ingredients:** [Sakharov '67] *B* violation, *C* & *CP* violation, departure from thermal equilibrium
- Necessary but not sufficient.

Baryogenesis

- Dynamical generation of baryon asymmetry.
- Basic ingredients: [Sakharov '67] B violation, C & CP violation, departure from thermal equilibrium
- Necessary but not sufficient.

- The Standard Model has all the basic ingredients, but
 - CKM CP violation is too small (by \sim 10 orders of magnitude).
 - Observed Higgs boson mass is too large for a strong first-order phase transition.

Requires New Physics!

Many interesting ideas. Can broadly divide into 3 classes, based on the energy scale involved.

• High-scale (e.g. GUT baryogenesis, Affleck-Dine baryogenesis, vanilla leptogenesis)

Problems: Monopole, gravitino overproduction, testability.

Many interesting ideas. Can broadly divide into 3 classes, based on the energy scale involved.

• High-scale (e.g. GUT baryogenesis, Affleck-Dine baryogenesis, vanilla leptogenesis)

Problems: Monopole, gravitino overproduction, testability.

• EW or TeV-scale (e.g. EW baryogenesis, resonant leptogenesis, ARS leptogenesis, Higgs decay leptogenesis, cogenesis, WIMPy baryogenesis, soft leptogenesis)

Many interesting ideas. Can broadly divide into 3 classes, based on the energy scale involved.

• High-scale (e.g. GUT baryogenesis, Affleck-Dine baryogenesis, vanilla leptogenesis)

Problems: Monopole, gravitino overproduction, testability.

- EW or TeV-scale (e.g. EW baryogenesis, resonant leptogenesis, ARS leptogenesis, Higgs decay leptogenesis, cogenesis, WIMPy baryogenesis, soft leptogenesis)
- Sub-EW scale (e.g. Post-sphaleron baryogenesis)

Many interesting ideas. Can broadly divide into 3 classes, based on the energy scale involved.

• High-scale (e.g. GUT baryogenesis, Affleck-Dine baryogenesis, vanilla leptogenesis)

Problems: Monopole, gravitino overproduction, testability.

- EW or TeV-scale (e.g. EW baryogenesis, resonant leptogenesis, ARS leptogenesis, Higgs decay leptogenesis, cogenesis, WIMPy baryogenesis, soft leptogenesis)
- Sub-EW scale (e.g. Post-sphaleron baryogenesis)

This talk is mostly on Low-scale baryo/leptogenesis

Testable effects in the form of collider signatures, gravitational waves, electric dipole moment, $0\nu\beta\beta$, lepton flavor violation, $n - \bar{n}$ oscillation, ...

Can be used to falsify these scenarios.

[Fukugita, Yanagida '86]

A cosmological consequence of the seesaw mechanism.

- Provides a common link between neutrino mass and baryon asymmetry.
- Naturally satisfies the Sakharov conditions.
 - L violation due to the Majorana nature of heavy RH neutrinos.

 - New source of *CP* violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS *CP* phases).
 - Departure from thermal equilibrium when $\Gamma_N \lesssim H$.

Popularity of Leptogenesis

Popularity of Leptogenesis

Leptogenesis for Pedestrians

[Buchmüller, Di Bari, Plümacher '05]

Three basic steps:

Generation of *L* asymmetry by heavy Majorana neutrino decay:

Partial washout of the asymmetry due to inverse decay (and scatterings):

Onversion of the left-over L asymmetry to B asymmetry at T > T_{sph}.

 $d_L =$

Sphaleron

bi

Boltzmann Equations

[Buchmüller, Di Bari, Plümacher '02]

$$\begin{array}{lll} \displaystyle \frac{dN_N}{dz} & = & -(D+S)(N_N-N_N^{\rm eq}), \\ \displaystyle \frac{dN_{\Delta L}}{dz} & = & \varepsilon D(N_N-N_N^{\rm eq})-N_{\Delta L}W, \end{array}$$

(where $z = m_{N_1}/T$ and $D, S, W = \Gamma_{D,S,W}/Hz$ for decay, scattering and washout rates.)

• Final baryon asymmetry:

$$\eta_{\Delta B} = \mathbf{d} \cdot \boldsymbol{\varepsilon} \cdot \kappa_f$$

- $d \simeq \frac{28}{51} \frac{1}{27} \simeq 0.02$ ($\not L \to \not B$ conversion at T_c + entropy dilution from T_c to recombination epoch).
- $\kappa_f \equiv \kappa(z_f)$ is the final efficiency factor, where

