



# Baryogenesis and Leptogenesis

#### **Bhupal Dev**

Washington University in St. Louis

16th Conference on Flavor Physics & CP Violation (FPCP 2018)

UoH and IITH, Hyderabad, India



July 17, 2018

# Matter-Antimatter Asymmetry



- Dynamical generation of baryon asymmetry.
- Basic ingredients: [Sakharov (JETP Lett. '67)]
   B violation, C & CP violation, departure from thermal equilibrium



- Dynamical generation of baryon asymmetry.
- Basic ingredients: [Sakharov (JETP Lett. '67)]
   B violation, C & CP violation, departure from thermal equilibrium
- Necessary but not sufficient.





- Dynamical generation of baryon asymmetry.
- Basic ingredients: [Sakharov (JETP Lett. '67)]
   B violation, C & CP violation, departure from thermal equilibrium
- Necessary but not sufficient.





- $\bullet$  CKM  $\emph{CP}$  violation is too small (by  $\sim$  10 orders of magnitude).
- Observed Higgs boson mass is too large for a strong first-order phase transition.

Requires New Physics!



- Dynamical generation of baryon asymmetry.
- Basic ingredients: [Sakharov (JETP Lett. '67)]
   B violation, C & CP violation, departure from thermal equilibrium
- Necessary but not sufficient.



- The Standard Model has all the basic ingredients, but
  - $\bullet$  CKM  $\emph{CP}$  violation is too small (by  $\sim$  10 orders of magnitude).
  - Observed Higgs boson mass is too large for a strong first-order phase transition.

#### **Requires New Physics!**

- New sources of CP violation.
- A departure from equilibrium (in addition to EWPT) or modify the EWPT itself.



- Many ideas, some of which can be realized down to the (sub)TeV scale, e.g
  - EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]

- Many ideas, some of which can be realized down to the (sub)TeV scale, e.g
  - EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
  - Leptogenesis [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Ma, Sahu, Sarkar '06; Deppisch, Pilaftsis '10; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; Aristizabal Sierra, Tortola, Valle, Vicente '14;...]

- Many ideas, some of which can be realized down to the (sub)TeV scale, e.g
  - EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
  - Leptogenesis [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Ma, Sahu, Sarkar '06; Deppisch, Pilaftsis '10; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; Aristizabal Sierra, Tortola, Valle, Vicente '14; ...]
  - Cogenesis [Kaplan '92; Farrar, Zaharijas '06; Sahu, Sarkar '07; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; Narendra, Patra, Sahu, Shil '18; ...]
  - WIMPy baryogenesis [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; Dasgupta, Hati, Patra, Sarkar '16; ...]

- Many ideas, some of which can be realized down to the (sub)TeV scale, e.g
  - EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
  - Leptogenesis [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Ma, Sahu, Sarkar '06; Deppisch, Pilaftsis '10; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; Aristizabal Sierra, Tortola, Valle, Vicente '14; ...]
  - Cogenesis [Kaplan '92; Farrar, Zaharijas '06; Sahu, Sarkar '07; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; Narendra, Patra, Sahu, Shil '18; ...]
  - WIMPy baryogenesis [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; Dasgupta, Hati, Patra, Sarkar '16; ...]
- Can also go below the EW scale, independent of sphalerons, e.g.
  - Post-sphaleron baryogenesis [Babu, Mohapatra, Nasri '07; Babu, BD, Mohapatra '08]
  - Dexiogenesis [BD, Mohapatra '15; Davoudiasl, Zhang '15]

- Many ideas, some of which can be realized down to the (sub)TeV scale, e.g
  - EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
  - Leptogenesis [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Ma, Sahu, Sarkar '06; Deppisch, Pilaftsis '10; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; Aristizabal Sierra, Tortola, Valle, Vicente '14; ...]
  - Cogenesis [Kaplan '92; Farrar, Zaharijas '06; Sahu, Sarkar '07; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; Narendra, Patra, Sahu, Shil '18; ...]
  - WIMPy baryogenesis [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; Dasgupta, Hati, Patra, Sarkar '16; ...]
- Can also go below the EW scale, independent of sphalerons, e.g.
  - Post-sphaleron baryogenesis [Babu, Mohapatra, Nasri '07; Babu, BD, Mohapatra '08]
  - Dexiogenesis [BD, Mohapatra '15; Davoudiasl, Zhang '15]
- Testable effects: collider signatures, gravitational waves, electric dipole moment,  $0\nu\beta\beta$ , lepton flavor violation,  $n-\bar{n}$  oscillation, ...

