

Collider Signatures of the Left-Right Higgs Sector

Bhupal Dev Washington University in St. Louis

15th Workshop on High Energy Physics Phenomenology

IISER Bhopal

December 18, 2017

B-L breaking

- Natural way to generate neutrino mass.
- Local B L symmetry.
- Associated Higgs field leaves a physical neutral scalar component.
- Important to find this B L counterpart to the SM Higgs.
- Experimentally realistic only if B L breaking scale is within multi-TeV.
- Mass of the new Higgs field is still largely unrestricted.
- Important to scan over the entire allowed range (leave no stone unturned).

B-L breaking

- Natural way to generate neutrino mass.
- Local B L symmetry.
- Associated Higgs field leaves a physical neutral scalar component.
- Important to find this B L counterpart to the SM Higgs.
- Experimentally realistic only if B L breaking scale is within multi-TeV.
- Mass of the new Higgs field is still largely unrestricted.
- Important to scan over the entire allowed range (leave no stone unturned).
- Distinct signatures depending on whether the scale is above or below m_h .
- For masses $\gg m_h$, production is (typically) kinematically suppressed at the LHC. (Many studies on heavy Higgs searches)
- For masses $\sim m_h$, potentially large mixing with the SM Higgs (disfavored by the LHC Higgs data).
- Mass range $\ll m_h$ largely unexplored so far.

Left-Right Symmetric Model

- Provides a natural framework for type-I seesaw embedding.
- Based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. [Pati, Salam (PRD '74); Mohapatra, Pati (PRD '75); Senjanović, Mohapatra (PRD '75)]
- The main ingredients of seesaw (right-handed neutrinos with Majorana mass) are an essential part of the theory (and not put in 'by hand'):

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \in \left(\mathbf{2}, \mathbf{1}, \frac{1}{3}\right) \stackrel{\mathcal{P}}{\leftrightarrow} Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \in \left(\mathbf{1}, \mathbf{2}, \frac{1}{3}\right)$$
$$\Psi_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \in \left(\mathbf{2}, \mathbf{1}, -1\right) \stackrel{\mathcal{P}}{\leftrightarrow} \Psi_R = \begin{pmatrix} N_R \\ e_R \end{pmatrix} \in \left(\mathbf{1}, \mathbf{2}, -1\right)$$

Left-Right Symmetric Model

- Provides a natural framework for type-I seesaw embedding.
- Based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. [Pati, Salam (PRD '74); Mohapatra, Pati (PRD '75); Senjanović, Mohapatra (PRD '75)]
- The main ingredients of seesaw (right-handed neutrinos with Majorana mass) are an essential part of the theory (and not put in 'by hand'):

$$Q_{L} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \in \left(\mathbf{2}, \mathbf{1}, \frac{1}{3}\right) \stackrel{\mathcal{P}}{\leftrightarrow} Q_{R} = \begin{pmatrix} u_{R} \\ d_{R} \end{pmatrix} \in \left(\mathbf{1}, \mathbf{2}, \frac{1}{3}\right)$$
$$\Psi_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \in \left(\mathbf{2}, \mathbf{1}, -1\right) \stackrel{\mathcal{P}}{\leftrightarrow} \Psi_{R} = \begin{pmatrix} N_{R} \\ e_{R} \end{pmatrix} \in \left(\mathbf{1}, \mathbf{2}, -1\right)$$

- Can be realized at $v_R \gtrsim$ 5 TeV scale, with many observable effects.
- Heavy gauge bosons W_R with spectacular signals at the LHC (and beyond). [Keung, Senjanović (PRL '83)]
- New contributions to $0\nu\beta\beta$ and lepton flavor violation. [Riazuddin, Marshak, Mohapatra (PRD '81); Hirsch, Klapdor-Kleingrothaus, Panella (PLB '96); Tello, Nemevsek, Nesti, Senjanović, Vissani (PRL '10)]

Minimal scalar sector

- Eight physical scalars with rich phenomenology. [Gunion, Grifols, Mendez, Kayser, Olness (PRD '89); Dutta, Eusebi, Gao, Ghosh, Kamon (PRD '14); Bambhaniya, Chakrabortty, Gluza, Jeliński, Kordiaczyńska (PRD '14, '15); Maiezza, Nemevsek, Nesti (PRL '15); BD, Mohapatra, Zhang (JHEP '16);...]
- Left-handed Δ_L can be decoupled from the TeV scale physics. [Chang, Mohapatra, Parida (PRL '84), Deshpande, Gunion, Kayser, Olness (PRD '91)]
- Allows gauge coupling $g_R \neq g_L$ at the TeV scale.
- Lower limit on $g_R/g_L \ge \tan \theta_w \simeq 0.55$. [Brehmer, Hewett, Kopp, Rizzo, Tattersall (JHEP '15); BD, Mohapatra, Zhang (JHEP '16)]

