

Status of Proton Decay Searches

Bhupal Dev

(bdev@wustl.edu)

Washington University in St. Louis

based on our Snowmass NF03 Whitepaper arXiv:2203.08771 [hep-ex]

South Dakota Mines campus, May 11-13, 2022

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Searches for Baryon Number Violation in Neutrino Experiments: A White Paper

P. S. B. Dev^{*},¹ L. W. Koerner^{*},² S. Saad^{*},³ S. Antusch,³ M. Askins,^{4,5} K. S. Babu,⁶ J. L. Barrow,^{7,8} J. Chakrabortty,⁹ A. de Gouvêa,¹⁰ Z. Djurcic,¹¹ S. Girmohanta,¹² I. Gogoladze,¹³ M. C. Goodman,¹¹ A. Higuera,¹⁴ D. Kalra,¹⁵ G. Karagiorgi,¹⁵ E. Kearns,¹⁶ V. A. Kudryavtsev,¹⁷ T. Kutter,¹⁸ J. P. Ochoa-Ricoux,¹⁹ M. Malinský,²⁰ D. A. Martinez Caicedo,²¹ R. N. Mohapatra,²² P. Nath,²³ S. Nussinov,⁸ A. Rafique,¹¹ J. Rodriguez Rondon,²¹ R. Shrock,¹² H. W. Sobel,¹⁹ T. Stokes,¹⁸ M. Strait,²⁴ R. Svoboda,²⁵ S. Syritsyn,^{12,26} V. Takhistov,²⁷ Y.-T. Tsai,²⁸ R. A. Wendell,^{27,29} Y.-L. Zhou^{30,31}

A diverse group of 38 people from 31 institutions

Outline

- Motivation
- Proton Decay: Past, Present and Future
 - Theory
 - Lattice
 - Experiments
- Other BNV Processes (e.g. $n \bar{n}$)
- Far-reaching BSM Implications
- Conclusion

[Figure from Symmetry Magazine]

- Electron is stable because of electric charge conservation.
- But proton stability is not guaranteed by any fundamental symmetry.
- In the SM, proton is stable due to an accidental global symmetry of baryon number (and B L). [Weyl '29; Stückelberg '38; Wigner '49]
- Not respected in UV-complete theories of quark-lepton symmetry, like GUTs.

- Electron is stable because of electric charge conservation.
- But proton stability is not guaranteed by any fundamental symmetry.
- In the SM, proton is stable due to an accidental global symmetry of baryon number (and B L). [Weyl '29; Stückelberg '38; Wigner '49]
- Not respected in UV-complete theories of quark-lepton symmetry, like GUTs.
- Also, B violation is an essential ingredient for baryogenesis. [Sakharov (JETP '67)]

- Electron is stable because of electric charge conservation.
- But proton stability is not guaranteed by any fundamental symmetry.
- In the SM, proton is stable due to an accidental global symmetry of baryon number (and B L). [Weyl '29; Stückelberg '38; Wigner '49]
- Not respected in UV-complete theories of quark-lepton symmetry, like GUTs.
- Also, B violation is an essential ingredient for baryogenesis. [Sakharov (JETP '67)]

Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe

A.D. Sakharov

(Submitted 23 September 1966) Pis'ma Zh. Eksp. Teor. Fiz. **5**, 32–35 (1967) [JETP Lett. **5**, 24–27 (1967). Also S7, pp. 85–88]

The strong violation of the baryon charge during the superdense state and the fact that the baryons are stable in practice do not contradict each other. Let us consider a concrete model. We introduce interactions of two types.

The lifetime of the proton turns out to be very large (more than 10^{50} years), albeit finite.