(

$$\kappa(z) = \int_{z_i}^z dz' \frac{D}{D+S} \frac{dN_N}{dz'} e^{-\int_{z'}^z dz'' W(z'')}$$

with the one-loop resummed Yukawa couplings [Pilaftsis, Underwood '03]

$$\begin{split} \widehat{\mathbf{h}}_{l\alpha} &= \widehat{h}_{l\alpha} - i \sum_{\beta,\gamma} |\epsilon_{\alpha\beta\gamma}| \widehat{h}_{l\beta} \\ &\times \frac{m_{\alpha}(m_{\alpha}A_{\alpha\beta} + m_{\beta}A_{\beta\alpha}) - iR_{\alpha\gamma}[m_{\alpha}A_{\gamma\beta}(m_{\alpha}A_{\alpha\gamma} + m_{\gamma}A_{\gamma\alpha}) + m_{\beta}A_{\beta\gamma}(m_{\alpha}A_{\gamma\alpha} + m_{\gamma}A_{\alpha\gamma})]}{m_{\alpha}^2 - m_{\beta}^2 + 2im_{\alpha}^2A_{\beta\beta} + 2i\mathrm{Im}(R_{\alpha\gamma})[m_{\alpha}^2|A_{\beta\gamma}|^2 + m_{\beta}m_{\gamma}\mathrm{Re}(A_{\beta\gamma}^2)]} , \\ R_{\alpha\beta} &= \frac{m_{\alpha}^2}{m_{\alpha}^2 - m_{\beta}^2 + 2im_{\alpha}^2A_{\beta\beta}} ; \qquad A_{\alpha\beta}(\widehat{h}) = \frac{1}{16\pi} \sum \widehat{h}_{l\alpha}\widehat{h}_{l\beta}^* . \end{split}$$

Testability of Seesaw

In a bottom-up approach, no definite prediction of the seesaw scale.

Three regions of interest:

- High scale: $10^9 \text{ GeV} \leq m_N \leq 10^{14} \text{ GeV}$. Can be falsified with an LNV signal at LHC.
- Collider-friendly scale: 100 GeV ≤ m_N ≤ few TeV.
 Can be tested in collider and/or low-energy (0νββ, LFV) searches.
- Low-scale: 1 GeV $\lesssim m_N \lesssim$ 5 GeV.

Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Belle-II).

Three regions of interest:

- High scale: $10^9 \text{ GeV} \leq m_N \leq 10^{14} \text{ GeV}$. Can be falsified with an LNV signal at LHC.
- Collider-friendly scale: 100 GeV ≤ m_N ≤ few TeV.
 Can be tested in collider and/or low-energy (0νββ, LFV) searches.
- Low-scale: 1 GeV $\lesssim m_N \lesssim$ 5 GeV.

Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Belle-II).

Three regions of interest:

- High scale: $10^9 \text{ GeV} \leq m_N \leq 10^{14} \text{ GeV}$. Can be falsified with an LNV signal at LHC.
- Collider-friendly scale: 100 GeV ≤ m_N ≤ few TeV.
 Can be tested in collider and/or low-energy (0νββ, LFV) searches.
- Low-scale: 1 GeV $\lesssim m_N \lesssim$ 5 GeV.

Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Belle-II).

Dedicated volume on Leptogenesis (to appear in Int. J. Mod. Phys. A)

- P. S. B. Dev, P. Di Bari, B. Garbrecht, S. Lavignac, P. Millington and D. Teresi, "Flavor effects in leptogenesis," arXiv:1711.02861 [hep-ph].
- M. Drewes et al., "ARS Leptogenesis," arXiv:1711.02862 [hep-ph].
- P. S. B. Dev, M. Garny, J. Klaric, P. Millington and D. Teresi, "Resonant enhancement in leptogenesis," arXiv:1711.02863 [hep-ph].
- S. Biondini et al., "Status of rates and rate equations for thermal leptogenesis," arXiv:1711.02864 [hep-ph].
- Sec. J. Chun et al., "Probing Leptogenesis," arXiv:1711.02865 [hep-ph].
- O. Hagedorn, R. N. Mohapatra, E. Molinaro, C. C. Nishi and S. T. Petcov, "CP Violation in the Lepton Sector and Implications for Leptogenesis," arXiv:1711.02866 [hep-ph].

Vanilla Leptogenesis

- Hierarchical heavy neutrino spectrum ($m_{N_1} \ll m_{N_2} < m_{N_3}$).
- Both vertex correction and self-energy diagrams are relevant.
- For type-I seesaw, the maximal CP asymmetry is given by

$$\varepsilon_1^{\max} = \frac{3}{16\pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m_{\rm atm}^2}$$

• Lower bound on m_{N1}: [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

$$m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left(\frac{\eta_B}{6 \times 10^{-10}} \right) \left(\frac{0.05 \text{ eV}}{\sqrt{\Delta m_{\text{atm}}^2}} \right) \kappa_f^{-1}$$

Vanilla Leptogenesis

- Hierarchical heavy neutrino spectrum (m_{N1} ≪ m_{N2} < m_{N3}).
- Both vertex correction and self-energy diagrams are relevant.
- For type-I seesaw, the maximal CP asymmetry is given by

$$\varepsilon_1^{\max} = \frac{3}{16\pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m_{\rm atm}^2}$$