- Many ideas, some of which can be realized down to the (sub)TeV scale, e.g
  - EW baryogenesis [Kuzmin, Rubakov, Shaposhnikov '87; Cohen, Kaplan, Nelson '90; Carena, Quiros, Wagner '96; Cirigliano, Lee, Tulin '11; Morrissey, Ramsey-Musolf '12; ...]
  - Leptogenesis [Fukugita, Yanagida '86; Akhmedov, Rubakov, Smirnov '98; Pilaftsis, Underwood '03; Ma, Sahu, Sarkar '06; Deppisch, Pilaftsis '10; Fong, Gonzalez-Garcia, Nardi, Peinado '13; BD, Millington, Pilaftsis, Teresi '14; Aristizabal Sierra, Tortola, Valle, Vicente '14; ...]
  - Cogenesis [Kaplan '92; Farrar, Zaharijas '06; Sahu, Sarkar '07; Kitano, Murayama, Ratz '08; Kaplan, Luty, Zurek '09; Berezhiani '16; Bernal, Fong, Fonseca '16; Narendra, Patra, Sahu, Shil '18; ...]
  - WIMPy baryogenesis [Cui, Randall, Shuve '11; Cui, Sundrum '12; Racker, Rius '14; Dasgupta, Hati, Patra, Sarkar '16; ...]
- Can also go below the EW scale, independent of sphalerons, e.g.
  - Post-sphaleron baryogenesis [Babu, Mohapatra, Nasri '07; Babu, BD, Mohapatra '08]
  - Dexiogenesis [BD, Mohapatra '15; Davoudiasl, Zhang '15]
- Testable effects: collider signatures, gravitational waves, electric dipole moment,  $0\nu\beta\beta$ , lepton flavor violation,  $n-\bar{n}$  oscillation, ...

This talk: Low-scale leptogenesis

## Connection to Neutrino Mass





#### Connection to Neutrino Mass





Seesaw Mechanism: a common link between neutrino mass and baryon asymmetry.



[Fukugita, Yanagida (Phys. Lett. B '86)]

#### Seesaw Mechanism

- Add SM-singlet heavy Majorana neutrinos. [Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80);
   Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]
- In flavor basis  $\{\nu^c, N\}$ , (type-I) seesaw mass matrix

$$\mathcal{M}_{\nu} = \left( \begin{array}{cc} 0 & M_{D} \\ M_{D}^{\mathsf{T}} & M_{N} \end{array} \right)$$

 $\bullet \ \ \text{For} \ ||\textit{M}_{\textit{D}}\textit{M}_{\textit{N}}^{-1}|| \ll 1, \boxed{\textit{M}_{\textit{\nu}}^{\text{light}} \simeq -\textit{M}_{\textit{D}}\textit{M}_{\textit{N}}^{-1}\textit{M}_{\textit{D}}^{\mathsf{T}}}.$ 

#### Seesaw Mechanism

- Add SM-singlet heavy Majorana neutrinos. [Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80);
   Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]
- In flavor basis  $\{\nu^c, N\}$ , (type-I) seesaw mass matrix

$$\mathcal{M}_{
u} = \left( egin{array}{cc} 0 & M_D \ M_D^\mathsf{T} & M_N \end{array} 
ight)$$

- $\bullet \ \ \text{For} \ ||\textit{M}_{\textit{D}}\textit{M}_{\textit{N}}^{-1}|| \ll 1, \boxed{\textit{M}_{\textit{\nu}}^{\text{light}} \simeq -\textit{M}_{\textit{D}}\textit{M}_{\textit{N}}^{-1}\textit{M}_{\textit{D}}^{T}} \,.$
- In traditional SO(10) GUT,  $M_N \sim 10^{14}$  GeV for  $\mathcal{O}(1)$  Dirac Yukawa couplings.
- But in a bottom-up approach, allowed to be anywhere (down to eV-scale).





#### A cosmological consequence of the seesaw mechanism.

Naturally satisfies all Sakharov conditions.

- L violation due to the Majorana nature of heavy RH neutrinos.
- $\not L \to \not B$  through sphaleron interactions.
- New source of CP violation in the leptonic sector (through complex Dirac Yukawa couplings and/or PMNS CP phases).
- Departure from thermal equilibrium when  $\Gamma_N \lesssim H$ .

An experimentally testable scenario.

# Popularity of Leptogenesis



# Popularity of Leptogenesis



## Leptogenesis for Pedestrians

[Buchmüller, Di Bari, Plümacher '05]

#### Three basic steps:



Generation of L asymmetry by heavy Majorana neutrino decay:



# Leptogenesis for Pedestrians

[Buchmüller, Di Bari, Plümacher '05]

#### Three basic steps:



Generation of L asymmetry by heavy Majorana neutrino decay:



Partial washout of the asymmetry due to inverse decay (and scatterings):



## Leptogenesis for Pedestrians

[Buchmüller, Di Bari, Plümacher '05]

#### Three basic steps:



Generation of L asymmetry by heavy Majorana neutrino decay:



Partial washout of the asymmetry due to inverse decay (and scatterings):



**3** Conversion of the left-over *L* asymmetry to *B* asymmetry at  $T > T_{sph}$ .



## **Boltzmann Equations**

[Buchmüller, Di Bari, Plümacher '02]

$$\begin{array}{lcl} \frac{dN_N}{dz} & = & -(D+S)(N_N-N_N^{\rm eq}), \\ \frac{dN_{\Delta L}}{dz} & = & \varepsilon D(N_N-N_N^{\rm eq})-N_{\Delta L}W, \end{array}$$

(where  $z=m_{N_1}/T$  and  $D,S,W=\Gamma_{D,S,W}/Hz$  for decay, scattering and washout rates.)

## **Boltzmann Equations**

[Buchmüller, Di Bari, Plümacher '02]

$$\begin{array}{lcl} \frac{dN_N}{dz} & = & -(D+S)(N_N-N_N^{\rm eq}), \\ \frac{dN_{\Delta L}}{dz} & = & \varepsilon D(N_N-N_N^{\rm eq})-N_{\Delta L}W, \end{array}$$

(where  $z = m_{N_1}/T$  and  $D, S, W = \Gamma_{D,S,W}/Hz$  for decay, scattering and washout rates.)

