Addressing $R_{D^{(*)}}, R_{K^{(*)}}$, muon $g-2$ and ANITA anomalies in a minimal RPV-SUSY framework

Bhupal Dev

Washington University in St. Louis
W. Altmannshofer, BD, A. Soni, Y. Sui, PRD 102, 015031 (2020) [2002.12910]

RF01/RF05 Workshop on LFV and LUV in Meson and Baryon Decays
S Sare 1 ass202 97
September 28, 2020

Outline

- The Anomalies
- The RPV3 Framework
- Three Benchmark Cases
- Conclusion

B-Anomalies

(see talks by D. Guadagnoli and F. Archilli)

$$
R_{D^{(*)}}=\frac{\mathrm{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathrm{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)} \quad(\text { with } \ell=e, \mu)
$$

B-Anomalies

(see talks by D. Guadagnoli and F. Archilli)

$$
R_{D^{(*)}}=\frac{\mathrm{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathrm{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)}(\text { with } \ell=e, \mu)
$$

$$
R_{K^{(*)}}=\frac{\mathrm{BR}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathrm{BR}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

Muon $g-2$

[figure from J. Kasper (PHENO '20)]

Muon $g-2$

[figure from J. Kasper (PHENO '20)]

Observable	$R_{D^{(*)}}, R_{J / \psi}$	$R_{K^{(*)}}$	$(g-2)_{\mu}$	All but $(g-2)_{\mu}$	All
Pull	$3.3 \sigma(2.2 \sigma)$	3.4σ	3.3σ	$4.5 \sigma(3.7 \sigma)$	$5.3 \sigma(4.6 \sigma)$

TABLE I: ANITA-I,-III anomalous upward air showers.
ANITA Collaboration, PRL'18

event, flight	3985267, ANITA-I	15717147, ANITA-III
date, time	$2006-12-28,00: 33: 20 \mathrm{UTC}$	$2014-12-20,08: 33: 22.5 \mathrm{UTC}$
Lat., Lon. $^{(1)}$	$-82.6559,17.2842$	$-81.39856,129.01626$
Altitude	2.56 km	2.75 km
Ice depth	3.53 km	3.22 km
El., Az. 2	$-27.4 \pm 0.3^{\circ} 59.62 \pm 0.7^{\circ}$	$-35.0 \pm 0.3^{\circ} 1.41 \pm 0.7^{\circ}$
RA, Dec $\left.^{\circ}{ }^{\circ}\right)$	$282.14064,+20.33043$	$50.78203 .+38.65498$
$E_{\text {shower }}^{(3)}$	$0.6 \pm 0.4 \mathrm{EeV}$	$0.56_{-02}^{+0.3} \mathrm{EeV}$

${ }^{1}$ Latitude, Longitude of the estimated ground position of the event.
${ }^{2}$ Sky coordinates projected from event arrival angles at ANITA.
${ }^{3}$ For upward shower initiation at or near ice surface.

TABLE I: ANITA-I,-III anomalous upward air showers.
ANITA Collaboration, PRL'18

event, flight	3985267, ANITA-I	15717147, ANITA-III
date, time	$2006-12-28,00: 33: 20 \mathrm{UTC}$	$2014-12-20,08: 33: 22.5 \mathrm{UTC}$
Lat., Lon. $^{(1)}$	$-82.6559,17.2842$	$-81.39856,129.01626$
Altitude	2.56 km	2.75 km
Ice depth	3.53 km	3.22 km
El., Az. 2	$-27.4 \pm 0.3^{\circ} 59.62 \pm 0.7^{\circ}$	$-35.0 \pm 0.3^{\circ} 1.41 \pm 0.7^{\circ}$
RA, Dec $\left.^{\circ}{ }^{\circ}\right)$	$282.14064,+20.33043$	$50.78203 .+38.65498$
$E_{\text {shower }}^{(3)}$	$0.6 \pm 0.4 \mathrm{EeV}$	$0.56_{-02}^{+0.3} \mathrm{EeV}$

${ }^{1}$ Latitude, Longitude of the estimated ground position of the event.
${ }^{2}$ Sky coordinates projected from event arrival angles at ANITA.
${ }^{3}$ For upward shower initiation at or near ice surface.
This talk: A SUSY solution to ANITA, muon $g-2$ and the B-anomalies!

