# Neutron-Antineutron Oscillation, Low-scale Baryogenesis, Dark Matter and LHC Physics 

## Bhupal Dev

Washington University in St. Louis
R. Allahverdi, BD and B. Dutta, arXiv:1711.xxxxx.

BD and R. N. Mohapatra, Phys. Rev. D 92, 016007 (2015) [arXiv:1504.07196].

## INT Workshop on Neutron-Antineutron Oscillations

University of Washington, Seattle

October 26, 2017

## Proton Decay vs $n-\bar{n}$

## Selection rules for $\Delta B$

$$
\Delta B=1
$$

$$
\Delta B=2
$$

- Proton decay
- Induced by dimension-6 operator (also dimension-5 in SUSY).
- Amplitude $\propto \Lambda^{-2}$.
- $\tau_{p} \gtrsim 10^{34} \mathrm{yr}$ implies $\Lambda \gtrsim 10^{15} \mathrm{GeV}$.
- Proton decay requires GUT-scale physics.
- Di-nucleon decay and $n-\bar{n}$
- Induced by dimension-9 operator.
- Amplitude $\propto \Lambda^{-5}$.
- $\Lambda \gtrsim 100 \mathrm{TeV}$ enough to satisfy experimental constraints.
- $n-\bar{n}$ oscillation could come from a TeV-scale new physics.
$\Delta B \neq 0$ could be linked to baryogenesis (Sakharov).


## Highlights of this Talk

A simple TeV-scale SM-extension with baryogenesis, dark matter and $n-\bar{n}$.

- Introduces $\not b$-interactions via TeV-scale color-triplet scalars ( $X_{\alpha}$ ) and a singlet Majorana fermion $(\psi)$ that couple only to the RH quarks.
- $\psi$ is stable, and hence, a DM candidate, if $m_{\psi} \simeq m_{p}$.
- Baryogenesis occurs via out-of-equilibrium decays of $X_{\alpha}$.
- Common origin for both baryon and DM abundance.
- Requirements of successful baryogenesis and $\Omega_{\mathrm{DM}} / \Omega_{b} \approx 5$ put meaningful constraints on the model parameter space.
- Observable $n-\bar{n}$ in the allowed parameter space.
- Complementarity with monojet/monotop signals at the LHC.


## Highlights of this Talk

A simple TeV-scale SM-extension with baryogenesis, dark matter and $n-\bar{n}$.

- Introduces $\not b$-interactions via TeV-scale color-triplet scalars ( $X_{\alpha}$ ) and a singlet Majorana fermion $(\psi)$ that couple only to the RH quarks.
- $\psi$ is stable, and hence, a DM candidate, if $m_{\psi} \simeq m_{p}$.
- Baryogenesis occurs via out-of-equilibrium decays of $X_{\alpha}$.
- Common origin for both baryon and DM abundance.
- Requirements of successful baryogenesis and $\Omega_{\mathrm{DM}} / \Omega_{b} \approx 5$ put meaningful constraints on the model parameter space.
- Observable $n-\bar{n}$ in the allowed parameter space.
- Complementarity with monojet/monotop signals at the LHC.


## The Model

- Start with the SM gauge group and add renormalizable terms that violate baryon number.
- Gauge invariance requires introduction of new colored fields.
- A minimal setup: Iso-singlet, color-triplet scalars $X_{\alpha}$ with $Y=+4 / 3$.
- Allows $X_{\alpha} d^{c} d^{c}$ terms in the Lagrangian.
- Need at least two ( $\alpha=1,2$ ) to produce baryon asymmetry from $X$ decay.
- Total baryon asymmetry vanishes after summing over all flavors of $d^{c}$ [Kolb, Wolfram (NPB '80)]
- Need additional $\not \beta$ interactions.
- Introduce a SM-singlet Majorana fermion $\psi$ (also plays the role of DM).