Final baryon asymmetry:

$$\eta_{\Delta B} = \mathbf{d} \cdot \boldsymbol{\varepsilon} \cdot \kappa_f$$

- $d \simeq \frac{28}{51} \frac{1}{27} \simeq 0.02$  ( $\not L \to \not B$  conversion at  $T_c$  + entropy dilution from  $T_c$  to recombination epoch).
- $\kappa_f \equiv \kappa(z_f)$  is the final efficiency factor, where

$$\kappa(z) = \int_{z_i}^{z} dz' \frac{D}{D+S} \frac{dN_N}{dz'} e^{-\int_{z'}^{z} dz'' W(z'')}$$

## **CP** Asymmetry



$$\varepsilon_{l\alpha} = \frac{\Gamma(N_{\alpha} \to L_{l}\Phi) - \Gamma(N_{\alpha} \to L_{l}^{c}\Phi^{c})}{\sum_{k} \left[ \Gamma(N_{\alpha} \to L_{k}\Phi) + \Gamma(N_{\alpha} \to L_{k}^{c}\Phi^{c}) \right]} \equiv \frac{|\widehat{\mathbf{h}}_{l\alpha}|^{2} - |\widehat{\mathbf{h}}_{l\alpha}^{c}|^{2}}{(\widehat{\mathbf{h}}^{\dagger}\widehat{\mathbf{h}})_{\alpha\alpha} + (\widehat{\mathbf{h}}^{c\dagger}\widehat{\mathbf{h}}^{c})_{\alpha\alpha}}$$

## **CP** Asymmetry



$$\varepsilon_{I\alpha} = \frac{\Gamma(N_{\alpha} \to L_{I}\Phi) - \Gamma(N_{\alpha} \to L_{I}^{c}\Phi^{c})}{\sum_{k} \left[\Gamma(N_{\alpha} \to L_{k}\Phi) + \Gamma(N_{\alpha} \to L_{k}^{c}\Phi^{c})\right]} \equiv \frac{|\widehat{\mathbf{h}}_{I\alpha}|^{2} - |\widehat{\mathbf{h}}_{I\alpha}^{c}|^{2}}{(\widehat{\mathbf{h}}^{\dagger}\widehat{\mathbf{h}})_{\alpha\alpha} + (\widehat{\mathbf{h}}^{c\dagger}\widehat{\mathbf{h}}^{c})_{\alpha\alpha}}$$

with the one-loop resummed Yukawa couplings [Pilaftsis, Underwood '03]

$$\begin{split} \widehat{\mathbf{h}}_{l\alpha} \; &= \; \widehat{h}_{l\alpha} \; - \; i \sum_{\beta,\gamma} |\epsilon_{\alpha\beta\gamma}| \widehat{h}_{l\beta} \\ &\times \frac{m_{\alpha}(m_{\alpha}A_{\alpha\beta} + m_{\beta}A_{\beta\alpha}) \; - \; iR_{\alpha\gamma}[m_{\alpha}A_{\gamma\beta}(m_{\alpha}A_{\alpha\gamma} + m_{\gamma}A_{\gamma\alpha}) \; + m_{\beta}A_{\beta\gamma}(m_{\alpha}A_{\gamma\alpha} \; + m_{\gamma}A_{\alpha\gamma})]}{m_{\alpha}^2 \; - \; m_{\beta}^2 \; + \; 2im_{\alpha}^2A_{\beta\beta} \; + \; 2iIm(R_{\alpha\gamma})[m_{\alpha}^2|A_{\beta\gamma}|^2 \; + \; m_{\beta}m_{\gamma}\mathrm{Re}(A_{\beta\gamma}^2)]} \; , \\ &R_{\alpha\beta} \; = \; \frac{m_{\alpha}^2}{m_{\alpha}^2 \; - \; m_{\beta}^2 \; + \; 2im_{\alpha}^2A_{\beta\beta}} \; ; \qquad A_{\alpha\beta}(\widehat{\mathbf{h}}) \; = \; \frac{1}{16\pi} \sum_{l} \widehat{h}_{l\alpha}\widehat{h}_{l\beta}^* \; . \end{split}$$

## Testability of Leptogenesis

## Three regions of interest:

• High scale:  $m_N \gg \text{TeV}$ . Can be falsified with an LNV signal at the LHC.

[Deppisch, Harz, Hirsch (PRL '14)]

• Collider-friendly scale: 100 GeV  $\lesssim m_N \lesssim$  few TeV. Can be tested in collider and/or low-energy (0 $\nu\beta\beta$ , LFV) searches. [Pilaftsis, Underwood (PRD '05); Deppisch, Pilaftsis (PRD '11); BD, Millington, Pilaftsis, Teresi (NPB '14)]

• Low-scale: 1 GeV  $\lesssim m_N \lesssim$  5 GeV. Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Belle-II).