Natural SUSY

Standard Model particles

Natural SUSY

[Papucci, Ruderman, Weiler (JHEP '12); Brust, Katz, Lawrence, Sundrum (JHEP '12)]

RPV3 SUSY

- More natural to include RPV couplings. [Brust, Katz, Lawrence, Sundrum (JHEP' '12)]
- Preserves gauge coupling unification. [Altmannshofer, BD, Soni (PRD '17)]
- RPV3: RPV SUSY with light 3rd-generation sfermions.
- Can naturally accommodate $R_{D^{(*)}}(b \rightarrow c \tau \nu)$ via $L Q D$ interactions. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); Trifinopoulos (EPJC '18); Hu, Li, Muramatsu, Yang (PRD '19)]

$$
\mathcal{L}_{L Q D}=\lambda_{i j k}^{\prime}\left[\widetilde{\nu}_{i L} \bar{d}_{k R} d_{j L}+\widetilde{d}_{j L} \bar{d}_{k R} \nu_{i L}+\widetilde{d}_{k R}^{*} \bar{\nu}_{i L}^{c} d_{j L}-\widetilde{e}_{i L} \bar{d}_{k R} u_{j L}-\widetilde{u}_{j L} \bar{d}_{k R} e_{i L}-\widetilde{d}_{k R}^{*} \bar{e}_{i L}^{c} u_{j L}\right]+\text { H.c. }
$$

- Can simultaneously explain $R_{K^{(*)}}$ ($b \rightarrow s \ell \ell$) by invoking LLE interactions, together with LQD. [Das, Hati, Kumar, Mahajan (PRD '17); Earl, Grégoire (JHEP '18); Trifinopoulos (EPJC '18); Hu, Huang (PRD '20); Altmannshofer, BD, Soni, Sui '20]

$$
\mathcal{L}_{L L E}=\frac{1}{2} \lambda_{i j k}\left[\widetilde{\nu}_{i L} \bar{e}_{k R} e_{j L}+\widetilde{e}_{j L} \bar{e}_{k R} \nu_{i L}+\widetilde{e}_{k R}^{*} \bar{\nu}_{i L}^{c} e_{j L}-(i \leftrightarrow j)\right]+\text { H.c. }
$$

- Restricting to RPV3 and using some ansatz, can limit the number of independent λ^{\prime} and λ couplings.

B-anomalies in RPV3

Figure: RPV3 contributions to $R_{D^{(*)}}$. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); . .]]

B-anomalies in RPV3

Figure: RPV3 contributions to $R_{D^{(*)}}$. [Deshpande, He (EPJC '17); Altmannshofer, BD, Soni (PRD '17); . .]

Figure: RPV3 contributions to $R_{K^{(*)}}$. [Das, Hati, Kumar, Mahajan (PRD '17); Trifinopoulos (EPJC '18); . .]

Muon $g-2$ and ANITA

Figure: RPV3 contributions to $(g-2)_{\mu}$. [Kim, Kyae, Lee (PLB '01)]

Muon $g-2$ and ANITA

Figure: RPV3 contributions to $(g-2)_{\mu}$. [Kim, Kyae, Lee (PLB '01)]

Figure: RPV3 contributions to ANITA anomalous events. [Collins, BD, Sui (PRD '19)]

Three Benchmark Cases

- Case 1: CKM-like Structure

$$
\lambda_{i j k}^{\prime}=\lambda_{333}^{\prime} \epsilon^{(3-i)+(3-j)+(3-k)}, \quad \lambda_{i j k}=\lambda_{233} \epsilon^{(2-i)+(3-j)+(3-k)} .
$$

Only 3 independent coupling parameters: $\left\{\lambda_{333}^{\prime}, \lambda_{233}, \epsilon\right\}$.

Three Benchmark Cases

- Case 1: CKM-like Structure

$$
\lambda_{i j k}^{\prime}=\lambda_{333}^{\prime} \epsilon^{(3-i)+(3-j)+(3-k)}, \quad \lambda_{i j k}=\lambda_{233} \epsilon^{(2-i)+(3-j)+(3-k)} .
$$

Only 3 independent coupling parameters: $\left\{\lambda_{333}^{\prime}, \lambda_{233}, \epsilon\right\}$.