## The Model

- Start with the SM gauge group and add renormalizable terms that violate baryon number.
- Gauge invariance requires introduction of new colored fields.
- A minimal setup: Iso-singlet, color-triplet scalars $X_{\alpha}$ with $Y=+4 / 3$.
- Allows $X_{\alpha} d^{c} d^{c}$ terms in the Lagrangian.
- Need at least two ( $\alpha=1,2$ ) to produce baryon asymmetry from $X$ decay.
- Total baryon asymmetry vanishes after summing over all flavors of $d^{c}$. [Kolb, Wolfram (NPB '80)]
- Need additional $\not B$ interactions.
- Introduce a SM-singlet Majorana fermion $\psi$ (also plays the role of DM).

$$
\mathcal{L} \supset\left(\lambda_{\alpha i} X_{\alpha}^{*} \psi u_{i}^{c}+\lambda_{\alpha i j}^{\prime} X_{\alpha} d_{i}^{c} d_{j}^{c}+\frac{1}{2} m_{\psi} \bar{\psi}^{c} \psi+\text { H.c. }\right)
$$

## Dark Matter

- Integrate out $X_{\alpha}$ to obtain $\psi u_{i}^{c} d_{j}^{c} d_{k}^{c}$ interaction (assuming $m_{\psi} \ll m_{X}$ ).
- $\psi$ decays to three quarks (baryons) if $m_{\psi} \gg \mathrm{GeV}$.
- Also $\psi \rightarrow p+e^{-}+\bar{\nu}_{e}$ if $m_{\psi}>m_{p}+m_{e}$.
- Absolutely stable for $m_{\psi}<m_{p}+m_{e}$ (no discrete symmetry required).
- In addition, need $m_{p}>m_{\psi}+m_{e}$ to avoid $p \rightarrow \psi+e^{+}+\nu_{e}$.
- So the viable scenario for $\psi$ to be the DM candidate is (see also A. Nelson's talk)

$$
m_{p}-m_{e} \leq m_{\psi} \leq m_{p}+m_{e}
$$

- $\psi$ cannot give mass to light neutrinos through $H \psi L$ term, because this with $X \psi u^{c}$ and $X d^{c} d^{c}$ terms will induce the dimension-7 operator $H L u^{c} d^{c} d^{c}$ for rapid proton decay.
- Stability of DM is linked to the stability of proton.


## Dark Matter

- Integrate out $X_{\alpha}$ to obtain $\psi u_{i}^{c} d_{j}^{c} d_{k}^{c}$ interaction (assuming $m_{\psi} \ll m_{X}$ ).
- $\psi$ decays to three quarks (baryons) if $m_{\psi} \gg \mathrm{GeV}$.
- Also $\psi \rightarrow p+e^{-}+\bar{\nu}_{e}$ if $m_{\psi}>m_{p}+m_{e}$.
- Absolutely stable for $m_{\psi}<m_{p}+m_{e}$ (no discrete symmetry required).
- In addition, need $m_{p}>m_{\psi}+m_{e}$ to avoid $p \rightarrow \psi+e^{+}+\nu_{e}$.
- So the viable scenario for $\psi$ to be the DM candidate is (see also A. Nelson's talk)

$$
m_{p}-m_{e} \leq m_{\psi} \leq m_{p}+m_{e}
$$

- $\psi$ cannot give mass to light neutrinos through $H \psi L$ term, because this with $X \psi u^{c}$ and $X d^{c} d^{c}$ terms will induce the dimension-7 operator $H L u^{c} d^{c} d^{c}$ for rapid proton decay.
- Stability of DM is linked to the stability of proton.