[Canetti, Drewes, Garbrecht (PRD '14); Alekhin et al. (RPP '15)]

#### For more details, see

Dedicated review volume on Leptogenesis (Int. J. Mod. Phys. A '18)

- P. S. B. Dev, P. Di Bari, B. Garbrecht, S. Lavignac, P. Millington and D. Teresi, "Flavor effects in leptogenesis," arXiv:1711.02861 [hep-ph].
- M. Drewes et al., "ARS Leptogenesis," arXiv:1711.02862 [hep-ph].
- P. S. B. Dev, M. Garny, J. Klaric, P. Millington and D. Teresi, "Resonant enhancement in leptogenesis," arXiv:1711.02863 [hep-ph].
- S. Biondini et al., "Status of rates and rate equations for thermal leptogenesis," arXiv:1711.02864 [hep-ph].
- E. J. Chun et al., "Probing Leptogenesis," arXiv:1711.02865 [hep-ph].
- C. Hagedorn, R. N. Mohapatra, E. Molinaro, C. C. Nishi and S. T. Petcov, "CP Violation in the Lepton Sector and Implications for Leptogenesis," arXiv:1711.02866 [hep-ph].

## Vanilla Leptogenesis

- Hierarchical heavy neutrino spectrum ( $m_{N_1} \ll m_{N_2} < m_{N_3}$ ).
- Both vertex correction and self-energy diagrams are relevant.
- For type-I seesaw, the maximal CP asymmetry is given by

$$\varepsilon_1^{\text{max}} = \frac{3}{16\pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m_{\text{atm}}^2}$$

ullet Lower bound on  $m_{N_1}$ : [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

$$m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left( \frac{\eta_B}{6 \times 10^{-10}} \right) \left( \frac{0.05 \text{ eV}}{\sqrt{\Delta m_{\text{atm}}^2}} \right) \kappa_f^{-1}$$



## Vanilla Leptogenesis





- Both vertex correction and self-energy diagrams are relevant.
- For type-I seesaw, the maximal CP asymmetry is given by

$$\varepsilon_1^{\text{max}} = \frac{3}{16\pi} \frac{m_{N_1}}{v^2} \sqrt{\Delta m_{\text{atm}}^2}$$

■ Lower bound on m<sub>N1</sub>: [Davidson, Ibarra '02; Buchmüller, Di Bari, Plümacher '02]

$$m_{N_1} > 6.4 \times 10^8 \text{ GeV} \left( \frac{\eta_B}{6 \times 10^{-10}} \right) \left( \frac{0.05 \text{ eV}}{\sqrt{\Delta m_{\text{atm}}^2}} \right) \kappa_f^{-1}$$

- Experimentally inaccessible!
- Also leads to a lower limit on the reheating temperature  $T_{\rm rh} \gtrsim 10^9$  GeV.
- In supergravity models, need  $T_{rh} \lesssim 10^6-10^9$  GeV to avoid the gravitino problem. [Khlopov, Linde '84; Ellis, Kim, Nanopoulos '84; Cyburt, Ellis, Fields, Olive '02; Kawasaki, Kohri, Moroi, Yotsuyanagi '08]
- Also in conflict with the Higgs naturalness bound  $m_N \lesssim 10^7$  GeV. [Vissani '97; Clarke, Foot, Volkas '15; Bambhaniya, BD, Goswami, Khan, Rodejohann '16]

### Resonant Leptogenesis



- Dominant self-energy effects on the CP-asymmetry (ε-type) [Flanz, Paschos, Sarkar '95;
   Covi, Roulet, Vissani '96].
- Resonantly enhanced, even up to order 1, when  $\Delta m_N \sim \Gamma_N/2 \ll m_{N_{1,2}}$ . [Pilaftsis '97; Pilaftsis, Underwood '03]
- The quasi-degeneracy can be naturally motivated as due to approximate breaking of some symmetry in the leptonic sector.
- Heavy neutrino mass scale can be as low as the EW scale.
   [Pilaftsis, Underwood '05; Deppisch, Pilaftsis '10; BD, Millington, Pilaftsis, Teresi '14]
- A testable scenario at both Energy and Intensity Frontiers.

## Flavordynamics



## Flavordynamics



- Flavor effects important at low scale [Abada, Davidson, Ibarra, Josse-Michaux, Losada, Riotto '06; Nardi,
   Nir, Roulet, Racker '06; De Simone, Riotto '06; Blanchet, Di Bari, Jones, Marzola '12; BD, Millington, Pilaftsis, Teresi '14]
- Two sources of flavor effects:
  - Heavy neutrino Yukawa couplings  $h_I^{\alpha}$  [Pilaftsis '04; Endoh, Morozumi, Xiong '04]
  - Charged lepton Yukawa couplings  $y_l^k$  [Barbieri, Creminelli, Strumia, Tetradis '00]
- Three distinct physical phenomena: mixing, oscillation and decoherence.
- Captured consistently in the Boltzmann approach by the fully flavor-covariant formalism. [BD, Millington, Pilaftsis, Teresi '14; '15]

[BD, Millington, Pilaftsis, Teresi (Nucl. Phys. B '14)]

In quantum statistical mechanics,

$${m n}^X(t) \ \equiv \ \langle {m n}^X( ilde{t}; ilde{t}_i) 
angle_t \ = \ {
m Tr} \left\{ 
ho( ilde{t}; ilde{t}_i) \ {m n}^X( ilde{t}; ilde{t}_i) 
ight\} \ .$$

• Differentiate w.r.t. the macroscopic time  $t = \tilde{t} - \tilde{t}_i$ :

$$\frac{\mathrm{d}\boldsymbol{n}^{X}(t)}{\mathrm{d}t} = \operatorname{Tr}\left\{\rho(\tilde{t};\tilde{t}_{i})\,\frac{\mathrm{d}\boldsymbol{\check{n}}^{X}(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\right\} + \operatorname{Tr}\left\{\frac{\mathrm{d}\rho(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\,\boldsymbol{\check{n}}^{X}(\tilde{t};\tilde{t}_{i})\right\} \equiv \mathcal{I}_{1} + \mathcal{I}_{2}.$$

• Use the Heisenberg EoM for  $\mathcal{I}_1$  and Liouville-von Neumann equation for  $\mathcal{I}_2$ .