- Case 2: $U(2)_{q} \times U(2)_{\ell}$ Flavor Symmetry

$$
\begin{aligned}
& \lambda_{1 j k}^{\prime}=\lambda_{211}^{\prime}=\lambda_{231}^{\prime}=\lambda_{213}^{\prime}=\lambda_{311}^{\prime}=\lambda_{331}^{\prime}=\lambda_{313}^{\prime} \simeq 0, \quad \lambda_{233}^{\prime} \simeq \lambda^{\prime} \epsilon_{\ell}, \\
& \lambda_{221}^{\prime}=\lambda_{212}^{\prime} \simeq \lambda^{\prime} \epsilon_{\ell} \epsilon_{q}^{\prime}, \quad \lambda_{321}^{\prime}=\lambda_{312}^{\prime} \simeq \lambda^{\prime} \epsilon_{q}^{\prime}, \\
& \lambda_{222}^{\prime}=\lambda_{223}^{\prime}=\lambda_{232}^{\prime} \simeq \lambda^{\prime} \epsilon_{\ell} \epsilon_{q}, \quad \lambda_{322}^{\prime}=\lambda_{323}^{\prime}=\lambda_{332}^{\prime} \simeq \lambda^{\prime} \epsilon_{q}, \\
& \lambda_{121}=\lambda_{131}=\lambda_{133} \simeq 0, \quad \lambda_{123}=\lambda_{132}=\lambda_{231} \simeq \lambda \epsilon_{\ell}^{\prime}, \\
& \lambda_{232} \simeq \lambda \epsilon_{\ell S}, \quad \lambda_{122} \simeq \lambda \epsilon_{\ell} \epsilon_{\ell}^{\prime}, \quad \lambda_{233} \simeq \lambda \epsilon_{\ell},
\end{aligned}
$$

where $\epsilon_{q} \approx m_{s} / m_{b} \simeq 0.025, \epsilon_{q}^{\prime} \approx \epsilon_{q} \sqrt{m_{d} / m_{s}} \simeq 0.005, \epsilon_{\ell} \simeq 1, \epsilon_{\ell}^{\prime} \simeq 0.004$ and $\epsilon_{\ell S} \simeq 0.06$ [Trifinopoulos (EPJC '18)]. Again, 3 independent couplings: $\left\{\lambda_{333}^{\prime}, \lambda^{\prime}, \lambda\right\}$.

Three Benchmark Cases

- Case 1: CKM-like Structure

$$
\lambda_{i j k}^{\prime}=\lambda_{333}^{\prime} \epsilon^{(3-i)+(3-j)+(3-k)}, \quad \lambda_{i j k}=\lambda_{233} \epsilon^{(2-i)+(3-j)+(3-k)} .
$$

Only 3 independent coupling parameters: $\left\{\lambda_{333}^{\prime}, \lambda_{233}, \epsilon\right\}$.

- Case 2: $U(2)_{q} \times U(2)_{\ell}$ Flavor Symmetry

$$
\begin{aligned}
& \lambda_{1 j k}^{\prime}=\lambda_{211}^{\prime}=\lambda_{231}^{\prime}=\lambda_{213}^{\prime}=\lambda_{311}^{\prime}=\lambda_{331}^{\prime}=\lambda_{313}^{\prime} \simeq 0, \quad \lambda_{233}^{\prime} \simeq \lambda^{\prime} \epsilon_{\ell}, \\
& \lambda_{221}^{\prime}=\lambda_{21}^{\prime} \simeq \lambda^{\prime} \epsilon_{\ell} \epsilon_{q}^{\prime}, \quad \lambda_{321}^{\prime}=\lambda_{312}^{\prime} \simeq \lambda^{\prime} \epsilon_{q}^{\prime}, \\
& \lambda_{222}^{\prime}=\lambda_{223}^{\prime}=\lambda_{232}^{\prime} \simeq \lambda^{\prime} \epsilon_{\ell} \epsilon_{q}, \quad \lambda_{322}^{\prime}=\lambda_{323}^{\prime}=\lambda_{332}^{\prime} \simeq \lambda^{\prime} \epsilon_{q}, \\
& \lambda_{121}=\lambda_{131}=\lambda_{133} \simeq 0, \quad \lambda_{123}=\lambda_{132}=\lambda_{231} \simeq \lambda \epsilon_{\ell}^{\prime}, \\
& \lambda_{232} \simeq \lambda \epsilon_{\ell s}, \quad \lambda_{122} \simeq \lambda \epsilon_{\ell} \epsilon_{\ell}^{\prime}, \quad \lambda_{233} \simeq \lambda \epsilon_{\ell},
\end{aligned}
$$

where $\epsilon_{q} \approx m_{s} / m_{b} \simeq 0.025, \epsilon_{q}^{\prime} \approx \epsilon_{q} \sqrt{m_{d} / m_{s}} \simeq 0.005, \epsilon_{\ell} \simeq 1, \epsilon_{\ell}^{\prime} \simeq 0.004$ and $\epsilon_{\ell S} \simeq 0.06$ [Trifinopoulos (EPJC '18). Again, 3 independent couplings: $\left\{\lambda_{333}^{\prime}, \lambda^{\prime}, \lambda\right\}$.