Scalar Potential

$$V(\Phi, \Delta_R) = -\mu_1^2 \operatorname{Tr}(\Phi^{\dagger} \Phi) - \mu_2^2 \left[\operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) + \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \right] - \mu_3^2 \operatorname{Tr}(\Delta_R \Delta_R^{\dagger}) + \lambda_1 \left[\operatorname{Tr}(\Phi^{\dagger} \Phi) \right]^2 + \lambda_2 \left\{ \left[\operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) \right]^2 + \left[\operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \right]^2 \right\} + \lambda_3 \operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) + \lambda_4 \operatorname{Tr}(\Phi^{\dagger} \Phi) \left[\operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) + \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \right] + \rho_1 \left[\operatorname{Tr}(\Delta_R \Delta_R^{\dagger}) \right]^2 + \rho_2 \operatorname{Tr}(\Delta_R \Delta_R) \operatorname{Tr}(\Delta_R^{\dagger} \Delta_R^{\dagger}) + \alpha_1 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta_R \Delta_R^{\dagger}) + \left[\alpha_2 e^{i\delta_2} \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \operatorname{Tr}(\Delta_R \Delta_R^{\dagger}) + \operatorname{H.c.} \right] + \alpha_3 \operatorname{Tr}(\Phi^{\dagger} \Phi \Delta_R \Delta_R^{\dagger}).$$

[More discussion in A. Patra's talk]

Physical scalar masses

Assume CP conservation and

$$\begin{split} \xi &\equiv \langle \phi_2^0 \rangle / \langle \phi_1^0 \rangle = \kappa' / \kappa \simeq m_b / m_t \ll 1 \,, \\ \epsilon &\equiv v_{\rm EW} / v_R = \sqrt{\kappa^2 + \kappa'^2} / v_R \ll 1 \end{split}$$

scalars	components	mass squared
h	$\sim \phi_1^{0{\rm Re}}$	$\left(4\lambda_1-rac{lpha_1^2}{ ho_1-\lambda_1} ight)\kappa^2$
H_1^0	$\sim \phi_2^{0{\rm Re}}$	$\alpha_{3}(1+2\xi^{2})v_{R}^{2}+4\left(2\lambda_{2}+\lambda_{3}+\frac{4\alpha_{2}^{2}}{\alpha_{3}-4\rho_{1}}\right)\kappa^{2}$
A_1^0	$\sim \phi_2^{0\mathrm{Im}}$	$\alpha_3(1+2\xi^2)v_R^2+4(\lambda_3-2\lambda_2)\kappa^2$
H_1^{\pm}	$\sim \phi_2^{\pm}$	$\alpha_3(1+2\xi^2)v_R^2+\frac{1}{2}\alpha_3\kappa^2$
H_{3}^{0}	$\sim \Delta_R^{0{\rm Re}}$	$4\rho_1 v_R^2 + \left(\frac{\alpha_1^2}{\rho_1} - \frac{16\alpha_2^2}{\alpha_3 - 4\rho_1}\right) \kappa^2$
$H_2^{\pm\pm}$	$\sim \Delta_R^{\pm\pm}$	$4\rho_2 v_R^2 + \alpha_3 \kappa^2$

Constraints on the Bidoublet Scalars

• Contribute to tree-level FCNCs.

- Severe limits on bidoublet mass: $M_{H_1^0, A_1^0, H_1^\pm} \gtrsim 10 \text{ TeV}$ [Zhang, An, Ji, Mohapatra (NPB '07); Bertolini, Maiezza, Nesti (PRD '14)]
- No hope of finding them at the LHC.
- A good motivation for FCC-hh.

Production of H_1^0, A_1^0

Cross Section for H_1^0, A_1^0

Bhupal Dev (Washington U.)