[BD, Millington, Pilaftsis, Teresi (Nucl. Phys. B '14)]

In quantum statistical mechanics,

$${m n}^X(t) \ \equiv \ \langle {m \check n}^X( ilde t; ilde t_i) 
angle_t \ = \ {
m Tr} \left\{ 
ho( ilde t; ilde t_i) \ {m \check n}^X( ilde t; ilde t_i) 
ight\} \ .$$

• Differentiate w.r.t. the macroscopic time  $t = \tilde{t} - \tilde{t}_i$ :

$$\frac{\mathrm{d}\boldsymbol{n}^{X}(t)}{\mathrm{d}t} \; = \; \mathrm{Tr}\left\{\rho(\tilde{t};\tilde{t}_{i})\,\frac{\mathrm{d}\boldsymbol{\check{n}}^{X}(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\right\} \; + \; \mathrm{Tr}\left\{\frac{\mathrm{d}\rho(\tilde{t};\tilde{t}_{i})}{\mathrm{d}\tilde{t}}\,\boldsymbol{\check{n}}^{X}(\tilde{t};\tilde{t}_{i})\right\} \; \equiv \; \boldsymbol{\mathcal{I}}_{1} \; + \; \boldsymbol{\mathcal{I}}_{2}. \; .$$

- Use the Heisenberg EoM for  $\mathcal{I}_1$  and Liouville-von Neumann equation for  $\mathcal{I}_2$ .
- Markovian master equation for the number density matrix:

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{n}^{X}(\mathbf{k},t) \simeq i \langle [H_{0}^{X}, \, \check{\boldsymbol{n}}^{X}(\mathbf{k},t)] \rangle_{t} - \frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{d}t' \, \langle [H_{\mathrm{int}}(t'), \, [H_{\mathrm{int}}(t), \, \check{\boldsymbol{n}}^{X}(\mathbf{k},t)]] \rangle_{t} .$$

Generalization of the density matrix formalism. [Sigl, Raffelt '93]

# Collision Rates for Decay and Inverse Decay



## Collision Rates for 2 ↔ 2 Scattering



# Key Result



## Key Result



$$\delta\eta_{\rm mix}^L \;\simeq\; \frac{g_N}{2} \frac{3}{2{\rm K}z} \; \sum_{\alpha \neq \beta} \frac{\Im \left(\widehat{h}^\dagger \widehat{h}\right)_{\alpha\beta}^2}{(\widehat{h}^\dagger \widehat{h})_{\alpha\alpha}(\widehat{h}^\dagger \widehat{h})_{\beta\beta}} \; \frac{\left(M_{N,\,\alpha}^2 - M_{N,\,\beta}^2\right) M_N \widehat{\Gamma}_{\beta\beta}^{(0)}}{\left(M_{N,\,\alpha}^2 - M_{N,\,\beta}^2\right)^2 + \left(M_N \widehat{\Gamma}_{\beta\beta}^{(0)}\right)^2} \; ,$$

$$\delta\eta_{\rm osc}^{L} \,\simeq\, \frac{g_{N}}{2} \frac{3}{2 \mathrm{K}z} \, \sum_{\alpha \neq \beta} \, \frac{\Im \left(\widehat{h}^{\dagger} \widehat{h}\right)_{\alpha\beta}^{2}}{\left(\widehat{h}^{\dagger} \widehat{h}\right)_{\alpha\alpha} \left(\widehat{h}^{\dagger} \widehat{h}\right)_{\beta\beta}} \, \frac{\left(M_{N,\,\alpha}^{2} - M_{N,\,\beta}^{2}\right) M_{N} \left(\widehat{\Gamma}_{\alpha\alpha}^{(0)} + \widehat{\Gamma}_{\beta\beta}^{(0)}\right)}{\left(M_{N,\,\alpha}^{2} - M_{N,\,\beta}^{2}\right)^{2} \,+\, M_{N}^{2} \left(\widehat{\Gamma}_{\alpha\alpha}^{(0)} + \widehat{\Gamma}_{\beta\beta}^{(0)}\right)^{2} \frac{\Im \left[\left(\widehat{h}^{\dagger} \widehat{h}\right)_{\alpha\beta}\right]^{2}}{\left(\widehat{h}^{\dagger} \widehat{h}\right)_{\alpha\alpha} \left(\widehat{h}^{\dagger} \widehat{h}\right)_{\beta\beta}}}$$

#### **ARS Mechanism**

[Akhmedov, Rubakov, Smirnov (Phys. Rev. Lett. '98); Alekhin et al. (Rep. Prog. Phys. '16)]