- Electron is stable because of electric charge conservation.
- But proton stability is not guaranteed by any fundamental symmetry.
- In the SM, proton is stable due to an accidental global symmetry of baryon number (and B L). [Weyl '29; Stückelberg '38; Wigner '49]
- Not respected in UV-complete theories of quark-lepton symmetry, like GUTs.
- Also, B violation is an essential ingredient for baryogenesis. [Sakharov (JETP '67)]

Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe

A.D. Sakharov

(Submitted 23 September 1966) Pis'ma Zh. Eksp. Teor. Fiz. **5**, 32–35 (1967) [JETP Lett. **5**, 24–27 (1967). Also S7, pp. 85–88]

The strong violation of the baryon charge during the superdense state and the fact that the baryons are stable in practice do not contradict each other. Let us consider a concrete model. We introduce interactions of two types.

The lifetime of the proton turns out to be very large (more than 10^{50} years), albeit finite.

- Grand Unification of strong, weak and electromagnetic interactions at $Q \gtrsim M_X \gg M_Z$. [Pati, Salam (PRL '73); Georgi, Glashow (PRL '74)]
- Consequence: Proton decay mediated by new gauge bosons which couple to both quarks and leptons.
- Dimension-6 operator: Amplitude $\propto 1/M_X^2$ or decay rate $\propto 1/M_X^4$.
- Lifetime: $\tau_p \sim \frac{16\pi^2 M_X^4}{g_{\rm GUT}^4 m_p^5} \sim 10^{30}$ yr for $M_X \sim 10^{14}$ GeV.
- 10^{30} nucleons ~ 20 ton of water.
- Original idea behind Kamiokande (Kamioka Nucleon Decay Experiment).
- Subsequently upgraded to Super-Kamiokande (several kt water).

- Grand Unification of strong, weak and electromagnetic interactions at $Q \gtrsim M_X \gg M_Z$. [Pati, Salam (PRL '73); Georgi, Glashow (PRL '74)]
- Consequence: Proton decay mediated by new gauge bosons which couple to both quarks and leptons.
- Dimension-6 operator: Amplitude $\propto 1/M_X^2$ or decay rate $\propto 1/M_X^4$.
- Lifetime: $\tau_p \sim \frac{16\pi^2 M_X^4}{g_{\rm GUT}^4 m_p^5} \sim 10^{30}$ yr for $M_X \sim 10^{14}$ GeV.
- 10^{30} nucleons ~ 20 ton of water.
- Original idea behind Kamiokande (Kamioka Nucleon Decay Experiment).
- Subsequently upgraded to Super-Kamiokande (several kt water).

- Grand Unification of strong, weak and electromagnetic interactions at $Q \gtrsim M_X \gg M_Z$. [Pati, Salam (PRL '73); Georgi, Glashow (PRL '74)]
- Consequence: Proton decay mediated by new gauge bosons which couple to both quarks and leptons.
- Dimension-6 operator: Amplitude $\propto 1/M_X^2$ or decay rate $\propto 1/M_X^4$.
- Lifetime: $\tau_p \sim \frac{16\pi^2 M_X^4}{g_{\rm GUT}^4 m_p^5} \sim 10^{30}$ yr for $M_X \sim 10^{14}$ GeV.
- 10^{30} nucleons ~ 20 ton of water.
- Original idea behind Kamiokande (Kamioka Nucleon Decay Experiment).
- Subsequently upgraded to Super-Kamiokande (several kt water).

Experimental Status (Snowmass 2001)

[figure courtesy Ed Kearns]

Experimental Status (Snowmass 2013)

[Hewett et al, 1401.6077]

Experimental Status (Snowmass 2021)

[BD, Koerner, Saad et al, 2203.08771]

Please see the proton decay parallel session this afternoon for the experimental details.