• Lower bound on m_{N1}: [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

$$m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left(\frac{\eta_B}{6 \times 10^{-10}} \right) \left(\frac{0.05 \text{ eV}}{\sqrt{\Delta m_{\text{atm}}^2}} \right) \kappa_f^{-1}$$

- Experimentally inaccessible!
- Also leads to a lower limit on the reheating temperature $T_{
 m rh}\gtrsim 10^9$ GeV.
- In supergravity models, need $T_{\rm rh} \lesssim 10^6 10^9$ GeV to avoid the gravitino problem. [Khlopov, Linde '84; Ellis, Kim, Nanopoulos '84; Cyburt, Ellis, Fields, Olive '02; Kawasaki, Kohri, Moroi, Yotsuyanagi '08]
- Also in conflict with the Higgs naturalness bound $m_N \lesssim 10^7$ GeV. [Vissani '97; Clarke, Foot, Volkas '15; Bambhaniya, BD, Goswami, Khan, Rodejohann '16]

Resonant Leptogenesis

- Dominant self-energy effects on the *CP*-asymmetry (ε-type) [Flanz, Paschos, Sarkar '95; Covi, Roulet, Vissani '96].
- Resonantly enhanced, even up to order 1, when $\Delta m_N \sim \Gamma_N/2 \ll m_{N_{1,2}}$. [Pilaftsis '97; Pilaftsis, Underwood '03]
- The quasi-degeneracy can be naturally motivated as due to approximate breaking of some symmetry in the leptonic sector.
- Heavy neutrino mass scale can be as low as the EW scale.
 [Pilaftsis, Underwood '05; Deppisch, Pilaftsis '10; BD, Millington, Pilaftsis, Teresi '14]
- A testable scenario at both Energy and Intensity Frontiers.

- Flavor effects important at low scale [Abada, Davidson, Ibarra, Josse-Michaux, Losada, Riotto '06; Nardi, Nir, Roulet, Racker '06; De Simone, Riotto '06; Blanchet, Di Bari, Jones, Marzola '12; BD, Millington, Pilaftsis, Teresi '14]
- Two sources of flavor effects:
 - Heavy neutrino Yukawa couplings h^a_l [Pilaftsis '04; Endoh, Morozumi, Xiong '04]
 - Charged lepton Yukawa couplings y^k [Barbieri, Creminelli, Strumia, Tetradis '00]
- *Three* distinct physical phenomena: mixing, oscillation and decoherence.
- Captured consistently in the Boltzmann approach by the *fully* flavor-covariant formalism. [BD, Millington, Pilaftsis, Teresi '14; '15]

Master Equation for Transport Phenomena

• In quantum statistical mechanics,

$$\boldsymbol{n}^{X}(t) \equiv \langle \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i}) \rangle_{t} = \operatorname{Tr} \left\{ \rho(\tilde{t};\tilde{t}_{i}) \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i}) \right\}$$

• Differentiate w.r.t. the macroscopic time $t = \tilde{t} - \tilde{t}_i$:

$$\frac{\mathrm{d}\boldsymbol{n}^{X}(t)}{\mathrm{d}t} = \operatorname{Tr}\left\{\rho(\tilde{t};\tilde{t}_{i}) \frac{\mathrm{d}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\right\} + \operatorname{Tr}\left\{\frac{\mathrm{d}\rho(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})\right\} \equiv \mathcal{I}_{1} + \mathcal{I}_{2}.$$

- Use the Heisenberg EoM for \mathcal{I}_1 and Liouville-von Neumann equation for \mathcal{I}_2 .
- Markovian master equation for the number density matrix:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{n}^{X}(\mathbf{k},t) \simeq i\langle [H_{0}^{X}, \check{\boldsymbol{n}}^{X}(\mathbf{k},t)] \rangle_{t} - \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}t' \langle [H_{\mathrm{int}}(t'), [H_{\mathrm{int}}(t), \check{\boldsymbol{n}}^{X}(\mathbf{k},t)]] \rangle_{t} .$$

Master Equation for Transport Phenomena

• In quantum statistical mechanics,

$$\boldsymbol{n}^{X}(t) \equiv \langle \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i}) \rangle_{t} = \operatorname{Tr} \left\{ \rho(\tilde{t};\tilde{t}_{i}) \check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})
ight\}$$

• Differentiate w.r.t. the macroscopic time $t = \tilde{t} - \tilde{t}_i$:

$$\frac{\mathrm{d}\boldsymbol{n}^{X}(t)}{\mathrm{d}t} = \operatorname{Tr}\left\{\rho(\tilde{t};\tilde{t}_{i}) \frac{\mathrm{d}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\right\} + \operatorname{Tr}\left\{\frac{\mathrm{d}\rho(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\check{\boldsymbol{n}}^{X}(\tilde{t};\tilde{t}_{i})\right\} \equiv \mathcal{I}_{1} + \mathcal{I}_{2}.$$