## Accessible in B-decay



[-----(----

[Hambye, Teresi (Phys. Rev. Lett. '16)]



#### Testable Models

- Need  $m_N \lesssim \mathcal{O}(\text{TeV})$ .
- Naive type-I seesaw requires mixing with light neutrinos to be  $\lesssim 10^{-5}$ .
- Collider signal suppressed in the minimal set-up (SM+RH neutrinos).
- Two ways out:
  - Construct a TeV seesaw model with large mixing (special textures of  $m_D$  and  $m_N$ ).
  - Go beyond the minimal SM seesaw (e.g.  $U(1)_{B-L}$ , Left-Right).
- Observable low-energy signatures (LFV,  $0\nu\beta\beta$ ) possible in any case.
- Complementarity between high-energy and high-intensity frontiers.
- Leptogenesis brings in additional powerful constraints in each case.
- Can be used to test/falsify leptogenesis.

#### A Predictive RL Model

- Based on residual leptonic flavor  $G_f = \Delta(3n^2)$  or  $\Delta(6n^2)$  (with n even,  $3 \nmid n$ ,  $4 \nmid n$ ) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s,  $0 \le s \le n-1$ . [Hagedorn, Meroni, Molinaro '14]

#### A Predictive RL Model

- Based on residual leptonic flavor  $G_f = \Delta(3n^2)$  or  $\Delta(6n^2)$  (with n even,  $3 \nmid n$ ,  $4 \nmid n$ ) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s,  $0 \le s \le n-1$ . [Hagedorn, Meroni, Molinaro '14]
- Dirac neutrino Yukawa matrix must be invariant under  $Z_2$  and CP, i.e. under the generator Z of  $Z_2$  and X(s). [BD, Hagedorn, Molinaro (in prep)]

$$Z^{\dagger}(\mathbf{3}) \ Y_D \ Z(\mathbf{3}') = Y_D \quad \text{and} \quad X^{\star}(\mathbf{3}) \ Y_D \ X(\mathbf{3}') = Y_D^{\star} \ .$$

$$Y_D = \Omega(s)(\mathbf{3}) \ R_{13}(\theta_L) \left( \begin{array}{ccc} y_1 & 0 & 0 \\ 0 & y_2 & 0 \\ 0 & 0 & y_2 \end{array} \right) \ R_{13}(-\theta_R) \ \Omega(s)(\mathbf{3}')^{\dagger} \ .$$

#### A Predictive RL Model

- Based on residual leptonic flavor  $G_f = \Delta(3n^2)$  or  $\Delta(6n^2)$  (with n even,  $3 \nmid n$ ,  $4 \nmid n$ ) and CP symmetries. [Luhn, Nasri, Ramond '07; Escobar, Luhn '08; Feruglio, Hagedorn, Zieglar '12]
- CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s,  $0 \le s \le n-1$ . [Hagedorn, Meroni, Molinaro '14]
- Dirac neutrino Yukawa matrix must be invariant under  $Z_2$  and CP, i.e. under the generator Z of  $Z_2$  and X(s). [BD, Hagedorn, Molinaro (in prep)]

$$Z^{\dagger}(\mathbf{3}) \ Y_D \ Z(\mathbf{3}') = Y_D \quad \text{and} \quad X^{\star}(\mathbf{3}) \ Y_D \ X(\mathbf{3}') = Y_D^{\star} \ .$$

$$Y_D = \Omega(s)(\mathbf{3}) \ R_{13}(\theta_L) \left( \begin{array}{ccc} y_1 & 0 & 0 \\ 0 & y_2 & 0 \\ 0 & 0 & y_3 \end{array} \right) \ R_{13}(-\theta_R) \ \Omega(s)(\mathbf{3}')^{\dagger} \ .$$

- The unitary matrices  $\Omega(s)(r)$  are determined by the CP transformation X(s)(r).
- Form of the RH neutrino mass matrix invariant under flavor and CP symmetries:

$$M_R = M_N \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

### Correlation between BAU and $0\nu\beta\beta$



## Correlation between BAU and $0\nu\beta\beta$



### Correlation between BAU and $0\nu\beta\beta$



## **Decay Length**



 $N_1$  (red),  $N_2$  (blue),  $N_3$  (green).  $M_N$ =150 GeV (dashed), 250 GeV (solid).



 $N_1$  (red),  $N_2$  (blue),  $N_3$  (green).  $M_N$ =150 GeV (dashed), 250 GeV (solid).

## Finding Mass Hierarchy at the LHC



[BD, Hagedorn, Molinaro (in prep)]

## Finding Mass Hierarchy at the LHC



[BD, Hagedorn, Molinaro (in prep)]

#### Conclusion

- Observed baryon asymmetry provides a strong evidence for BSM.
- Many interesting ideas for baryogenesis, some of which can be tested in laboratory experiments.
- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry.
- Can be realized at low scale: Resonant Leptogenesis/ARS.
- Flavor effects are important.

#### Conclusion

- Observed baryon asymmetry provides a strong evidence for BSM.
- Many interesting ideas for baryogenesis, some of which can be tested in laboratory experiments.
- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry.
- Can be realized at low scale: Resonant Leptogenesis/ARS.
- Flavor effects are important.
- Predictive models of leptogenesis based on residual flavor and CP symmetries.
- Correlation between BAU and  $0\nu\beta\beta$ .
- Correlation between BAU and LNV signals (involving displaced vertex) at the LHC.
- Can probe neutrino mass hierarchy (complementary to oscillation experiments).

