

Lepton Number Violation at the LHC

Bhupal Dev Washington University in St. Louis

International Workshop on Baryon and Lepton Number Violation (BLV 2017) Case Western Reserve University, Cleveland

May 17, 2017

Why Lepton Number Violation?

Non-zero neutrino mass \Longrightarrow physics beyond the SM

Seesaw Mechanism

- A natural way to generate neutrino masses.
- Break the (B L)-symmetry of the SM.
- Parametrized by the dim-5 operator (LLHH)/Λ. [Weinberg (PRL '79)]
- Three tree-level realizations: Type I, II, III seesaw mechanisms.

- Generically predict lepton number and/or (charged) lepton flavor violation.
- Pertinent question in the LHC era:

Can we probe the seesaw mechanism at the LHC (or future colliders)?

• Experimentally feasible if the seesaw scale is (in)directly accessible.

(Minimal) Type-I Seesaw at the LHC

- SM-singlet heavy Majorana neutrinos. [Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '80]
- Same-sign dilepton plus jets without ∉_T [Keung, Senjanović (PRL '83); Datta, Guchait, Pilaftsis (PRD '94); Han, Zhang (PRL '06); del Aguila, Aguilar-Saavedra, Pittau (JHEP '07); · · ·]

[Talks by A. Salvucci and J. Kim]

Type-II Seesaw at the LHC

- SU(2)_L-triplet scalar (Φ⁺⁺, Φ⁺, Φ⁰). [Schechter, Valle (PRD '80); Magg, Wetterich (PLB '80); Cheng, Li (PRD '80); Lazarides, Shafi, Wetterich (NPB '81); Mohapatra, Senjanović (PRD '81)]
- Multi-lepton signatures. [Akeroyd, Aoki (PRD '05); Fileviez Perez, Han, Huang, Li, Wang (PRD '08); del Aguila, Aguilar-Saavedra (NPB '09); Melfo, Nemevsek, Nesti, Senjanović, Zhang (PRD '12)]

Type-III Seesaw at the LHC

- $SU(2)_L$ -triplet fermion $(\Sigma^+, \Sigma^0, \Sigma^-)$. [Foot, Lew, He, Joshi (ZPC '89)]
- Multi-lepton signatures. [Franceschini, Hambye, Strumia (PRD '08); Li, He (PRD '09); Arhrib, Bajc, Ghosh, Han,

- Low-scale seesaw (mostly focus on type-I)
- Lepton number violating and conserving signals (both are important)
- Beyond the minimal seesaw (gauge extensions)
- Complementarity with low-energy probes (LFV and $0\nu\beta\beta$)
- Consequences for leptogenesis

Why low-scale seesaw?

• In flavor basis $\{\nu^{c}, N\}$, type-I seesaw mass matrix

$$\mathcal{M}_{\nu} = \left(\begin{array}{cc} \mathbf{0} & \mathbf{M}_{D} \\ \mathbf{M}_{D}^{\mathsf{T}} & \mathbf{M}_{N} \end{array}\right)$$

• For
$$||M_D M_N^{-1}|| \ll 1$$
, $M_\nu^{\text{light}} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$.

- In traditional GUT models, $M_N \sim 10^{14}$ GeV.
- But in a bottom-up approach, allowed to be anywhere (down to eV-scale).

Why low-scale seesaw?

• In flavor basis $\{\nu^{c}, N\}$, type-I seesaw mass matrix

$$\mathcal{M}_{\nu} = \left(\begin{array}{cc} \mathbf{0} & \mathbf{M}_{D} \\ \mathbf{M}_{D}^{\mathsf{T}} & \mathbf{M}_{N} \end{array}\right)$$

• For
$$||M_D M_N^{-1}|| \ll 1$$
, $M_{\nu}^{\text{light}} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$.

- In traditional GUT models, $M_N \sim 10^{14}$ GeV.
- But in a bottom-up approach, allowed to be anywhere (down to eV-scale). Suggestive upper limit $M_N \lesssim 10^7$ GeV from naturalness arguments.

[Vissani (PRD '98); Clarke, Foot, Volkas (PRD '15); Bambhaniya, BD, Goswami, Khan, Rodejohann (PRD '17)]

Why low-scale seesaw?