- Use the Heisenberg EoM for \mathcal{I}_1 and Liouville-von Neumann equation for \mathcal{I}_2 .
- Markovian master equation for the number density matrix:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{n}^{X}(\mathbf{k},t) \simeq i\langle [H_{0}^{X}, \check{\boldsymbol{n}}^{X}(\mathbf{k},t)] \rangle_{t} - \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}t' \langle [H_{\mathrm{int}}(t'), [H_{\mathrm{int}}(t), \check{\boldsymbol{n}}^{X}(\mathbf{k},t)]] \rangle_{t}.$$

(Oscillation)

(Mixing)

• Generalization of the density matrix formalism. [Sigl, Raffelt '93]

Collision Rates for Decay and Inverse Decay

Collision Rates for 2 \leftrightarrow 2 Scattering

Key Result

[Akhmedov, Rubakov, Smirnov '98]

[Hambye, Teresi '16]

- Need $m_N \lesssim \mathcal{O}(\text{TeV})$.
- Naive type-I seesaw requires mixing with light neutrinos to be $\lesssim 10^{-5}.$
- Collider signal suppressed in the minimal set-up (SM+RH neutrinos).
- Two ways out:
 - Construct a TeV seesaw model with large mixing (special textures of m_D and m_N).
 - Go beyond the minimal SM seesaw (e.g. $U(1)_{B-L}$, Left-Right).
- Observable low-energy signatures (LFV, $0\nu\beta\beta$) possible in any case.
- Complementarity between high-energy and high-intensity frontiers.
- Leptogenesis brings in additional powerful constraints in each case.
- Can be used to test/falsify leptogenesis.

A Predictive RL Model

- Based on residual leptonic flavor G_f = Δ(3n²) or Δ(6n²) (with n even, 3 ∤ n, 4 ∤ n) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, $0 \le s \le n 1$. [Hagedorn, Meroni, Molinaro '14]

A Predictive RL Model

- Based on residual leptonic flavor G_f = Δ(3n²) or Δ(6n²) (with n even, 3 ∤ n, 4 ∤ n) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, $0 \le s \le n 1$. [Hagedorn, Meroni, Molinaro '14]
- Dirac neutrino Yukawa matrix must be invariant under Z₂ and CP, i.e. under the generator Z of Z₂ and X(s). [BD, Hagedorn, Molinaro (in prep)]

$$Z^{\dagger}(\mathbf{3}) Y_{D} Z(\mathbf{3}') = Y_{D} \text{ and } X^{\star}(\mathbf{3}) Y_{D} X(\mathbf{3}') = Y_{D}^{\star}.$$
$$Y_{D} = \Omega(s)(\mathbf{3}) R_{13}(\theta_{L}) \begin{pmatrix} y_{1} & 0 & 0 \\ 0 & y_{2} & 0 \\ 0 & 0 & y_{3} \end{pmatrix} R_{13}(-\theta_{R}) \Omega(s)(\mathbf{3}')^{\dagger}.$$

- The unitary matrices $\Omega(s)(r)$ are determined by the CP transformation X(s)(r).
- Form of the RH neutrino mass matrix invariant under flavor and CP symmetries:

$$M_R = M_N \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

Fixing Model Parameters

- Six real parameters: y_i , $\theta_{L,R}$, M_N .
- $\theta_L \approx 0.18(2.96)$ gives $\sin^2 \theta_{23} \approx 0.605(0.395)$, $\sin^2 \theta_{12} \approx 0.341$ and $\sin^2 \theta_{13} \approx 0.0219$ (within 3σ of current global-fit results).
- Light neutrino masses given by the type-I seesaw:

$$M_{\nu}^{2} = \frac{v^{2}}{M_{N}} \begin{cases} \begin{pmatrix} y_{1}^{2} \cos 2\theta_{R} & 0 & y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ y_{1}y_{3} \sin 2\theta_{R} & 0 & -y_{3}^{2} \cos 2\theta_{R} \end{pmatrix} & (s \text{ even}), \\ \begin{pmatrix} -y_{1}^{2} \cos 2\theta_{R} & 0 & -y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ -y_{1}y_{3} \sin 2\theta_{R} & 0 & y_{3}^{2} \cos 2\theta_{R} \end{pmatrix} & (s \text{ odd}). \end{cases}$$

Fixing Model Parameters

- Six real parameters: y_i , $\theta_{L,R}$, M_N .
- $\theta_L \approx 0.18(2.96)$ gives $\sin^2 \theta_{23} \approx 0.605(0.395)$, $\sin^2 \theta_{12} \approx 0.341$ and $\sin^2 \theta_{13} \approx 0.0219$ (within 3σ of current global-fit results).
- Light neutrino masses given by the type-I seesaw:

$$M_{\nu}^{2} = \frac{v^{2}}{M_{N}} \begin{cases} \begin{pmatrix} y_{1}^{2} \cos 2\theta_{R} & 0 & y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ y_{1}y_{3} \sin 2\theta_{R} & 0 & -y_{3}^{2} \cos 2\theta_{R} \end{pmatrix} & (s \text{ even}), \\ \begin{pmatrix} -y_{1}^{2} \cos 2\theta_{R} & 0 & -y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ -y_{1}y_{3} \sin 2\theta_{R} & 0 & y_{3}^{2} \cos 2\theta_{R} \end{pmatrix} & (s \text{ odd}). \end{cases}$$

• For $y_1 = 0$ ($y_3 = 0$), we get strong normal (inverted) ordering, with $m_{\text{lightest}} = 0$.