#### Conclusion

- Observed baryon asymmetry provides a strong evidence for BSM.
- Many interesting ideas for baryogenesis, some of which can be tested in laboratory experiments.
- Leptogenesis provides an attractive link between neutrino mass and observed baryon asymmetry.
- Can be realized at low scale: Resonant Leptogenesis/ARS.
- Flavor effects are important.
- Predictive models of leptogenesis based on residual flavor and CP symmetries.
- Correlation between BAU and  $0\nu\beta\beta$ .
- Correlation between BAU and LNV signals (involving displaced vertex) at the LHC.
- Can probe neutrino mass hierarchy (complementary to oscillation experiments).



### **Fixing Model Parameters**

- Six real parameters:  $y_i$ ,  $\theta_{L,R}$ ,  $M_N$ .
- $\theta_L \approx 0.18(2.96)$  gives  $\sin^2\theta_{23} \approx 0.605(0.395)$ ,  $\sin^2\theta_{12} \approx 0.341$  and  $\sin^2\theta_{13} \approx 0.0219$  (within  $3\sigma$  of current global-fit results).
- Light neutrino masses given by the type-I seesaw:

$$M_{\nu}^{2} = \frac{v^{2}}{M_{N}} \left\{ \begin{array}{cccc} y_{1}^{2} \cos 2\theta_{R} & 0 & y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ y_{1}y_{3} \sin 2\theta_{R} & 0 & -y_{3}^{2} \cos 2\theta_{R} \\ -y_{1}^{2} \cos 2\theta_{R} & 0 & -y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ -y_{1}y_{3} \sin 2\theta_{R} & 0 & y_{3}^{2} \cos 2\theta_{R} \end{array} \right) \quad (s \text{ even}),$$

### Fixing Model Parameters

- Six real parameters:  $y_i$ ,  $\theta_{L,R}$ ,  $M_N$ .
- $\theta_L \approx 0.18(2.96)$  gives  $\sin^2\theta_{23} \approx 0.605(0.395)$ ,  $\sin^2\theta_{12} \approx 0.341$  and  $\sin^2\theta_{13} \approx 0.0219$  (within  $3\sigma$  of current global-fit results).
- Light neutrino masses given by the type-I seesaw:

$$M_{\nu}^{2} = \frac{v^{2}}{M_{N}} \left\{ \begin{array}{cccc} y_{1}^{2} \cos 2\theta_{R} & 0 & y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ y_{1}y_{3} \sin 2\theta_{R} & 0 & -y_{3}^{2} \cos 2\theta_{R} \\ -y_{1}^{2} \cos 2\theta_{R} & 0 & -y_{1}y_{3} \sin 2\theta_{R} \\ 0 & y_{2}^{2} & 0 \\ -y_{1}y_{3} \sin 2\theta_{R} & 0 & y_{3}^{2} \cos 2\theta_{R} \end{array} \right) \quad (s \text{ odd}).$$

• For  $y_1 = 0$  ( $y_3 = 0$ ), we get strong normal (inverted) ordering, with  $m_{\text{lightest}} = 0$ .

• Only free parameters:  $M_N$  and  $\theta_R$ .

## Low Energy CP Phases and $0\nu\beta\beta$

- Dirac phase is trivial:  $\delta = 0$ .
- For  $m_{\text{lightest}} = 0$ , only one Majorana phase  $\alpha$ , which depends on the chosen CP transformation:

$$\sin\alpha = (-1)^{k+r+s}\,\sin6\,\phi_s \quad \text{and} \quad \cos\alpha = (-1)^{k+r+s+1}\,\cos6\,\phi_s \quad \text{with } \phi_s = \frac{\pi\,s}{n}\,,$$

where k = 0 (k = 1) for  $\cos 2\theta_R > 0$  ( $\cos 2\theta_R < 0$ ) and r = 0 (r = 1) for NO (IO).

• Restricts the light neutrino contribution to  $0\nu\beta\beta$ :

$$m_{etaeta} \;\;\; pprox \;\;\; rac{1}{3} \left\{ egin{array}{ccc} \left| \sqrt{\Delta m_{
m sol}^2} \, + \, 2 \, (-1)^{s+k+1} \, \sin^2 heta_L \, e^{6\,i\,\phi_s} \, \sqrt{\Delta m_{
m atm}^2} 
ight| & ext{(NO)}. \ \left| 1 \, + \, 2 \, (-1)^{s+k} \, e^{6\,i\,\phi_s} \, \cos^2 heta_L 
ight| \sqrt{\left| \Delta m_{
m atm}^2 
ight|} & ext{(IO)} \, . \end{array} 
ight.$$

• For n=26,  $\theta_L\approx 0.18$  and best-fit values of  $\Delta m_{\rm sol}^2$  and  $\Delta m_{\rm atm}^2$ , we get

$$0.0019 \,\mathrm{eV} \lesssim m_{\beta\beta} \lesssim 0.0040 \,\mathrm{eV}$$
 (NO)  
 $0.016 \,\mathrm{eV} \lesssim m_{\beta\beta} \lesssim 0.048 \,\mathrm{eV}$  (IO).