Production of H_1^{\pm}

Cross Section for H_1^{\pm}

Discovery Channel for H_1^0/A_1^0

scalar	discovery channel	SM background	$\sigma_{\rm SM}$ [fb]
	$H_1^0/A_1^0 ightarrow bar{b}$	bb	1500
H_1^0/A_1^0	$H_1^0 ightarrow hH_3^0 ightarrow hhh$	hhh ightarrow 6b	0.038
		$ZZZ \rightarrow 6b$	0.19
H_1^{\pm}	$H^{\pm}t ightarrow ttb$	$ttb ightarrow bbbjj\ell u$	984

Constraints on Doubly-charged Scalars

LHC multilepton search limits on doubly-charged scalar: $M_{H,\pm\pm} \gtrsim 500 - 700 \,\text{GeV}$

Production of $H_2^{\pm\pm}$

Cross Section for $H_2^{\pm\pm}$ at LHC

Bhupal Dev (Washington U.)

3σ Sensitivity for $H_2^{\pm\pm}$ at 14 TeV

Bhupal Dev (Washington U.)

LR Higgs at Collider

Cross Section for $H_2^{\pm\pm}$ at 100 TeV

Bhupal Dev (Washington U.)

3σ Sensitivity for $H_2^{\pm\pm}$ at 100 TeV

Bhupal Dev (Washington U.)

LR Higgs at Collider

Field	MSSM	LR model
H_1^0, A_1^0	$bar{b},\; au^+ au^-$ (high tan eta)	bb
	<i>tt</i> (low tan β)	$W_R^+W^- ightarrow \ell^+\ell^+4j$
H^+	$tar{b}tar{b},tar{b}ar{ au} u$	$\overline{t}_L b_R$

- $H_1^0/A_1^0 \rightarrow \tau^- \tau^-$ mode is suppressed by either the Dirac Yukawa coupling or the left-right mixing.
- New decay modes (absent/suppressed in MSSM): $H_1^0 \rightarrow W_R^+ W^-$, $H_1^+ \rightarrow W_R^+ Z$, $H_3^0 \rightarrow hh$.
- Doubly-charged scalar.

[BD, Mohapatra, Zhang (JHEP '16)]

Light neutral scalar H_3

• At the leading order [mixing constrained to be very small]

$$m_{H_3}^2 \simeq 4 \rho_1 v_R^2$$

• Mixing with the SM Higgs [note the inverse dependence on the VEV ratio]

$$\begin{pmatrix} 4\lambda_1\epsilon^2 & 2\alpha_1\epsilon \\ 2\alpha_1\epsilon & 4\rho_1 \end{pmatrix} \mathbf{v}_R^2 \implies \sin\theta_1 \simeq \frac{\alpha_1}{2\lambda_1} \frac{\mathbf{v}_R}{\mathbf{v}_{\rm EW}}$$

• Mixing with the heavy doublet scalar H₁ [inducing FCNC couplings]

$$\sin\theta_2 \simeq \frac{4\alpha_2}{\alpha_3} \frac{v_{\rm EW}}{v_R}$$

- *H*₃ talks to the SM particles through:
 - the mixing angles $\sin \theta_{1,2}$: hadrons, $\ell^+ \ell^-$, $\gamma \gamma$;
 - RH gauge coupling: $\gamma\gamma$, through the W_R (and H_1^{\pm} , $H_2^{\pm\pm}$) loop.

Mass dependence

• Mass dependence on the quartic couplings at the tree level

$$m_{H_3}^2 \simeq 4\rho_1 v_R^2 - \sin^2\theta_1 m_h^2 \,,$$

To have a \sim GeV H_3, the parameter $\rho_1\simeq {\rm GeV}^2/4v_R^2\simeq 10^{-8}$ for $v_R=5$ TeV.

Radiative Effects

• Mass dependence on the parameters at the 1-loop level

For $m_{H_3} \sim$ GeV and $v_R \simeq$ few TeV, the parameters above are tuned at the level of $\sim {\rm GeV}/{\frac{v_R}{4\pi}} \simeq 10^{-2}$.

Decay

- All the couplings to SM quarks and leptons are proportional to the linear combinations of $\sin \theta_{1,2}$.
- Heavy particle loops for $H_3 \rightarrow \gamma \gamma$ suppressed by $v_{\rm EW}/v_R.$