## DM Relic Density

- For $m_{\psi} \approx m_{p}$, only annihilation channel is $\psi \psi \rightarrow u^{c} u^{c}$.

$$
\left\langle\sigma_{\mathrm{ann}} v\right\rangle \sim \frac{\left|\lambda_{\alpha 1}\right|^{4} m_{\psi}^{2}}{8 \pi m_{X}^{4}}
$$

- For $m_{X} \sim \mathcal{O}(1 \mathrm{TeV})$, even $\lambda \sim \mathcal{O}(1)$ gives $\left\langle\sigma_{\mathrm{ann}} \nu\right\rangle \ll 3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
- Thermal overproduction of $\psi$ (as expected). [Lee, Weinberg (PRL' '77]]
- Need a non-thermal mechanism to obtain the correct relic density.
- Late decay of a scalar (moduli) field $\phi$ with a low reheating temperature $T_{R} \leq \mathrm{GeV}$. [Moroi, Randall (NPB '00); Allahverdi, Dutta, Sinha (PRD '10)]


## DM Relic Density

- For $m_{\psi} \approx m_{p}$, only annihilation channel is $\psi \psi \rightarrow u^{c} u^{c}$.

$$
\left\langle\sigma_{\mathrm{ann}} v\right\rangle \sim \frac{\left|\lambda_{\alpha 1}\right|^{4} m_{\psi}^{2}}{8 \pi m_{X}^{4}} .
$$

- For $m_{X} \sim \mathcal{O}(1 \mathrm{TeV})$, even $\lambda \sim \mathcal{O}(1)$ gives $\left\langle\sigma_{\mathrm{ann}} v\right\rangle \ll 3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
- Thermal overproduction of $\psi$ (as expected). [Lee, Weinberg (PRL' ${ }^{777]]}$
- Need a non-thermal mechanism to obtain the correct relic density.
- Late decay of a scalar (moduli) field $\phi$ with a low reheating temperature $T_{R} \leq \mathrm{GeV}$. [Moroi, Randall (NPB '00); Allahverdi, Dutta, Sinha (PRD '10)]

$$
\frac{n_{\psi}}{s}=Y_{\phi} \operatorname{Br}_{\phi \rightarrow \psi}
$$

where $Y_{\phi}=\frac{3 T_{R}}{4 m_{\phi}}$ is the entropy dilution due to the $\phi$ decay.

## Baryogenesis

- Via direct decays of $X_{\alpha} \rightarrow \psi u_{i}^{c}, d_{i}^{c} d_{j}^{c}$.
- Independent of sphaleron processes.
- Example of post-sphaleron baryogenesis. [Babu, Mohapatra, Nasri (PRL '06)]
- For complex $\lambda_{\alpha i}$ or $\lambda_{\alpha i j}^{\prime}$, interference of tree and one-loop contributions produces a non-zero $C P$ asymmetry.
- In principle, either self-energy or vertex diagrams or both could contribute.
- In the non-thermal scenario, final baryon asymmetry also depends on the moduli decay rate:

$$
\eta_{B} \simeq 7.04 Y_{\phi} \sum_{\alpha} \mathrm{Br}_{\phi \rightarrow X_{\alpha}} \epsilon_{\alpha}
$$

## Moduli Decay

- Naturally long-lived due to gravitationally suppressed couplings.
- Dominates the energy density of the universe before decaying.
- Must decay well before BBN ( $T_{\text {BBN }} \sim \mathrm{MeV}$ ).
- Decay rate: $\Gamma_{\phi}=\frac{c_{\phi}}{2 \pi} \frac{m_{\phi}^{3}}{M_{\mathrm{P}}^{2}}$, where $c_{\phi} \sim 0.01-1$ (in typical string compactification scenarios, e.g. KKLT).
- Moduli decay occurs when $\Gamma_{\phi} \sim H \simeq 1.66 \sqrt{g_{*}} \frac{T^{2}}{M_{\mathrm{P}}}$
- Reheat temperature:

- Requiring $\mathrm{MeV} \lesssim T_{R} \lesssim \mathrm{GeV}$ implies $200 \mathrm{TeV} \lesssim m_{\phi} \lesssim 4500 \mathrm{TeV}$, or - Need $\epsilon \sim 10^{-3}$ - 10