## High Energy CP Phases and Leptogenesis

- At leading order, three degenerate RH neutrinos.
- Higher-order corrections can break the residual symmetries, giving rise to a quasi-degenerate spectrum:

$$M_1 = M_N (1 + 2 \kappa)$$
 and  $M_2 = M_3 = M_N (1 - \kappa)$ .

CP asymmetries in the decays of N<sub>i</sub> are given by

$$\varepsilon_{i\alpha} pprox \sum_{j \neq i} \operatorname{Im} \left( \hat{Y}_{D,\alpha i}^{\star} \hat{Y}_{D,\alpha j} \right) \operatorname{Re} \left( \left( \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \right)_{ij} \right) F_{ij}$$

- $F_{ij}$  are related to the regulator in RL and are proportional to the mass splitting of  $N_i$ .
- We find  $\varepsilon_{3\alpha} = 0$  and

$$\varepsilon_{1\alpha} \approx \frac{y_2 \, y_3}{9} \, \left( -2 \, y_2^2 + y_3^2 \, (1 - \cos 2 \, \theta_R) \right) \, \sin 3 \, \phi_s \, \sin \theta_R \, \sin \theta_{L,\alpha} \, F_{12} \quad \text{(NO)}$$

$$\varepsilon_{1\alpha} \approx \frac{y_1 \, y_2}{9} \, \left( -2 \, y_2^2 + y_1^2 \, (1 + \cos 2 \, \theta_R) \right) \, \sin 3 \, \phi_s \, \cos \theta_R \, \cos \theta_{L,\alpha} \, F_{12} \quad \text{(IO)}$$

with 
$$\theta_{L,\alpha} = \theta_L + \rho_\alpha \, 4\pi/3$$
 and  $\rho_e = 0$ ,  $\rho_\mu = 1$ ,  $\rho_\tau = -1$ .

•  $\varepsilon_{2\alpha}$  are the negative of  $\epsilon_{1\alpha}$  with  $F_{12}$  being replaced by  $F_{21}$ .

### **Decay Length**

• For RH Majorana neutrinos,  $\Gamma_{\alpha}=M_{\alpha}\,(\,\hat{Y}_{D}^{\dagger}\,\hat{Y}_{D})_{\alpha\alpha}/(8\,\pi)$ . We get

$$\begin{array}{lll} \Gamma_1 & \approx & \frac{M_N}{24\,\pi}\,\left(2\,y_1^2\,\cos^2\theta_R + y_2^2 + 2\,y_3^2\,\sin^2\theta_R\right)\,, \\ \\ \Gamma_2 & \approx & \frac{M_N}{24\,\pi}\,\left(y_1^2\,\cos^2\theta_R + 2\,y_2^2 + y_3^2\,\sin^2\theta_R\right)\,, \\ \\ \Gamma_3 & \approx & \frac{M_N}{8\,\pi}\,\left(y_1^2\,\sin^2\theta_R + y_3^2\,\cos^2\theta_R\right)\,. \end{array}$$

- For  $y_1 = 0$  (NO),  $\Gamma_3 = 0$  for  $\theta_R = (2j + 1)\pi/2$  with integer j.
- For  $y_3 = 0$  (IO),  $\Gamma_3 = 0$  for  $j\pi$  with integer j.
- In either case,  $N_3$  is an ultra long-lived particle.
- Suitable for MATHUSLA (MAssive Timing Hodoscope for Ultra-Stable Neutral PArticles) [Coccaro, Curtin, Lubatti, Russell, Shelton '16; Chou, Curtin, Lubati '16]
- In addition,  $N_{1,2}$  can have displaced vertex signals at the LHC.







### Collider Signal

- Need an efficient production mechanism.
- In our scenario,  $y_i \lesssim 10^{-6}$  suppresses the Drell-Yan production

$$pp o W^{(*)} o N_i \ell_{\alpha}$$
,

and its variants. [Han, Zhang '06; del Aguila, Aguilar-Saavedra, Pittau '07; BD, Pilaftsis, Yang '14; Han, Ruiz, Alva '14; Deppisch, BD, Pilaftsis '15; Das, Okada '15]

- Even if one assumes large Yukawa, the LNV signal will be generally suppressed by the quasi-degeneracy of the RH neutrinos [Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; BD '15].
- Need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.

### Collider Signal

- Need an efficient production mechanism.
- In our scenario,  $y_i \lesssim 10^{-6}$  suppresses the Drell-Yan production

$$pp o W^{(*)} o N_i \ell_{lpha} \,,$$

and its variants. [Han, Zhang '06; del Aguila, Aguilar-Saavedra, Pittau '07; BD, Pilaftsis, Yang '14; Han, Ruiz, Alva '14; Deppisch, BD, Pilaftsis '15; Das, Okada '15]

- Even if one assumes large Yukawa, the LNV signal will be generally suppressed by the quasi-degeneracy of the RH neutrinos [Kersten, Smirnov '07; Ibarra, Molinaro, Petcov '10; BD '15].
- Need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.
- We consider a minimal  $U(1)_{B-L}$  extension.
- Production cross section is no longer Yukawa-suppressed, while the decay is, giving rise to displaced vertex. [Deppisch, Desai, Valle '13]