Dominant Proton Decay Modes

Modes	Current limit [90% CL]	Future Sensitivity [90% CL]
(partial lifetime)	(10^{34} years)	(10^{34} years)
$\tau_p \left(p \to e^+ \pi^0 \right)$	Super-K: 2.4 [55]	Hyper-K (1900 kton-yrs): 7.8 [56] DUNE (400 kton-yrs): ~1.0 [57] THEIA (800 kton-yrs): 4.1
$\tau_p \left(p \to \mu^+ \pi^0 \right)$	Super-K: 1.6 [55]	Hyper-K (1900 kton-yrs): 7.7 [56]
$\tau_p \left(p \to \overline{\nu} K^+ \right)$	Super-K: 0.66 [58]	Hyper-K (1900 kton-yrs): 3.2 [56] DUNE (400 kton-yrs): 1.3 [59] JUNO (200 kton-yrs): 1.9 [60] THEIA (800 kton-yrs) 3.8
$\tau_p \left(p \to \overline{\nu} \pi^+ \right)$	Super-K: 0.039 [61]	-

[BD, Koerner, Saad et al, 2203.08771]

Theory Predictions (Non-SUSY Models)

Model	Decay modes	$\tau_N (N = p, n)$ [years]	Ref.
Non-SUSY minimal $SU(5)$	$p \rightarrow e^+ \pi^0$	$10^{30} - 10^{32}$	Georgi, Glashow [16]
Non-SUSY minimally extended	$p \rightarrow e^+ \pi^0$	$\lesssim 2.3 \times 10^{36}$	Doršner, Saad [82]
SU(5) (neutrino mass: 1-loop)		1	
Non-SUSY minimally extended	$p \rightarrow e^+ \pi^0$	$10^{32} - 10^{36}$	Perez, Murgui [74]
SU(5) (neutrino mass: 1-loop)	$p \rightarrow \overline{\nu}K^+$	$10^{34} - 10^{37}$	
Non-SUSY Minimal SU(5) [NR]	$p \rightarrow \nu + (K^+, \pi^+, \rho^+)$	$10^{31} - 10^{38}$	Doršner, Perez [64]
(neutrino mass: type-II seesaw)	$n \rightarrow \nu + (\pi^0, \rho^0, \eta^0, \omega^0, K^0)$		
Non-SUSY Minimal SU(5) [NR]	$p \rightarrow e^+ \pi^0$	$\lesssim 10^{36}$	Bajc, Senjanović [65]
(neutrino mass: type-III+I seesaw)			
Non-SUSY Extended $SU(5)$	$p \rightarrow e^+ \pi^0$	$10^{34} - 10^{40}$	Saad [80]
(neutrino mass: 2-loop)			
Minimal flipped non-SUSY $SU(5)$	$p \rightarrow e/\mu^+ \pi^0$	$10^{38} - 10^{42}$	Arbeláez, Kolešová, Malinský [175]
Non-SUSY Minimal SO(10)	$p \rightarrow e^+ \pi^0$	$\lesssim 5 \times 10^{35}$	Babu, Khan [165]
Minimal $SO(10)$ with 45 Higgs	$p \rightarrow e^+ \pi^0$	$\lesssim 10^{36}$	Bertolini, Di Luzio, Malinský [176]
Minimal non-Renormalizable $SO(10)$	$p \rightarrow e^+ \pi^0$	10^{35}	Preda, Senjanović, Zantedeschi [173]
Non-SUSY Generic SO(10)	$p \rightarrow e^+ \pi^0$		Chakrabortty, King, Maji [164]
M_{int} : G ₄₂₂		$10^{34} - 10^{46}$	
M_{int} : G_{422D}		$10^{31} - 10^{34}$	
M _{int} : G ₃₂₂₁		$10^{36} - 10^{46}$	
M_{int} : G_{3221D}		$10^{33} - 10^{43}$	
Non-SUSY Generic E_6	$p \rightarrow e^+ \pi^0$		Chakrabortty, King, Maji [164]
M_{int} : G_{4221}		$10^{27} - 10^{36}$, <u>,</u> ,
M_{int} : G_{4221D}		$10^{27} - 10^{36}$	
M_{int} : $G_{333} \rightarrow G_{3221}$		$10^{32} - 10^{36}$	
$M_{int}: G_{4221D} \rightarrow G_{421}$		$10^{26} - 10^{48}$	
$M_{int}: G_{4221} \rightarrow G_{421}$		$10^{25} - 10^{48}$	

[BD, Koerner, Saad et al, 2203.08771]