NO:
$$y_1 = 0$$
, $y_2 = \pm \frac{\sqrt{M_N \sqrt{\Delta m_{sol}^2}}}{v}$, $y_3 = \pm \frac{\sqrt{M_N \frac{\sqrt{\Delta m_{atm}^2}}{|\cos 2\theta_R|}}}{v}$
IO: $y_3 = 0$, $y_2 = \pm \frac{\sqrt{M_N \sqrt{|\Delta m_{atm}^2|}}}{v}$, $y_1 = \pm \frac{\sqrt{M_N \frac{\sqrt{(|\Delta m_{atm}^2| - \Delta m_{sol}^2)}}{|\cos 2\theta_R|}}}{v}$

• Only free parameters: M_N and θ_R .

Low Energy CP Phases and $0\nu\beta\beta$

- Dirac phase is trivial: $\delta = 0$.
- For *m*_{lightest} = 0, only one Majorana phase *α*, which depends on the chosen CP transformation:

$$\sin \alpha = (-1)^{k+r+s} \sin 6 \phi_s$$
 and $\cos \alpha = (-1)^{k+r+s+1} \cos 6 \phi_s$ with $\phi_s = \frac{\pi s}{n}$,

where k = 0 (k = 1) for $\cos 2\theta_R > 0$ ($\cos 2\theta_R < 0$) and r = 0 (r = 1) for NO (IO). • Restricts the light neutrino contribution to $0\nu\beta\beta$:

$$m_{\beta\beta} \approx \frac{1}{3} \begin{cases} \left| \sqrt{\Delta m_{\rm sol}^2} + 2(-1)^{s+k+1} \sin^2 \theta_L \, e^{6\,i\,\phi_s} \sqrt{\Delta m_{\rm atm}^2} \right| & (NO). \\ \left| 1 + 2(-1)^{s+k} \, e^{6\,i\,\phi_s} \cos^2 \theta_L \right| \sqrt{\left| \Delta m_{\rm atm}^2 \right|} & (IO). \end{cases}$$

• For n = 26, $\theta_L \approx 0.18$ and best-fit values of Δm_{sol}^2 and Δm_{atm}^2 , we get

$$\begin{array}{ll} 0.0019\,\mathrm{eV} \lesssim m_{\beta\beta} \lesssim 0.0040\,\mathrm{eV} & (\mathrm{NO}) \\ 0.016\,\mathrm{eV} \lesssim m_{\beta\beta} \lesssim 0.048\,\mathrm{eV} & (\mathrm{IO}). \end{array}$$

High Energy CP Phases and Leptogenesis

- At leading order, three degenerate RH neutrinos.
- Higher-order corrections can break the residual symmetries, giving rise to a quasi-degenerate spectrum:

 $M_1 = M_N (1 + 2\kappa)$ and $M_2 = M_3 = M_N (1 - \kappa)$.

• CP asymmetries in the decays of N_i are given by

$$arepsilon_{ilpha} pprox \sum_{j
eq i} \operatorname{Im}\left(\hat{Y}^{\star}_{\mathcal{D}, lpha i} \hat{Y}_{\mathcal{D}, lpha j}\right) \operatorname{Re}\left(\left(\hat{Y}^{\dagger}_{\mathcal{D}} \hat{Y}_{\mathcal{D}}\right)_{ij}\right) \mathcal{F}_{ij}$$

F_{ij} are related to the regulator in RL and are proportional to the mass splitting of *N_i*.
We find ε_{3α} = 0 and

$$\varepsilon_{1\alpha} \approx \frac{y_2 y_3}{9} \left(-2 y_2^2 + y_3^2 \left(1 - \cos 2 \theta_R\right)\right) \sin 3 \phi_s \sin \theta_R \sin \theta_{L,\alpha} F_{12} \quad (\text{NO})$$

$$\varepsilon_{1\alpha} \approx \frac{y_1 y_2}{9} \left(-2 y_2^2 + y_1^2 \left(1 + \cos 2 \theta_R\right)\right) \sin 3 \phi_s \cos \theta_R \cos \theta_{L,\alpha} F_{12} \quad (\text{IO})$$

with $\theta_{L,\alpha} = \theta_L + \rho_{\alpha} 4\pi/3$ and $\rho_e = 0$, $\rho_{\mu} = 1$, $\rho_{\tau} = -1$.