## Moduli Decay

- Naturally long-lived due to gravitationally suppressed couplings.
- Dominates the energy density of the universe before decaying.
- Must decay well before BBN ( $T_{\text {BBN }} \sim \mathrm{MeV}$ ).
- Decay rate: $\Gamma_{\phi}=\frac{c_{\phi}}{2 \pi} \frac{m_{\phi}^{3}}{M_{\mathrm{P}}^{2}}$, where $c_{\phi} \sim 0.01-1$ (in typical string compactification scenarios, e.g. KKLT).
- Moduli decay occurs when $\Gamma_{\phi} \sim H \simeq 1.66 \sqrt{g_{*}} \frac{T^{2}}{M_{\mathrm{PI}}}$.
- Reheat temperature:

$$
T_{R} \simeq c_{\phi}^{1 / 2}\left(\frac{10.75}{g_{*}}\right)^{1 / 4}\left(\frac{m_{\phi}}{100 \mathrm{TeV}}\right)^{3 / 2} 3.5 \mathrm{MeV}
$$

- Requiring $\mathrm{MeV} \lesssim T_{R} \lesssim \mathrm{GeV}$ implies $200 \mathrm{TeV} \lesssim m_{\phi} \lesssim 4500 \mathrm{TeV}$, or $10^{-9} \lesssim Y_{\phi} \equiv \frac{3 T_{R}}{4 m_{\phi}} \lesssim 10^{-7}$.
- Need $\epsilon \sim 10^{-3}-10^{-1}$.


## Resonant Baryogenesis

- Similar in spirit to resonant leptogenesis. [Pilattsis (PRD '97); Pilaftsis, Underwood (NPB '03; PRD '05); BD, Pilaftsis, Millington, Teresi (NPB '14)]
- Self-energy graphs dominate the $C P$-asymmetry for quasi-degenerate $X_{\alpha}$ 's.
- Resonantly enhanced [up to $\mathcal{O}(0.1)$ ] for $\Delta m_{X} \lesssim \Gamma_{X} / 2$.

$$
\epsilon_{\alpha}=\frac{1}{8 \pi} \frac{\sum_{i j k} \operatorname{Im}\left(\lambda_{\alpha k}^{*} \lambda_{\beta k} \lambda_{\alpha i j}^{\prime *} \lambda_{\beta i j}^{\prime}\right)}{\sum_{k}\left|\lambda_{\alpha k}\right|^{2}+\sum_{i j}\left|\lambda_{\alpha i j}^{\prime}\right|^{2}} \frac{\left(m_{X_{\alpha}}^{2}-m_{X_{\beta}}^{2}\right) m_{X_{\alpha}} m_{X_{\beta}}}{\left(m_{X_{\alpha}}^{2}-m_{X_{\beta}}^{2}\right)^{2}+m_{X_{\alpha}}^{2} \Gamma_{X_{\beta}}^{2}}
$$

- In the resonance limit, regulator goes as $m_{X} / \Gamma_{X}$.
- CP-asymmetry becomes insensitive to the mass scale $m_{X}$, as well as the overall scaling of the coupling constants.


## Free Parameters and Constraints

- Free parameters: $m_{X}, \lambda_{\alpha i}, \lambda_{\alpha i j}^{\prime}$ (with $\alpha=1,2$ and $i, j, k=1,2,3$ ).
- Color antisymmetry requires that $\lambda_{i j}^{\prime}=0$ for $i=j$.
- Similarly, color conservation does not allow tree-level contributions to quark FCNCs.
- Only major constraint comes from di-nucleon decay (like $p p \rightarrow K K$ ): $\left|\lambda_{\alpha 1} \lambda_{\alpha 12}^{\prime}\right| \lesssim 10^{-6}\left(m_{X} / 1 \mathrm{TeV}\right)^{2}$.
- We assume $\lambda_{12}^{\prime}$ small, while leave $\lambda_{\alpha 1}$ as a free parameter.
- For simplicity, also assume $\left|\lambda_{1 i}\right|=\left|\lambda_{2 i}\right| \equiv|\lambda| \quad \forall i=1,2,3$.
- Similarly, take
- Left with only four parameters $m_{X}, \lambda, \lambda_{13,23}^{\prime}$.


