

Anomalous Tau Neutrino Appearance in Short-Baseline Neutrino Experiments

Bhupal Dev

(bdev@wustl.edu)

Washington University in St. Louis

with **Bhaskar Dutta**, **Tao Han**, and **Doojin Kim**, arXiv:2304.02031.

CETUP* 2023

The Institute for Underground Science at SURF

July 12, 2023

Why single out the taus?

$$P_{\mu \to \tau} = \sin^2(2\theta_{23}) \sin^2 \left[1.267 \frac{\left(\frac{\Delta m_{23}^2}{\mathrm{eV}^2}\right) \left(\frac{L}{\mathrm{km}}\right)}{E/\mathrm{GeV}} \right]$$

$$P_{\mu \to \tau} = \sin^2(2\theta_{23}) \sin^2 \left[1.267 \frac{\left(\frac{\Delta m_{23}^2}{\mathrm{eV}^2}\right) \left(\frac{L}{\mathrm{km}}\right)}{E/\mathrm{GeV}} \right]$$

• At SBN experiments, L is too small for a beam of ν_{μ} to oscillate into ν_{τ} .

$$P_{\mu \to \tau} = \sin^2(2\theta_{23}) \sin^2 \left[1.267 \frac{\left(\frac{\Delta m_{23}^2}{\mathrm{eV}^2}\right) \left(\frac{L}{\mathrm{km}}\right)}{E/\mathrm{GeV}} \right]$$

- At SBN experiments, L is too small for a beam of ν_{μ} to oscillate into ν_{τ} .
- Production rate of D_s mesons is too small to give enough ν_{τ} events (from $D_s \rightarrow \tau \nu_{\tau}$).

$$P_{\mu \to \tau} = \sin^2(2\theta_{23}) \sin^2 \left[1.267 \frac{\left(\frac{\Delta m_{23}^2}{\mathrm{eV}^2}\right) \left(\frac{L}{\mathrm{km}}\right)}{E/\mathrm{GeV}} \right]$$

- At SBN experiments, L is too small for a beam of ν_{μ} to oscillate into ν_{τ} .
- Production rate of D_s mesons is too small to give enough ν_{τ} events (from $D_s \rightarrow \tau \nu_{\tau}$).
- Therefore, appearance of ν_{τ} events at SBN is *anomalous*.
- A 'smoking gun' signature of new physics (modulo background issues).

Popular mechanism: Sterile neutrinos

[from Alex Sousa's talk at NuTools Workshop (Dec 2022)]

Larger (smaller) Δm_{41}^2 corresponds to ND (FD)-dominated signal.

see also de Gouvêa, Kelly, Stenico, Pasquini, 1904.07265 (PRD '19)

A new mechanism for anomalous tau production

$$\pi^{\pm}/K^{\pm} \rightarrow \ell^{\pm}_{\ \nu_{\ell}} V \quad \text{with} \ V \rightarrow \nu_{\tau} \bar{\nu}_{\tau}$$

A new mechanism for anomalous tau production

(plus contributions from neutral mesons and proton bremsstrahlung, if V couples to quarks)

A new mechanism for anomalous tau production

(plus contributions from neutral mesons and proton bremsstrahlung, if V couples to quarks)

Motivation: V can serve as a portal to the dark sector

2209.04671

Why charged meson decay is important?

1. Large BR enhancement for 3-body decays.

Dutta, Kim, Thompson, Thornton, Van de Water, 2110.11944 (PRL '22)

2. Focusing of charged mesons can be used to enhance the BSM signal at ND.

2. Focusing of charged mesons can be used to enhance the BSM signal at ND.

Why charged meson decay is important?

3. Dominant (only) production channel for leptophilic dark-sector mediators.

- Otherwise difficult to search (e.g. by dark matter direct detection experiments).
- There exist several models for leptophilic U(1). See e.g. He, Joshi, Lew, Volkas (PRD '91); Araki, Heeck, Kubo (1203.4951); Farzan, Heeck (1607.07616); Farzan, Tortola (1710.09360); Chauhan, Xu (2012.09980); Chauhan, BD, Xu (2204.11876) (and references therein).

$$\mathcal{L}_{\mathrm{int}} \supset \sum_{f} g_V x_f V_\mu \bar{f} \gamma^\mu f \,.$$

We consider three cases for the vector mediator (to illustrate the effect of ν_{τ} appearance):

• Neutrinophilic: $x_f = 1$ for $f = \nu_e, \nu_\mu, \nu_\tau$, and $x_f = 0$ otherwise.

•
$$B - L$$
: $x_f = 1/3$ for $f =$ quarks, and $x_f = -1$ for $f =$ leptons.

• $B - 3L_{\tau}$: $x_f = 1/3$ for f = quarks, $x_f = -1$ for $f = \tau, \nu_{\tau}$ and $x_f = 0$ for e, μ, ν_e, ν_{μ} .

Take the appropriate $BR(V \rightarrow \nu_{\tau} \bar{\nu}_{\tau})$ in each case.