Theory Predictions (SUSY Models)

Model	Decay modes	$\tau_N (N = p, n)$ [years]	Ref.
Minimal SUSY $SU(5)$	$p \rightarrow \bar{\nu}K^+$		Dimopoulos, Georgi [42], Sakai [100]
	$n \rightarrow \bar{\nu} K^0$	$10^{28} - 10^{32}$	Hisano, Murayama, Yanagida [99]
Minimal SUSY $SU(5)$	$p \rightarrow \bar{\nu}K^+$	$\leq (2 - 6) \times 10^{34}$	Ellis et. al. [107]
(cMSSM)	$p \rightarrow e^+ \pi^0$	$10^{35} - 10^{40}$	
Minimal SUSY $SU(5)$	$p \rightarrow \bar{\nu}K^+$	$\lesssim 4 \times 10^{33}$	Babu, Bajc, Tavartkiladze [177]
$(5 + \overline{5} \text{ matter fields})$	$p \rightarrow \mu^+ \pi^0/K^0$, $n \rightarrow \overline{\nu}\pi^0/K^0$	$10^{33} - 10^{34}$	
SUGRA $SU(5)$	$p \rightarrow \bar{\nu}K^+$	$10^{32} - 10^{34}$	Nath, Arnowitt [103, 178]
mSUGRA $SU(5)$ (Higgs mass constraint)	$p \rightarrow \bar{\nu}K^+$	$3 \times 10^{34} - 2 \times 10^{35}$	Liu, Nath [111]
NUSUGRA $SU(5)$ (Higgs mass constraint)	$p \rightarrow \bar{\nu}K^+$	$3 \times 10^{34} - 10^{36}$	
SUSY $SU(5)$ or $SO(10)$	$p \rightarrow e^+ \pi^0$	$\sim 10^{34.9\pm 1}$	Pati [179]
MSSM (d = 6)			
Flipped SUSY $SU(5)$ (cMSSM)	$p \rightarrow e/\mu^+ \pi^0$	$10^{35} - 10^{37}$	Ellis et. al. [180–182]
Split SUSY $SU(5)$	$p \rightarrow e^+ \pi^0$	$10^{35} - 10^{37}$	Arkani-Hamed, et. al. [183]
SUSY $SU(5)$ in 5D	$p \rightarrow \mu^+ K^0$	$10^{34} - 10^{35}$	Hebecker, March-Russell[184]
	$p \rightarrow e^+ \pi^0$		
SUSY $SU(5)$ in 5D variant II	$p \rightarrow \bar{\nu}K^+$	$10^{36} - 10^{39}$	Alciati et.al. [185]
Mini-split SUSY SO(10)	$p \rightarrow \bar{\nu}K^+$	$\lesssim 6 \times 10^{34}$	Babu, Bajc, Saad [146]
SUSY $SO(10) \times U(1)_{PQ}$	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{35}$	Babu, Bajc, Saad [147]
Extended SUSY SO(10)	$p \rightarrow \bar{\nu}K^+$		
Type-I seesaw		$10^{30} - 10^{37}$	Mohapatra, Severson [186]
Type-II seesaw		$\lesssim 6.6 imes 10^{33}$	Mohapatra, Severson [186]
Inverse seesaw		$\lesssim 10^{34}$	Dev, Mohapatra [187]
SUSY $SO(10)$	$p \rightarrow \bar{\nu}K^+$		Shafi, Tavartkiladze [188]
with anomalous	$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{35}$	
flavor U(1)	$p \rightarrow \mu^+ K^0$		
SUSY $SO(10)$	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$	Lucas, Raby [189], Pati [179]
MSSM	$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{33}$	
SUSY $SO(10)$	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$	Pati [179]
ESSM		$\lesssim 10^{35}$	
SUSY $SO(10)/G(224)$	$p \rightarrow \bar{\nu}K^+$	$\lesssim 2 \cdot 10^{-54}$	Babu, Pati, Wilczek [190–192],
MSSM or ESSM	$p \rightarrow \mu^+ K^0$	D (1 50)%	Pati [179]
(new d = 5)	- 7/1	$B \sim (1 - 50)\%$	D MIL · D ··· G freel
SUSY SU(10) × S4	$p \rightarrow \nu \kappa$	$\gtrsim 7 \times 10^{-0.0}$	Dev, Monapatra, Dutta, Severson [193]
SUSY SU(10) IN 6D	$p \rightarrow e^{+} \pi^{-}$	10.1 - 10.0	Buchmuller, Covi, Wiesenfeldt [194]
GUT-like models from	$p \rightarrow e^+ \pi^0$	$\sim 10^{36}$	Klebanov, Witten [195]
Type IIA string with D6-branes			