## Free Parameters and Constraints

- Free parameters: $m_{X}, \lambda_{\alpha i}, \lambda_{\alpha i j}^{\prime}$ (with $\alpha=1,2$ and $i, j, k=1,2,3$ ).
- Color antisymmetry requires that $\lambda_{i j}^{\prime}=0$ for $i=j$.
- Similarly, color conservation does not allow tree-level contributions to quark FCNCs.
- Only major constraint comes from di-nucleon decay (like $p p \rightarrow K K$ ): $\left|\lambda_{\alpha 1} \lambda_{\alpha 12}^{\prime}\right| \lesssim 10^{-6}\left(m_{X} / 1 \mathrm{TeV}\right)^{2}$.
- We assume $\lambda_{12}^{\prime}$ small, while leave $\lambda_{\alpha 1}$ as a free parameter.
- For simplicity, also assume $\left|\lambda_{1 i}\right|=\left|\lambda_{2 i}\right| \equiv|\lambda| \quad \forall i=1,2,3$.
- Similarly, take $\left|\lambda_{1 i j}^{\prime}\right|=\left|\lambda_{2 i j}^{\prime}\right| \equiv\left|\lambda_{i j}^{\prime}\right|$.
- Left with only four parameters $m_{X}, \lambda, \lambda_{13,23}^{\prime}$.


## DM-to-Baryon Ratio

- Both DM and baryonic matter have a common origin from moduli decay.

$$
\frac{\Omega_{\mathrm{DM}}}{\Omega_{b}}=\frac{\mathrm{Br}_{\phi \rightarrow \psi}}{\sum_{\alpha} \epsilon_{\alpha} \mathrm{Br}_{\phi \rightarrow X_{\alpha}}}
$$

- $\mathrm{Br}_{\phi \rightarrow \psi}^{\text {total }}=\mathrm{Br}_{\phi \rightarrow \psi}^{\text {direct }}+\sum_{\alpha} \mathrm{Br}_{\phi \rightarrow X_{\alpha}} \mathrm{Br}_{X_{\alpha} \rightarrow \psi} \geq \sum_{\alpha} \mathrm{Br}_{\phi \rightarrow X_{\alpha}} \mathrm{Br}_{X_{\alpha} \rightarrow \psi}$.
- This implies $\frac{\Omega_{\mathrm{DM}}}{\Omega_{b}} \geq \frac{\mathrm{Br}_{X \rightarrow \psi}}{\epsilon}$.
- $\frac{\Omega_{\mathrm{DM}}}{\Omega_{b}} \approx 5$ imposes an upper bound on the ratio $\left|\lambda / \lambda^{\prime}\right| \lesssim 1 / \sqrt{2}$, independent of $m_{X}, m_{\phi}$.



## Baryon Asymmetry



Puts a lower bound on $\left|\lambda / \lambda^{\prime}\right|$ and on the branching of moduli.

## Baryon Asymmetry



Puts a lower bound on $\left|\lambda / \lambda^{\prime}\right|$ and on the branching of moduli.