• In flavor basis $\{\nu^c, N\}$, type-I seesaw mass matrix

$$\mathcal{M}_{\nu} = \left(\begin{array}{cc} \mathbf{0} & \mathbf{M}_{D} \\ \mathbf{M}_{D}^{\mathsf{T}} & \mathbf{M}_{N} \end{array}\right)$$

• For
$$||M_D M_N^{-1}|| \ll 1$$
, $M_{\nu}^{\text{light}} \simeq -M_D M_N^{-1} M_D^{\mathsf{T}}$.

- In traditional GUT models, $M_N \sim 10^{14}$ GeV.
- But in a bottom-up approach, allowed to be anywhere (down to eV-scale). Suggestive upper limit $M_N \lesssim 10^7$ GeV from naturalness arguments.

[Vissani (PRD '98); Clarke, Foot, Volkas (PRD '15); Bambhaniya, BD, Goswami, Khan, Rodejohann (PRD '17)]

Similar naturalness arguments in the context of neutral top partners [Batell, McCullough (PRD '15)] and warped seesaw [Agashe, Hong, Vecchi (PRD '16)] also predict a low seesaw scale.

Low-scale seesaw with large mixing

• Naively, active-sterile neutrino mixing is small for low-scale seesaw:

$$V_{IN} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{M_\nu}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

 'Large' mixing effects possible with special structures of M_D and M_N. [Pilaftsis (ZPC '92); Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez, Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Deppisch, Pilaftsis (PRD '11); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani (NPB '12)]

Low-scale seesaw with large mixing

• Naively, active-sterile neutrino mixing is small for low-scale seesaw:

$$V_{IN} \simeq M_D M_N^{-1} \simeq \sqrt{\frac{M_\nu}{M_N}} \lesssim 10^{-6} \sqrt{\frac{100 \text{ GeV}}{M_N}}$$

- 'Large' mixing effects possible with special structures of *M_D* and *M_N*. [Pilaftsis (ZPC '92); Kersten, Smirnov (PRD '07); Gavela, Hambye, Hernandez, Hernandez (JHEP '09); Ibarra, Molinaro, Petcov (JHEP '10); Deppisch, Pilaftsis (PRD '11); Adhikari, Raychaudhuri (PRD '11); Mitra, Senjanović, Vissani (NPB '12)]
- One example: [Kersten, Smirnov (PRD '07)]

$$M_D = \begin{pmatrix} m_1 & \delta_1 & \epsilon_1 \\ m_2 & \delta_2 & \epsilon_2 \\ m_3 & \delta_3 & \epsilon_3 \end{pmatrix} \text{ and } M_N = \begin{pmatrix} 0 & M_1 & 0 \\ M_1 & 0 & 0 \\ 0 & 0 & M_2 \end{pmatrix} \text{ with } \epsilon_i, \delta_i \ll m_i.$$

- In the limit *ϵ_i*, *δ_i* → 0, all three light neutrino masses vanish at tree-level, while the mixing given by *V_{ij}* ~ *m_i*/*M_j* can still be large.
- The textures can be stabilized by invoking discrete symmetries. [Kersten, Smirnov (PRD '07); BD, Lee, Mohapatra (PRD '13)]
- But LNV is suppressed, as generically expected due to constraints from neutrino oscillation data and 0νββ. [Abada, Biggio, Bonnet, Gavela, Hambye (JHEP '07); Ibarra, Molinaro, Petcov (JHEP '10); Fernandez-Martinez, Hernandez-Garcia, Lopez-Pavon, Lucente (JHEP '15)]

An Exception

• For suitable choice of CP phases, resonant enhancement of the LNV amplitude for $\Delta m_N \lesssim \Gamma_N$. [Bray, Pilaftsis, Lee (NPB '07)]

$$\mathcal{A}_{\mathrm{LNV}} \propto V_{\ell N}^2 rac{2\Delta m_N}{\Delta m_N^2 + \Gamma_N^2} + \mathcal{O}\left(rac{\Delta m_N}{m_N}
ight)$$

Just like resonant enhancement of CP-asymmetry.