Other B Violating Modes

[Heeck, Takhistov (PRD '20)]

Is it too crazy?

Neutron-Antineutron Oscillation

Is it too crazy?

Neutron-Antineutron Oscillation

Is it too crazy?

Connected with the Majorana nature of neutrino mass. [Mohapatra, Marshak (PRL '80)]

 $\Delta B = 1$

- Proton decay
- Induced by dimension-6 operator QQQL.
- Amplitude $\propto \Lambda^{-2}$.
- $\tau_p \gtrsim 10^{34}$ yr implies $\Lambda \gtrsim 10^{15}$ GeV.
- Proton decay requires GUT-scale physics.

[Nath, Perez (Phys. Rep. '07)]

$$\Delta B = 2$$

- Di-nucleon decay and $n \bar{n}$
- Induced by dimension-9 operator *QQQQQQQ*.
- Amplitude $\propto \Lambda^{-5}$.
- $\Lambda \gtrsim 100$ TeV enough to satisfy experimental constraints ($\tau_{n\bar{n}} \gtrsim 10$ yr).
- n n
 oscillation (and conversion) could come from a TeV-scale new physics.

[Phillips et al. (Phys. Rep '16)]

Current Status and Future Prospects

15

Theoretical Upper Limit

• UV-complete embedding in Pati-Salam partial unification with $SU(4)_c \times SU(2)_L \times SU(2)_R$. [Mohapatra, Marshak (PRL '80); Babu, BD, Mohapatra (PRD '08)]

Theoretical Upper Limit

• UV-complete embedding in Pati-Salam partial unification with $SU(4)_c \times SU(2)_L \times SU(2)_R$. [Mohapatra, Marshak (PRL '80); Babu, BD, Mohapatra (PRD '08)]

- A concrete realization of post-sphaleron baryogenesis. [Babu, Mohapatra, Nasri (PRL '06)]
- Leads to an *absolute upper limit* on the $n \bar{n}$ oscillation time. [Babu, BD, Fortes, Mohapatra (PRD '13)]

[Babu, Mohapatra (PRD '15)]

Connection to Gravitational Waves

[King, Pascoli, Turner, Zhou (JHEP '21)]

Lattice Developments

[Yoo, Aoki, Boyle, Izubuchi, Soni, Syritsyn (PRD '22)]

Conclusion

- Observation of BNV will be a clear signal of BSM physics.
- The best limits come from large-scale neutrino experiments like Super-K.
- Expected nucleon lifetimes in a wide class of GUT models are within reach of current and future (underground) experiments.
- Important to study as many BNV channels as possible.
- In particular, neutron-antineutron oscillation should be treated with the same level of importance as proton decay.
- Connection to other BSM physics: neutrino mass, baryogenesis, dark matter, gravitational waves, flavor physics.

Conclusion

- Observation of BNV will be a clear signal of BSM physics.
- The best limits come from large-scale neutrino experiments like Super-K.
- Expected nucleon lifetimes in a wide class of GUT models are within reach of current and future (underground) experiments.
- Important to study as many BNV channels as possible.
- In particular, neutron-antineutron oscillation should be treated with the same level of importance as proton decay.
- Connection to other BSM physics: neutrino mass, baryogenesis, dark matter, gravitational waves, flavor physics.

Thank you!