## $n-\bar{n}$ Oscillation

- Effective $\nless$ operator $\psi u^{c} d^{c} d^{c}$ (integrating out $X_{\alpha}$ ). [Babu, Mohapatra, Nasri (PRL '07)]
- Induces $n-\bar{n}$ oscillation for Majorana $N$.
- Tree-level amplitude vanishes due to color-antisymmetry.
- Non-zero amplitude at one-loop level: [BD, Mohapatra (PRD '15)]

- Observable oscillation time for $m_{X} \sim \mathcal{O}(\mathrm{TeV})$ :



## $n-\bar{n}$ Oscillation

- Effective $\nless$ operator $\psi u^{c} d^{c} d^{c}$ (integrating out $X_{\alpha}$ ). [Babu, Mohapatra, Nasri (PRL '07)]
- Induces $n-\bar{n}$ oscillation for Majorana $N$.
- Tree-level amplitude vanishes due to color-antisymmetry.
- Non-zero amplitude at one-loop level: [BD, Mohapatra (PRD '15)]

$$
\begin{aligned}
G_{n-\bar{n}} & \simeq \frac{1}{16 \pi^{2}} \frac{\left|\lambda_{\alpha 1}\right|^{2}\left|\lambda_{\alpha 13}^{\prime}\right|^{4} m_{\psi}}{m_{X_{\alpha}}^{6}} \log \left(\frac{m_{X_{\alpha}}^{2}}{m_{\psi}^{2}}\right) \\
& \simeq\left(1.9 \times 10^{-28} \mathrm{GeV}^{-5}\right)\left(\frac{\left|\lambda_{\alpha 1}\right|}{0.03}\right)^{2}\left(\frac{\left|\lambda_{\alpha 13}^{\prime}\right|}{0.04}\right)^{4}\left(\frac{1 \mathrm{TeV}}{m_{X}}\right)^{6} .
\end{aligned}
$$

- Observable oscillation time for $m_{X} \sim \mathcal{O}(\mathrm{TeV})$ :

$$
\tau_{n \bar{n}} \simeq\left(3.0 \times 10^{8} \mathrm{sec}\right)\left(\frac{0.03}{\left|\lambda_{\alpha 1}\right|}\right)^{2}\left(\frac{0.04}{\left|\lambda_{\alpha 13}^{\prime}\right|}\right)^{4}\left(\frac{m_{X}}{1 \mathrm{TeV}}\right)^{6} .
$$

## Constraint from $n-\bar{n}$



- There is a lower limit on $\left|\lambda_{13}^{\prime}\right| \gtrsim 10^{-11}$ requiring that $X$ decay temperature is above QCD scale.
- But the corresponding upper limit on $\tau_{m n}$ is useless ( $10^{62} \mathrm{sec}$ ).


## Constraint from $n-\bar{n}$



- There is a lower limit on $\left|\lambda_{13}^{\prime}\right| \gtrsim 10^{-11}$ requiring that $X$ decay temperature is above QCD scale.
- But the corresponding upper limit on $\tau_{n \bar{n}}$ is useless $\left(10^{62} \mathrm{sec}\right)$.


## Collider Signals



- DM production $p p \rightarrow \psi u^{c}$ gives a monojet (monotop for $\lambda_{\alpha 3}$ ) signal.
- For $\lambda_{13,23}^{\prime}$, the quark annihilation must involve the $b$-quark PDF (small).
- Another way: gluon splitting into $b \bar{b}$.
- Extra $b$ can be used for event tagging.
- The color-triplet scalar will also give a dijet resonance at the LHC.



## Monojet

- Different from other DM production at the LHC: $p p \rightarrow$ DM DM.
- Will give a Jacobian peak in the jet $p_{T}$ distribution. [Duta, Gao, Kamon (PRD '14)]



## $n \bar{n}$ - LHC Complementarity



## Conclusion

- A simple TeV-scale model of $B$-violation for baryogenesis and dark matter.
- Stability of dark matter linked to that of proton (no ad-hoc symmetry required).
- DM-to-baryon abundance ratio easily explained.
- Imposes an upper limit on the coupling ratio $\left|\lambda / \lambda^{\prime}\right|$.
- Successful baryogenesis imposes a lower bound on $\left|\lambda / \lambda^{\prime}\right|$.
- Potentially observable $n-\bar{n}$ oscillation rate.
- No EDM constraints.
- Distinct monojet and dijet signatures at the LHC.
- Complementarity between monojet and $n-\bar{n}$.