 $V_{e1} = V_{\mu 1} = V_{\mu 2} = 0.05, V_{e2} = 0.05i$

A Natural Low-scale Seesaw

- Inverse seesaw mechanism [Mohapatra (PRL '86); Mohapatra, Valle (PRD '86)]
- Two sets of SM-singlet fermions with opposite lepton numbers.
- Neutrino mass matrix in the flavor basis $\{\nu^c, N, S^c\}$:

$$\mathcal{M}_{\nu} = \begin{pmatrix} \mathbf{0} & M_D & \mathbf{0} \\ M_D^{\mathsf{T}} & \mathbf{0} & M_N^{\mathsf{T}} \\ \mathbf{0} & M_N & \mu \end{pmatrix} \equiv \begin{pmatrix} \mathbf{0} & \mathcal{M}_D \\ \mathcal{M}_D^{\mathsf{T}} & \mathcal{M}_N \end{pmatrix}$$
$$\mathcal{M}_{\nu}^{\text{light}} = (\mathcal{M}_D \mathcal{M}_N^{-1}) \, \mu \, (\mathcal{M}_D \mathcal{M}_N^{-1})^{\mathsf{T}} + \mathcal{O}(\mu^3).$$

• L-symmetry is restored when $\mu \rightarrow \mathbf{0}$.

A Natural Low-scale Seesaw

- Inverse seesaw mechanism [Mohapatra (PRL '86); Mohapatra, Valle (PRD '86)]
- Two sets of SM-singlet fermions with opposite lepton numbers.
- Neutrino mass matrix in the flavor basis { ν^c , N, S^c }:

$$\mathcal{M}_{\nu} = \begin{pmatrix} \mathbf{0} & M_D & \mathbf{0} \\ M_D^{\mathsf{T}} & \mathbf{0} & M_N^{\mathsf{T}} \\ \mathbf{0} & M_N & \mu \end{pmatrix} \equiv \begin{pmatrix} \mathbf{0} & \mathcal{M}_D \\ \mathcal{M}_D^{\mathsf{T}} & \mathcal{M}_N \end{pmatrix}$$
$$\mathcal{M}_{\nu}^{\text{light}} = (\mathcal{M}_D \mathcal{M}_N^{-1}) \, \mu \, (\mathcal{M}_D \mathcal{M}_N^{-1})^{\mathsf{T}} + \mathcal{O}(\mu^3).$$

- L-symmetry is restored when $\mu \rightarrow \mathbf{0}$.
- Naturally allows for large mixing: $V_{IN} \simeq \sqrt{\frac{M_{\nu}}{\mu}} \approx 10^{-2} \sqrt{\frac{1 \text{ keV}}{\mu}}$ as long as constraints from EWPD [Akhmedov, Kartavtsev, Lindner, Michaels, Smirnov (JHEP '13); de Blas '13] are satisfied.
- Potentially large (LNC) signals at colliders. [del Aguila, Aguilar-Saavedra (PLB '09); Chen, BD (PRD '12); Das, BD, Okada (PLB '14); Dev, Mohapatra (PRL '15); Anamiati, Hirsch, Nardi (JHEP '16)]

Important to also look for opposite-sign dilepton and trilepton signals.

New Contributions to Heavy Neutrino Production

Collinear-enhancement mechanism [BD, Pilaftsis, Yang (PRL '14); Alva, Han, Ruiz (JHEP '15); Degrande,

Mattelaer, Ruiz, Turner (PRD '16); Das, Okada (PRD '16)]

Higgs Decay

[BD, Franceschini, Mohapatra (PRD '12); Cely, Ibarra, Molinaro, Petcov (PLB '13); Das, BD, Kim (PRD '17)] Also potentially measurable effects in triple Higgs coupling [Baglio, Weiland (PRD '16, JHEP '17)]

[Blondel, Graverini, Serra, Shaposhnikov '14]

W Decay

[Izaguirre, Shuve (PRD '15); Dib, Kim (PRD '15); Dib, Kim, Wang, Zhang (PRD '16)]

[Antusch, Cazzato, Fischer '16]

Displaced Vertex in Higgs Decay

[Caputo, Hernandez, Lopez-Pavon, Salvado '17]

LNV in B-meson decays

[Aaij et al. (PRL '14)]

LNV in B-meson decays

Summary Plot (Electron Sector)

[Atre, Han, Pascoli, Zhang (JHEP '09); Deppisch, BD, Pilaftsis (NJP '15)]

Summary Plot (Muon Sector)

[Atre, Han, Pascoli, Zhang (JHEP '09); Deppisch, BD, Pilaftsis (NJP '15)]

New limits from NA48/2 [Talk by M. Pepe]

Summary Plot (Tau Sector)

[Atre, Han, Pascoli, Zhang (JHEP '09); Deppisch, BD, Pilaftsis (NJP '15)]

[Fileviez Perez, Han, Li (PRD '09); Deppisch, Desai, Valle (PRD '14); Heeck, Teresi (PRD '16)]

Probing Neutrino Mass Hierarchy at the LHC

[BD, Hagedorn, Molinaro (in prep.)]