• $\varepsilon_{2\alpha}$ are the negative of $\epsilon_{1\alpha}$ with F_{12} being replaced by F_{21} .

Decay Length

• For RH Majorana neutrinos, $\Gamma_{\alpha} = M_{\alpha} (\hat{Y}_{D}^{\dagger} \hat{Y}_{D})_{\alpha\alpha} / (8 \pi)$. We get

$$\begin{split} \Gamma_1 &\approx \quad \frac{M_N}{24\,\pi}\,\left(2\,y_1^2\,\cos^2\theta_R + y_2^2 + 2\,y_3^2\,\sin^2\theta_R\right)\,,\\ \Gamma_2 &\approx \quad \frac{M_N}{24\,\pi}\,\left(y_1^2\,\cos^2\theta_R + 2\,y_2^2 + y_3^2\,\sin^2\theta_R\right)\,,\\ \Gamma_3 &\approx \quad \frac{M_N}{8\,\pi}\,\left(y_1^2\,\sin^2\theta_R + y_3^2\,\cos^2\theta_R\right)\,. \end{split}$$

- For $y_1 = 0$ (NO), $\Gamma_3 = 0$ for $\theta_R = (2j + 1)\pi/2$ with integer j.
- For $y_3 = 0$ (IO), $\Gamma_3 = 0$ for $j\pi$ with integer j.
- In either case, N_3 is an ultra long-lived particle.
- Suitable for MATHUSLA (MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles) [Coccaro, Curtin, Lubatti, Russell, Shelton '16; Chou, Curtin, Lubati '16]
- In addition, N_{1,2} can have displaced vertex signals at the LHC.

 N_1 (red), N_2 (blue), N_3 (green). M_N =150 GeV (dashed), 250 GeV (solid).

 N_1 (red), N_2 (blue), N_3 (green). M_N =150 GeV (dashed), 250 GeV (solid).

Collider Signal

- Need an efficient production mechanism.
- In our scenario, $y_i \lesssim 10^{-6}$ suppresses the Drell-Yan production

$$pp
ightarrow W^{(*)}
ightarrow N_i \ell_lpha$$
 ,

and its variants. [Han, Zhang '06; del Aguila, Aguilar-Saavedra, Pittau '07; BD, Pilaftsis, Yang '14; Han, Ruiz, Alva '14; Deppisch, BD, Pilaftsis '15; Das, Okada '15]

- Even if one assumes large Yukawa, the LNV signal will be generally suppressed by the quasi-degeneracy of the RH neutrinos [Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; BD '15].
- Need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.

- Need an efficient production mechanism.
- In our scenario, $y_i \lesssim 10^{-6}$ suppresses the Drell-Yan production

$$pp
ightarrow W^{(*)}
ightarrow N_i \ell_lpha$$
 ,

and its variants. [Han, Zhang '06; del Aguila, Aguilar-Saavedra, Pittau '07; BD, Pilaftsis, Yang '14; Han, Ruiz, Alva '14; Deppisch, BD, Pilaftsis '15; Das, Okada '15]

- Even if one assumes large Yukawa, the LNV signal will be generally suppressed by the quasi-degeneracy of the RH neutrinos [Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; BD '15].
- Need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.
- We consider a minimal $U(1)_{B-L}$ extension.
- Production cross section is no longer Yukawa-suppressed, while the decay is, giving rise to displaced vertex. [Deppisch, Desai, Valle '13]

At $\sqrt{s} = 14$ TeV LHC and for $M_{Z'} = 3.5$ TeV.

At $\sqrt{s} = 14$ TeV LHC and for $M_{Z'} = 3.5$ TeV.

Bound on Z' Mass

- Z' interactions induce additional dilution effects, e.g. $NN \rightarrow Z' \rightarrow jj$.
- Successful leptogenesis requires a lower bound on $M_{Z'}$. [Blanchet, Chacko, Granor, Mohapatra '09; Heeck, Teresi '17; BD, Hagedorn, Molinaro (in prep)]

Bound on Z' Mass

- Z' interactions induce additional dilution effects, e.g. $NN \rightarrow Z' \rightarrow jj$.
- Successful leptogenesis requires a lower bound on $M_{Z'}$. [Blanchet, Chacko, Granor, Mohapatra '09; Heeck, Teresi '17; BD, Hagedorn, Molinaro (in prep)]

Conclusion

- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe.
- Resonant Leptogenesis provides a way to test this idea in laboratory experiments.
- Flavor effects play a crucial role in the calculation of lepton asymmetry.
- Developed a fully flavor-covariant formalism to consistently capture all flavor effects in the semi-classical Boltzmann approach.
- Approximate analytic solutions are available for a quick pheno analysis.