	DUNE ND-LAr	ICARUS-NuMI
	[2002.02967]	[1312.7252]
Beam energy	120 GeV	120 GeV
Dist. to dump	204 m	715 m
Dist. to detector	575 m	800 m
Detector angle	On axis	$\sim 6^{\circ}$ off-axis
Active volume	$2 \times 4 \times 5$	$2.96 \times 3.2 \times 18$
$(w \times h \times l) [\mathrm{m}^3]$	$3 \times 4 \times 3$	$(\times 2 \text{ modules})$
POT	2×10^{22}	10^{22}
Run-time	~ 20 years	~ 10 years

• For a massive V coupling to quarks, unknown form factors in the hadronic current:

$$T^{\mu\rho} = c_1 g^{\mu\rho} + c_2 (p_\ell + p_\nu)^\mu p_V^\rho + c_3 (p_\ell + p_\nu)^\rho p_V^\mu + c_4 (p_\ell + p_\nu)^\mu (p_\ell + p_\nu)^\rho + c_5 p_V^\mu p_V^\rho + F_V \epsilon^{\mu\rho\lambda\sigma} (p_\ell + p_\nu)_\lambda p_{V,\sigma} .$$

• Unlike massless case, where using Ward identities yields [Khodjamirian, Wyler, hep-ph/0111249]

$$\begin{aligned} c_1 + c_2(p_\ell + p_\nu) \cdot p_V &= f_\mathfrak{m}, \\ c_4(p_\ell + p_\nu) \cdot p_V &= f_\mathfrak{m}. \end{aligned}$$

• We choose two benchmark cases for illustration:

I:
$$c_1 = 0.1 \text{ GeV}, c_2 = c_4 = 10 \text{ GeV}^{-1},$$

II: $c_1 = 10^2 \text{ GeV}, c_2 = c_4 = 10^4 \text{ GeV}^{-1}.$

- F_V should be inferred from $\pi^+ \to e^+ \nu_e \gamma$ data [Bryman, Depommier, Leroy (Phy. Rep. '82); Donoghue, Golowich, Holstein (OUP '14)].
- Should not blindly use the photon form factors, as sometimes done in the literature [e.g. Chiang, Tseng, 1612.06985 (PLB '17)].

Background

- In real life, tau identification efficiency is not 100%.
- Neutrino energy threshold of 3.4 GeV.
- ν_{τ} events limited by statistics.
- Any mis-ID (from NC/CC) would cause backgrounds.
- But not so bad at FD.

[Machado, Schulz, Turner, 2007.00015 (PRD '20)]

Background

- In real life, tau identification efficiency is not 100%.
- Neutrino energy threshold of 3.4 GeV.
- ν_{τ} events limited by statistics.
- Any mis-ID (from NC/CC) would cause backgrounds.
- But not so bad at FD.

[Machado, Schulz, Turner, 2007.00015 (PRD '20)]

Background

- In real life, tau identification efficiency is not 100%.
- Neutrino energy threshold of 3.4 GeV.
- ν_{τ} events limited by statistics.
- Any mis-ID (from NC/CC) would cause backgrounds.
- But not so bad at FD.

[Machado, Schulz, Turner, 2007.00015 (PRD '20)]

Mode	beam	charge id	$N_{ m sig}$	$N_{ m bg}$	S/\sqrt{B}
$ au_{ m had}$	nominal	1	79	565	3.3
$ au_{ m had}$	nominal	×	83	731	3.1
$ au_{ m had}$	tau-optimized	1	433	2411	8.8
$ au_{ m had}$	tau-optimized	X	439	3077	7.9
τ_e	tau-optimized	×	63	33	11.0
τ_e	nominal	x	13	32	2.3

[see also Thomas Kosc's PhD Thesis, 2021 (Lyon)]

More difficult at Near Detector

More difficult at Near Detector

Background interaction products in the transverse plane

 ν_{τ} CC interaction products in the transverse plane

More difficult at Near Detector

the transverse plane

the transverse plane

[from Miriama Rajaoalisoa's talk at NuTau 2021]

ν_{τ} Selection Efficiency

ν_{τ} Selection Efficiency

v-philic vector mediator

B-L vector mediator [form factor parameter Choice I]

B-L vector mediator [form factor parameter Choice II]

B-3L₇ vector mediator [form factor parameter Choice I]

Conclusion

- Accelerator neutrino experiments are versatile and can probe light BSM physics.
- Charged meson decays provide an important BSM production channel for beam-focused SBN experiments.
- We used anomalous tau neutrino appearance at SBN detectors to probe light mediators.
- Sensitivity reach can be competitive (assuming that the background is under control).
- Let us hope that the future of dark (sector physics) is bright.

Conclusion

- Accelerator neutrino experiments are versatile and can probe light BSM physics.
- Charged meson decays provide an important BSM production channel for beam-focused SBN experiments.
- We used anomalous tau neutrino appearance at SBN detectors to probe light mediators.
- Sensitivity reach can be competitive (assuming that the background is under control).
- Let us hope that the future of dark (sector physics) is bright.