$$\begin{split} \Gamma(H_3 \to q\bar{q}) &= \frac{3m_{H_3}}{16\pi} \left[\sum_{i,j} |\mathcal{Y}_{u,\,ij}|^2 \beta_2^3(m_{H_3}, m_{u_i}, m_{u_j}) \Theta(m_{H_3} - m_{u_i} - m_{u_j}) \right. \\ &+ \sum_{i,j} |\mathcal{Y}_{d,\,ij}|^2 \beta_2^3(m_{H_3}, m_{d_i}, m_{d_j}) \Theta(m_{H_3} - m_{d_i} - m_{d_j}) \right], \\ \Gamma(H_3 \to \ell^+ \ell^-) &= \frac{m_{H_3}}{16\pi} \sum_{i,j} |\mathcal{Y}_{e,\,ij}|^2 \beta_2^3(m_{H_3}, m_{e_i}, m_{e_j}) \Theta(m_{H_3} - m_{e_i} - m_{e_j}), \\ \Gamma(H_3 \to \gamma\gamma) &= \frac{\alpha^2 m_{H_3}^3}{1024\pi^3} \left| \frac{\sqrt{2}}{v_R} A_0(\tau_{H_1^{\pm}}) + \frac{4\sqrt{2}}{v_R} A_0(\tau_{H_2^{\pm\pm}}) \right. \\ &+ \left. \frac{\sqrt{2}}{v_{\rm EW}} \sum_{f=q,\ell} f_f N_C^f Q_f A_{1/2}(\tau_f) + \left. \frac{\sqrt{2}}{v_R} A_1(\tau w_R) \right|^2, \quad \left[\begin{array}{c} A_0(0) = 1/3 \\ A_1(0) = -7 \end{array} \right] \\ \Gamma(H_3 \to gg) &= \left. \frac{G_F \alpha_s^2(m_{H_3}) m_{H_3}^3}{36\sqrt{2}\pi^3} \right| \frac{3}{4} \sum_{f=q} f_f A_{1/2}(\tau_f) \right|^2, \end{split}$$

Bhupal Dev (Washington U.)

Decay Length

Branching ratios

K (and B) meson mixing

• "Effective" FCNC coupling for $K^0 - \bar{K}^0$ mixing

from mixing with heavy doublet scalar H_1 and SM Higgs h

$$\begin{split} \mathcal{L}_{H_3} &= \frac{G_F}{4\sqrt{2}} \frac{\sin^2 \tilde{\theta}_2}{m_K^2 - m_{H_3}^2 + im_{H_3}\Gamma_{H_3}} \\ &\times \left[\left(\sum_i m_i \lambda_i^{RL} \right)^2 \mathcal{O}_2 + \left(\sum_i m_i \lambda_i^{LR} \right)^2 \tilde{\mathcal{O}}_2 + 2 \left(\sum_i m_i \lambda_i^{LR} \right) \left(\sum_i m_i \lambda_i^{RL} \right) \mathcal{O}_4 \right] \\ &\sin \tilde{\theta}_2 \equiv \sin \theta_2 + \xi \sin \theta_1, \quad \left[\xi = \langle \phi_2^0 \rangle / \langle \phi_1^0 \rangle, \quad h - H_1 \text{ mixing} \right] \\ &\mathcal{O}_2 &= [\bar{s}(1 - \gamma_5)d] [\bar{s}(1 - \gamma_5)d], \\ &\tilde{\mathcal{O}}_2 &= [\bar{s}(1 + \gamma_5)d] [\bar{s}(1 + \gamma_5)d], \\ &\mathcal{O}_4 &= [\bar{s}(1 - \gamma_5)d] [\bar{s}(1 + \gamma_5)d]. \\ &m_i = \{m_u, m_c, m_t\}, \quad \lambda_i^{LR} = V_{L_{1/2}}^* V_{R,i1}, \quad \lambda_i^{RL} = V_{R,i2}^* V_{L,i1} \end{split}$$

• "Resonance" effect when m_{H_3} is close to the Kaon mass:

$$rac{1}{q^2-m_{H_3}^2+im_{H_3}\Gamma_{H_3}}
ightaarrowrac{1}{q^2}\simeqrac{1}{m_K^2}$$

Flavor-changing meson decay

• Stringent limits from the down-type quark sector

$$K \to \pi \chi \chi$$
, $B \to K \chi \chi$, $[\chi = hadron, \ell, \gamma]$

• "Visible decays": H₃ decaying inside detector spatial resolution

$$d_j \rightarrow d_i H_3$$
, $H_3 \rightarrow \chi \chi$

• "Invisible decays": H₃ decaying outside detector size

$$d_j
ightarrow d_i H_3 \,, \quad H_3
ightarrow ext{any} \left(L_{H_3} > R_{ ext{detector}}
ight)$$