- Case 3: No Symmetry Also choose 3 independent couplings:

$$
\left\{\lambda_{223}^{\prime}, \quad \lambda^{\prime} \equiv \lambda_{123}^{\prime}=\lambda_{233}^{\prime}=\lambda_{323}^{\prime}, \quad \lambda \equiv \lambda_{132}=\lambda_{231}=\lambda_{232}\right\} .
$$

- In each case, six free mass parameters: $\left\{m_{\tilde{b}_{R}}, m_{t_{L}}, m_{\tau_{L}}, m_{\tau_{R}}, m_{\nu_{\tau}}, m_{\widetilde{x}_{1}}\right\}$.

Parameter Dependence of Observables

Observable	Parameter dependence	Relevant terms
$R_{D^{(*)}}$	$\begin{gathered} \lambda_{i 33}^{\prime}, \lambda_{3 j 3}^{\prime}, \lambda_{2 j 3}^{\prime}, m_{\tilde{b}_{R}} \\ \lambda_{i 33}, \lambda_{i 32}, m_{\tilde{\tau}_{L}} \end{gathered}$	
$R_{K^{(*)}}$	$\begin{gathered} \lambda_{331}^{\prime}, \lambda_{332}^{\prime}, \lambda_{321}^{\prime}, \lambda_{322}^{\prime}, \lambda_{231}^{\prime}, \lambda_{232}^{\prime}, \\ \lambda_{i 33}^{\prime}, \lambda_{i 23}^{\prime}, \lambda_{213}^{\prime}, \lambda_{312}^{\prime}, \lambda_{32 k}, \lambda_{3 j 2}, \\ m_{\tilde{b}_{R}}, m_{\tilde{t}_{L}}, m_{\tilde{\tau}_{R}} \end{gathered}$	
$(g-2)_{\mu}$	$\begin{gathered} \lambda_{32 k}, \lambda_{3 k 2}, \lambda_{k 23} \\ \lambda_{233}^{\prime}, \lambda_{223}^{\prime}, \lambda_{213}^{\prime}, \\ m_{\tilde{L}_{R}}, m_{\tilde{\tau}_{R}}, m_{\tilde{\tau}_{L}}, m_{\tilde{\nu}_{\tau}} \end{gathered}$	
ANITA	$\lambda_{123}^{\prime}, \lambda_{223}^{\prime}, \lambda_{233}^{\prime}, \lambda_{323}^{\prime}, \lambda_{333}^{\prime}, m_{\tilde{b}_{R}}, m_{\tilde{\chi}_{1}^{0}}$	