Conclusion

- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe.
- Resonant Leptogenesis provides a way to test this idea in laboratory experiments.
- Flavor effects play a crucial role in the calculation of lepton asymmetry.
- Developed a fully flavor-covariant formalism to consistently capture all flavor effects in the semi-classical Boltzmann approach.
- Approximate analytic solutions are available for a quick pheno analysis.
- Presented a predictive RL model based on residual flavor and CP symmetries.
- Correlation between BAU and $0\nu\beta\beta$.
- Correlation between BAU and LNV signals (involving displaced vertex) at the LHC.
- Can probe neutrino mass hierarchy (complementary to oscillation experiments).
- Leptogenesis can be falsified at the LHC.

Conclusion

- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry of the universe.
- Resonant Leptogenesis provides a way to test this idea in laboratory experiments.
- Flavor effects play a crucial role in the calculation of lepton asymmetry.
- Developed a fully flavor-covariant formalism to consistently capture all flavor effects in the semi-classical Boltzmann approach.
- Approximate analytic solutions are available for a quick pheno analysis.
- Presented a predictive RL model based on residual flavor and CP symmetries.
- Correlation between BAU and $0\nu\beta\beta$.
- Correlation between BAU and LNV signals (involving displaced vertex) at the LHC.
- Can probe neutrino mass hierarchy (complementary to oscillation experiments).
- Leptogenesis can be falsified at the LHC.

Backup Slides

A Minimal Model of RL

- Resonant ℓ -genesis (RL $_{\ell}$). [Pilaftsis (PRL '04); Deppisch, Pilaftsis '10]
- Minimal model: O(N)-symmetric heavy neutrino sector at a high scale μ_X .
- Small mass splitting at low scale from RG effects.

$$\boldsymbol{M}_{N} = \boldsymbol{m}_{N} \mathbf{1} + \Delta \boldsymbol{M}_{N}^{\mathrm{RG}}$$
, with $\Delta \boldsymbol{M}_{N}^{\mathrm{RG}} = -\frac{m_{N}}{8\pi^{2}} \ln\left(\frac{\mu_{X}}{m_{N}}\right) \operatorname{Re}\left[\boldsymbol{h}^{\dagger}(\mu_{X})\boldsymbol{h}(\mu_{X})\right]$

• An example of RL_{τ} with $U(1)_{L_e+L_{\mu}} \times U(1)_{L_{\tau}}$ flavor symmetry:

$$m{h} = \left(egin{array}{cccc} 0 & a e^{-i\pi/4} & a e^{i\pi/4} \ 0 & b e^{-i\pi/4} & b e^{i\pi/4} \ 0 & 0 & 0 \end{array}
ight) + \,\deltam{h}\,,$$
 $\deltam{h} = \left(egin{array}{cccc} \epsilon_{e} & 0 & 0 \ \epsilon_{\mu} & 0 & 0 \ \epsilon_{ au} & \kappa_{1} e^{-i(\pi/4-\gamma_{1})} & \kappa_{2} e^{i(\pi/4-\gamma_{2})} \end{array}
ight)\,,$

[BD, Millington, Pilaftsis, Teresi '15]

- Asymmetry vanishes at $\mathcal{O}(h^4)$ in minimal RL_{ℓ} .
- Add an additional flavor-breaking ΔM_N :

$$M_N = m_N \mathbf{1} + \Delta M_N + \Delta M_N^{RG}$$
, with $\Delta M_N = \begin{pmatrix} \Delta M_1 & 0 & 0 \\ 0 & \Delta M_2/2 & 0 \\ 0 & 0 & -\Delta M_2/2 \end{pmatrix}$,

$$m{h} = \left(egin{array}{cccc} 0 & a e^{-i \pi / 4} & a e^{i \pi / 4} \ 0 & b e^{-i \pi / 4} & b e^{i \pi / 4} \ 0 & c e^{-i \pi / 4} & c e^{i \pi / 4} \end{array}
ight) + \left(egin{array}{cccc} \epsilon_{e} & 0 & 0 \ \epsilon_{\mu} & 0 & 0 \ \epsilon_{\tau} & 0 & 0 \end{array}
ight)$$

• Light neutrino mass constraint:

$$\boldsymbol{M}_{\nu} \simeq -\frac{\boldsymbol{v}^{2}}{2}\boldsymbol{h}\boldsymbol{M}_{N}^{-1}\boldsymbol{h}^{\mathsf{T}} \simeq \frac{\boldsymbol{v}^{2}}{2m_{N}} \begin{pmatrix} \frac{\Delta m_{N}}{m_{N}}\boldsymbol{a}^{2} - \epsilon_{\theta}^{2} & \frac{\Delta m_{N}}{m_{N}}\boldsymbol{a}\boldsymbol{b} - \epsilon_{\theta}\epsilon_{\mu} & -\epsilon_{\theta}\epsilon_{\tau} \\ \frac{\Delta m_{N}}{m_{N}}\boldsymbol{a}\boldsymbol{b} - \epsilon_{\theta}\epsilon_{\mu} & \frac{\Delta m_{N}}{m_{N}}\boldsymbol{b}^{2} - \epsilon_{\mu}^{2} & -\epsilon_{\mu}\epsilon_{\tau} \\ -\epsilon_{\theta}\epsilon_{\tau} & -\epsilon_{\mu}\epsilon_{\tau} & -\epsilon_{\tau}^{2} \end{pmatrix},$$

where

$$\Delta m_{N} \equiv 2 \, [\Delta M_{N}]_{23} + i \left([\Delta M_{N}]_{33} - [\Delta M_{N}]_{22} \right) = -i \, \Delta M_{2} \, .$$