List of meson decay limits

	Expt.	meson decay	H_3 decay	E _{H3}	L _{H3}	BR/N_{event}
	NA48/2 ['09]	$K^+ ightarrow \pi^+ H_3$	$H_3 ightarrow e^+ e^-$	\sim 30 GeV	< 0.1 mm	2.63×10^{-7}
	NA48/2 ['11]	$K^+ ightarrow \pi^+ H_3$	$H_3 ightarrow \mu^+ \mu^-$	\sim 30 GeV	< 0.1 mm	$8.88 imes10^{-8}$
	NA62 ['14]	$K^+ ightarrow \pi^+ H_3$	$H_3 \rightarrow \gamma \gamma$	\sim 37 GeV	< 0.1 mm	$4.70 imes10^{-7}$
	E949 ['09]	$K^+ ightarrow \pi^+ H_3$	any (inv.)	\sim 355 MeV	> 4 m	4×10^{-10}
*	NA62 ['05]	$K^+ ightarrow \pi^+ H_3$	any (inv.)	\sim 37.5 GeV	> 2 m	$2.4 imes 10^{-11}$
	KTeV ['03]	$K_L ightarrow \pi^0 H_3$	$H_3 ightarrow e^+ e^-$	\sim 30 GeV	< 0.1 mm	$2.8 imes 10^{-10}$
	KTeV ['00]	$K_L ightarrow \pi^0 H_3$	$H_3 ightarrow \mu^+ \mu^-$	\sim 30 GeV	< 0.1 mm	$4 imes 10^{-10}$
	KTeV ['08]	$K_L ightarrow \pi^0 H_3$	$H_3 ightarrow \gamma \gamma$	\sim 40 GeV	$< 0.1 \ {\rm mm}$	$3.71 imes10^{-7}$
	BaBar ['03]	$B \rightarrow KH_3$	$H_3 \rightarrow \ell^+ \ell^-$	$\sim m_B/2$	< 0.1 mm	$7.91 imes 10^{-7}$
	Belle ['09]	$B \rightarrow KH_3$	$H_3 \rightarrow \ell^+ \ell^-$	$\sim m_B/2$	< 0.1 mm	$4.87 imes10^{-7}$
	LHCb ['12]	$B^+ ightarrow K^+ H_3$	$H_3 ightarrow \mu^+ \mu^-$	$\sim 150~{ m GeV}$	< 0.1 mm	$4.61 imes 10^{-7}$
	BaBar ['13]	$B \rightarrow KH_3$	any (inv.)	$\sim m_B/2$	> 3.5 m	3.2×10^{-5}
*	Belle II ['10]	$B \rightarrow KH_3$	any (inv.)	$\sim m_B/2$	> 3 m	$4.1 imes 10^{-6}$
	LHCb ['17]	$B_s \rightarrow \mu \mu$	-	-	-	$2.51 imes 10^{-9}$
	BaBar ['10]	$B_d \rightarrow \gamma \gamma$	_	_	_	$3.3 imes10^{-7}$
	Belle ['14]	$B_s \rightarrow \gamma \gamma$	-	-	-	$3.1 imes10^{-6}$
†	BaBar ['11]	$\Upsilon ightarrow \gamma H_3$	$H_3 ightarrow qq, gg$	$\sim m_{\Upsilon}/2$	< 3.5 m	$[1, 80] \times 10^{-6}$
	CHARM ['85]	$K ightarrow \pi H_3$	$H_3 ightarrow \gamma \gamma$	$\sim 10~{ m GeV}$	[480, 515] m	< 2.3
	CHARM ['85]	$B \rightarrow X_s H_3$	$H_3 ightarrow \gamma \gamma$	~ 10 GeV	[480, 515] m	<u>< 2.3</u>
*	SHiP ['15]	$K ightarrow \pi H_3$	$H_3 ightarrow \gamma \gamma$	$\sim 25{ m GeV}$	[70, 125] m	<u>< 3</u>
*	SHiP ['15]	$B ightarrow X_s H_3$	$H_3 ightarrow \gamma \gamma$	$\sim 25~{ m GeV}$	[70, 125] m	<u>< 3</u>
*	DUNE ['13]	$K ightarrow \pi H_3$	$H_3 ightarrow \gamma \gamma$	$\sim 12~{ m GeV}$	[500, 507] m	<u>< 3</u>
*	DUNE ['13]	$B \rightarrow X_s H_3$	$H_3 ightarrow \gamma \gamma$	$\sim 12~{ m GeV}$	[500, 507] m	<u>< 3</u>

* future prospects, † flavor-conserving couplings only

K[±] meson limits

(dashed gray lines indicate the proper lifetime of H_3)

K^0 meson limits

(dashed gray lines indicate the proper lifetime of H_3)