Parameter Dependence of Constraints

Constraint	Parameter dependence	Relevant terms
$B \rightarrow \tau \nu$	$\lambda_{\ell^{\prime} 33}^{\prime}, \lambda_{3 j 3}^{\prime}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{\ell^{\prime} 33}^{\prime} \cdot \lambda_{3 j 3}^{\prime}}{m_{\bar{b}_{R}}^{2}}$
$B \rightarrow K^{(*)} \nu \bar{\nu}$	$\lambda_{\ell^{\prime} 33}^{\prime}, \lambda_{\ell 23}^{\prime}, m_{\tilde{b}_{R}}$	$\frac{{\frac{\lambda^{\prime}{ }^{\prime 33}}{\prime} \cdot \lambda_{\ell 23}^{\prime}}_{m_{b_{b}}^{2}}^{2}}{2}, \frac{\lambda_{\ell^{\prime} 33}^{\prime} \cdot \cdot_{\ell_{32}^{\prime}}^{\prime}}{m_{b_{b}^{\prime}}^{2}}$
$B \rightarrow \pi / \rho \nu \bar{\nu}$	$\lambda_{\ell^{\prime} 33}^{\prime}, \lambda_{\ell 13}^{\prime}, m_{\tilde{b}_{R}}$	$\frac{\lambda_{\ell^{\prime} 33}^{\prime} \cdot \lambda_{\ell 13}^{\prime}}{m_{\bar{b}_{R}}^{\prime}}$
$B_{s}-\bar{B}_{s}$ mixing	$\begin{gathered} \lambda_{i 33}^{\prime}, \lambda_{i 23}^{\prime}, \lambda_{i 32}^{\prime}, \\ m_{\widetilde{b}_{R}}, m_{\widetilde{\nu}} \end{gathered}$	$\begin{gathered} \frac{\lambda_{i 23}^{\prime} \lambda_{i 33}^{\prime} \lambda_{j 3}^{\prime} \lambda_{j 33}^{\prime}}{m_{\tilde{b}}^{2}}, \\ \frac{\lambda_{i 23}^{\prime} \lambda_{i 32}^{\prime} \lambda_{j 33}^{\prime} \lambda_{j 33}^{\prime}}{m_{\tilde{b}}^{2}}, \\ \frac{\lambda_{332}^{\prime} \lambda_{323}^{\prime}}{m_{\tilde{V}}^{2}} \\ \hline \end{gathered}$
$D-\bar{D}$ mixing	$\lambda_{323}^{\prime}, m_{\tilde{b}_{R}}, m_{\widetilde{\tau}_{R}}$	$\frac{\lambda_{323}^{\prime \prime}}{m_{\bar{b}_{R}}^{2}}, \frac{\lambda_{323}^{\prime \prime}}{m_{\tilde{\tau}_{R}}^{\prime}}$
$D^{0} \rightarrow \mu^{+} \mu^{-}$	$\lambda_{2 j 3}^{\prime}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{2 j 3}^{\prime} \lambda_{2 j^{\prime} 3}^{\prime}}{m_{\overleftarrow{b}_{R}}^{2}}$
$\tau \rightarrow \ell \nu \bar{\nu}$	$\lambda_{323}, \lambda_{333}^{\prime}, m_{\widetilde{\tau}_{R}}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{323}^{2}}{m_{\tilde{\tau}_{R}}^{2}}, \frac{\lambda^{\prime}}{2} \frac{\lambda_{33}^{2}}{m_{\tilde{b}_{R}}^{2}}$
$Z \rightarrow \ell \bar{\ell}^{\prime}$	$\lambda_{333}^{\prime}, m_{\widetilde{b}_{R}}$	$\frac{\lambda_{333}^{\prime 2}}{m_{\stackrel{\rightharpoonup}{b}_{R}}^{2}}$

Case 1 (CKM-Like)

Case 1

Case 1 (CKM-Like)

Case 1 (CKM-Like)

Case 1 (CKM-Like)

Case 1

Case 1 (CKM-Like)

Case 1

Case 2 (Flavor Symmetry)

Case 2

Case 2 (Flavor Symmetry)

Case 2

Case 2 (Flavor Symmetry)

Case 2

Case 2 (Flavor Symmetry)

Case 2

Case 2 (Flavor Symmetry)

Case 2

Case 3 (No Symmetry)