Parameters	BP1	BP2	BP3
m	120 GeV	400 GeV	5 TeV
С	2×10^{-6}	2×10^{-7}	2×10^{-6}
$\Delta M_1/m_N$	$-5 imes 10^{-6}$	$-3 imes 10^{-5}$	$-4 imes 10^{-5}$
$\Delta M_2/m_N$	$(-1.59 - 0.47 i) \times 10^{-8}$	$(-1.21 + 0.10 i) \times 10^{-9}$	$(-1.46 + 0.11 i) \times 10^{-8}$
а	$(5.54 - 7.41 i) \times 10^{-4}$	$(4.93 - 2.32 i) \times 10^{-3}$	$(4.67 - 4.33 i) \times 10^{-3}$
b	$(0.89 - 1.19 i) imes 10^{-3}$	$(8.04 - 3.79 i) imes 10^{-3}$	$(7.53 - 6.97 i) \times 10^{-3}$
ϵ_{e}	3.31 <i>i</i> × 10 ^{−8}	$5.73 i imes 10^{-8}$	2.14 <i>i</i> × 10 ⁻⁷
ϵ_{μ}	$2.33 i imes 10^{-7}$	4.30 <i>i</i> × 10 ⁻⁷	1.50 <i>i</i> × 10 ⁻⁶
$\epsilon_{ au}$	3.50 <i>i</i> × 10 ^{−7}	6.39 <i>i</i> × 10 ⁻⁷	2.26 <i>i</i> × 10 ^{−6}

Observables	BP1	BP2	BP3	Current Limit
$BR(\mu \to e\gamma)$	$4.5 imes 10^{-15}$	$1.9 imes 10^{-13}$	$2.3 imes 10^{-17}$	$< 4.2 \times 10^{-13}$
$BR(au o \mu \gamma)$	$1.2 imes 10^{-17}$	1.6×10^{-18}	$8.1 imes 10^{-22}$	$< 4.4 imes 10^{-8}$
$BR(au o e\gamma)$	$4.6 imes 10^{-18}$	$5.9 imes 10^{-19}$	$3.1 imes 10^{-22}$	$< 3.3 imes 10^{-8}$
BR(µ → 3 <i>e</i>)	$1.5 imes 10^{-16}$	$9.3 imes 10^{-15}$	$4.9 imes 10^{-18}$	$< 1.0 \times 10^{-12}$
$R^{Ti}_{\mu ightarrow e}$	$2.4 imes 10^{-14}$	$2.9 imes 10^{-13}$	$2.3 imes 10^{-20}$	$< 6.1 imes 10^{-13}$
$R^{Au}_{\mu \to e}$	$3.1 imes 10^{-14}$	$3.2 imes 10^{-13}$	$5.0 imes 10^{-18}$	$< 7.0 imes 10^{-13}$
$R^{Pb}_{\mu ightarrow e}$	$2.3 imes10^{-14}$	$2.2 imes10^{-13}$	$4.3 imes10^{-18}$	$< 4.6 imes 10^{-11}$
$ \Omega _{e\mu}$	$5.8 imes 10^{-6}$	$1.8 imes 10^{-5}$	$1.6 imes 10^{-7}$	$< 7.0 imes 10^{-5}$

Falsifying (High-scale) Leptogenesis at the LHC

[Deppisch, Harz, Hirsch (PRL '14)]

Falsifying (Low-scale) Leptogenesis?

- One example: Left-Right Symmetric Model. [Pati, Salam '74; Mohapatra, Pati '75; Senjanović, Mohapatra 75]
- Common lore: $M_{W_R} > 18$ TeV for leptogenesis. [Frere, Hambye, Vertongen '09]
- Mainly due to additional $\Delta L = 1$ washout effects induced by W_R .
- True only with generic $Y_N \lesssim 10^{-11/2}$.
- Somewhat weaker in a class of low-scale LRSM with larger Y_N.
 [BD, Lee, Mohapatra '13]
- A lower limit of $M_{W_R} \gtrsim 10$ TeV.
- A Discovery of *M*_{W_R} at the LHC rules out leptogenesis in LRSM.

[BD, Lee, Mohapatra '14, '15;

Dhuria, Hati, Rangarajan, Sarkar '15]