B meson limits

(dashed gray lines indicate the proper lifetime of H_3)

Beam dump experiments

 $\begin{array}{rcl} {\rm CHARM}: & {\it N}_{\rm PoT} = 2.4 \times 10^{18} \implies 1.2 \times 10^{17} \, {\it K}, & 2.6 \times 10^{10} \, {\it B} \\ {\rm SHiP}: & {\it N}_{\rm PoT} = 2 \times 10^{20} \implies 8 \times 10^{18} \, {\it K}, & 7 \times 10^{13} \, {\it B} \\ {\rm DUNE}: & {\it N}_{\rm PoT} = 5 \times 10^{21} \implies 7.8 \times 10^{21} \, {\it K}, & 5.5 \times 10^{12} \, {\it B} \\ \end{array}$

Higgs measurements and rare Z decay

 The h – H₃ mixing changes all the SM Higgs couplings by a factor of cos θ₁. [Falkowski, Gross, Lebedev (JHEP '15); Profumo, Ramsey-Musolf, Wainwright, Winslow (PRD '15)]

- Invisible decay $h \rightarrow H_3 H_3$ (H_3 decaying outside detector) opens when $m_{H_3} < m_h/2$. LHC limits and ILC prospects [Peskin '12; Baer *et al.* '13]
- Rare decay $Z \rightarrow \gamma H_3$ ($H_3 \rightarrow \gamma \gamma$), induced by the SM fermion loops. [Jaeckel, Spannowsky (PLB '15)]

Production of H_3^0

Production at LHC (and FCC-hh)

• SM Higgs portal is highly suppressed by $\sin\theta_1$

 $pp \rightarrow h^{(*)} \rightarrow hH_3/H_3H_3 \quad (\propto \sin \theta_1)$

• Heavy VBF production & associated production:

Bhupal Dev (Washington U.)

Displaced photon signal

- Mixing angles $\sin \theta_{1,2}$ are constrained to be very small ($\lesssim 10^{-4}$) by the meson data.
- $H_3 \rightarrow \gamma \gamma$, highly collimated diphoton signal, dominated by the W_R loop, only suppressed by v_R .
- *H*₃ tends to be long-lived if it is light:

GeV mass $\Longrightarrow L_0 \simeq \mathrm{cm}$

$$100\,\mathrm{cm}\lesssim \left(rac{E_{H_3}}{m_{H_3}}
ight)L_0\lesssim 100\,\mathrm{m}$$

- Displaced vertex signal at the LHC.
- Lifetime frontier: MATHUSLA (MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles) [Chou, Curtin, Lubati (PLB '16)]

Expected LLP sensitivities

• LHC: Assuming 10 LLP signal events.

- MATHUSLA: Assuming 4 signal events (since virtually background-free).
 - Effective solid angle very small, $\lesssim 10\%$.
 - \circ "Thin"-disk-like compared to the decay length of \sim 100 m.
- Larger regions probable at FCC-hh and forward LLP detector therein.

Energy-Intensity frontier complementarity

The LLP searches at LHC and MATHUSLA (and future 100 TeV collider FCC-hh) are largely complementary to the meson limits from beam-dump (including SHiP)

- H₃ mass ranges complementary.
- Mixing angles sin θ_{1,2} complementary.
 (H₃ → γγ does not depend on sin θ_{1,2})

L-R seesaw sensitivity

Larger regions probable at FCC-hh and forward LLP detectors therein.

L-R seesaw sensitivity

Larger regions probable at FCC-hh and forward LLP detectors therein.

 $\gamma\gamma$ is no longer the dominant decay mode.

U(1) Sensitivity

Production can be through Z' portal or Higgs portal.

Constraints from Leptogenesis

[BD, Mohapatra, Zhang (NPB '17)]

light scalar in minimal left-right model

neutral component from $SU(2)_R$ -triplet

mixings to SM Higgs and flavor-changing heavy doublet are constrained to be small mostly decays into diphoton (through W_R loop)

long-lived particle (~ 0.1 to 10 GeV)

high intensity frontier SHiP: $B \rightarrow KH_3$, $H_3 \rightarrow \gamma\gamma$ $\begin{array}{c} \textbf{high energy frontier} \\ \textbf{LHC+MATHUSLA: LLP searches} \\ W_R^* \rightarrow H_3 W_R, \ H_3 \rightarrow \gamma \gamma \end{array}$

Testing the seesaw mechanism via the LLP searches (can be generalized to other $U(1)_{B-L}$ models)

A new probe of the origin of neutrino mass mechanism