Case 3

LFV Predictions

Flavor-violating decay mode	$\overline{\overline{\lambda, \lambda^{\prime}}}$ dependence	RPV3 Prediction			Current experimental bound/measurement
		Case 1	Case 2	Case 3	
$\begin{gathered} \tau \rightarrow \mu \phi \\ \tau \rightarrow \mu K K \\ \tau \rightarrow \mu K_{S}^{0} \\ \tau \rightarrow \mu \gamma \\ \tau \rightarrow \mu \mu \mu \\ \hline \end{gathered}$	$\begin{gathered} \lambda_{332}^{\prime} \lambda_{232}^{\prime}, \lambda_{323} \lambda_{322}^{\prime} \\ \lambda_{332}^{\prime} \lambda_{232}^{\prime}, \lambda_{323} \lambda_{322}^{\prime} \\ \lambda_{332}^{\prime} \lambda_{231}^{\prime}, \lambda_{312}^{\prime} \lambda_{323} \\ \lambda_{333}^{\prime} \lambda_{233}^{\prime}, \lambda_{133} \lambda_{123} \\ \lambda_{323} \lambda_{322} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.9 \times 10^{-15} \\ & 1.2 \times 10^{-17} \\ & 4.5 \times 10^{-19} \\ & 1.3 \times 10^{-10} \\ & 1.7 \times 10^{-11} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.8 \times 10^{-10} \\ 2.4 \times 10^{-12} \\ 8.7 \times 10^{-12} \\ 1.3 \times 10^{-8} \\ 1.2 \times 10^{-9} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.6 \times 10^{-12} \\ & 2.9 \times 10^{-13} \\ & 3.1 \times 10^{-13} \\ & 2.4 \times 10^{-10} \\ & 1.2 \times 10^{-11} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline<8.4 \times 10^{-8} \\ & <4.4 \times 10^{-8} \\ & <2.3 \times 10^{-8} \\ & <4.4 \times 10^{-8} \\ & <2.1 \times 10^{-8} \\ & \hline \end{aligned}$
$\begin{gathered} B_{(s)} \rightarrow K^{(*)}(\phi) \mu \tau \\ B_{S} \rightarrow \tau \mu \\ b \rightarrow s \tau \tau \\ B \rightarrow K^{(*)} \tau \tau \\ B_{S} \rightarrow \tau \tau \\ b \rightarrow s \mu \mu \\ B_{S} \rightarrow \mu \mu \end{gathered}$	$\begin{gathered} \lambda_{333}^{\prime} \lambda_{232}^{\prime}, \lambda_{233}^{\prime} \lambda_{332}^{\prime}, \lambda_{332}^{\prime} \lambda_{323} \\ \lambda_{333}^{\prime} \lambda_{232}^{\prime}, \lambda_{233}^{\prime} \lambda_{332}^{\prime}, \lambda_{332}^{\prime} \lambda_{323} \\ \lambda_{333}^{\prime} \lambda_{332}^{\prime} \\ \lambda_{333}^{\prime} \lambda_{332}^{\prime} \\ \lambda_{333}^{\prime} \lambda_{332}^{\prime} \\ \lambda_{233}^{\prime} \lambda_{232}^{\prime}, \lambda_{332}^{\prime} \lambda_{232} \\ \lambda_{233}^{\prime} \lambda_{232}^{\prime}, \lambda_{332}^{\prime} \lambda_{232} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.1 \times 10^{-9} \\ & 4.4 \times 10^{-10} \\ & 3.4 \times 10^{-7} \\ & 3.7 \times 10^{-6} \\ & 3.7 \times 10^{-8} \\ & 5.9 \times 10^{-9} \\ & 4.1 \times 10^{-11} \end{aligned}$	$\begin{aligned} & \hline 1.2 \times 10^{-7} \\ & 1.3 \times 10^{-8} \\ & 2.8 \times 10^{-8} \\ & 4.2 \times 10^{-8} \\ & 3.0 \times 10^{-9} \\ & 3.2 \times 10^{-8} \\ & 6.5 \times 10^{-11} \end{aligned}$	$\begin{aligned} & 2.2 \times 10^{-10} \\ & 2.3 \times 10^{-11} \\ & 1.3 \times 10^{-13} \\ & 9.6 \times 10^{-12} \\ & 1.4 \times 10^{-14} \\ & 8.8 \times 10^{-9} \\ & 1.8 \times 10^{-11} \end{aligned}$	$\begin{gathered} <2.8 \times 10^{-5} \\ <3.4 \times 10^{-5} \\ N / A \\ <2.2 \times 10^{-3} \\ <6.8 \times 10^{-3} \\ 4.4 \times 10^{-6} \\ 3.0 \times 10^{-9} \end{gathered}$

LHC Signals

- Effective operators:

$$
\begin{aligned}
& R_{D_{(*)}}: \mathcal{O}_{V_{L}}=\left(\bar{c} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu\right) \\
& R_{K^{(*)}}: Q_{\hat{\theta}(10)}^{\ell}=\left(\bar{s}^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell\right)
\end{aligned}
$$

- Crossing symmetry: $b \rightarrow c \tau \nu$ leads to $g c \rightarrow b \tau \nu$, and $b \rightarrow$ slौ leads to $g s \rightarrow$ ble.

[Altmannshofer, BD, Soni (PRD '17)]

[Altmannshofer, BD, Soni, Sui (PRD '20)]

Conclusion

- A common origin of the B-anomalies, muon $g-2$, and ANITA anomaly in a single testable framework.
- Third-generation-centric RPV SUSY framework (RPV3), motivated by Higgs naturalness.
- Three benchmark cases, each with 9 parameters only.
- Remarkably, allowed overlap regions for all the anomalies still exist.
- Predictions for flavor-violating B-meson and tau decays could be tested at Belle II and LHCb.
- Complementary tests in the high- p_{T} LHC experiments.

Conclusion

- A common origin of the B-anomalies, muon $g-2$, and ANITA anomaly in a single testable framework.
- Third-generation-centric RPV SUSY framework (RPV3), motivated by Higgs naturalness.
- Three benchmark cases, each with 9 parameters only.
- Remarkably, allowed overlap regions for all the anomalies still exist.
- Predictions for flavor-violating B-meson and tau decays could be tested at Belle II and LHCb.
- Complementary tests in the high- p_{T} LHC experiments.

Thank You.