Left-Right Seesaw

New contribution to Drell-Yan process via W_R exchange. [Keung, Senjanović (PRL '83); Ferrari *et al* (PRD '00); Nemevsek, Nesti, Senjanović, Zhang (PRD '11); Das, Deppisch, Kittel, Valle (PRD '12); Lindner, Queiroz, Rodejohann, Yaguna (JHEP '16); Mitra, Ruiz, Scott, Spannowsky (PRD '16)]

[Talks by A. Salvucci and J. Kim]

L-R Seesaw Phase Diagram

(a) LL

(c) RL

(d) LR

[Chen, BD, Mohapatra (PRD '13); BD, Kim, Mohapatra (JHEP '16)]

Displaced Vertex Signal

• Under $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$,

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} : (\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{0}), \quad \Delta_R = \begin{pmatrix} \Delta_R^+ / \sqrt{2} & \Delta_R^{++} \\ \Delta_R^0 & -\Delta_R^+ / \sqrt{2} \end{pmatrix} : (\mathbf{1}, \mathbf{1}, \mathbf{3}, \mathbf{2}).$$

(See [Fileviez Perez, Murgui, Ohmer (PRD '16)] for a simple alternative)

- 8 physical scalar fields, denoted by $\{h, H_1^0, A_1^0, H_3^0, H_1^{\pm}, H_2^{\pm\pm}\}$.
- FCNC constraints require the bidoublet scalars $(H_1^0, A_1^0, H_1^{\pm})$ to be $\gtrsim 10 20$ TeV.

[An, Ji, Mohapatra, Zhang (NPB '08); Bertolini, Maiezza, Nesti (PRD '14)]

• Under $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$,

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} : (\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{0}), \quad \Delta_R = \begin{pmatrix} \Delta_R^+ / \sqrt{2} & \Delta_R^{++} \\ \Delta_R^0 & -\Delta_R^+ / \sqrt{2} \end{pmatrix} : (\mathbf{1}, \mathbf{1}, \mathbf{3}, \mathbf{2}).$$

(See [Fileviez Perez, Murgui, Ohmer (PRD '16)] for a simple alternative)

- 8 physical scalar fields, denoted by $\{h, H_1^0, A_1^0, H_3^0, H_1^{\pm}, H_2^{\pm\pm}\}$.
- FCNC constraints require the bidoublet scalars $(H_1^0, A_1^0, H_1^{\pm})$ to be $\gtrsim 10 20$ TeV.

[An, Ji, Mohapatra, Zhang (NPB '08); Bertolini, Maiezza, Nesti (PRD '14)]

• Doubly-charged scalars can give rise to distinct LNV signals at the LHC.

[BD, Mohapatra, Zhang (JHEP '16)]

Light Scalar as a New Probe of Seesaw

- The CP-even neutral triplet component H_3^0 can be light (GeV-scale).
- Suppressed coupling to SM particles (either loop-level or small mixing).
- FCNC constraints necessarily require it to be long-lived.
- Unique displaced diphoton signal at the LHC.

Falsifying Leptogenesis

• Any observation of LNV signal at the LHC will falsify high-scale leptogenesis.

In specific seesaw models, can also falsify low-scale leptogenesis. [Blanchet, Chacko, Granor, Mohapatra (PRD '10); Frere, Hambye, Vertongen (JHEP '09); BD, Lee, Mohapatra '15; Dhuria, Hati, Rangarajan, Sarkar (PRD '15)]

- Neutrino mass is so far the only laboratory evidence for BSM physics.
- Understanding the neutrino mass mechanism will provide important insights into the BSM world.
- LHC provides a ripe testing ground for low-scale neutrino mass models.
- Important to search for both lepton number violating and conserving channels.
- Healthy complementarity at the intensity frontier (e.g. LFV and $0\nu\beta\beta$ experiments).
- LNV searches have important consequences for leptogenesis.