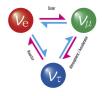


Pseudo-Dirac Neutrinos at IceCube

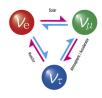
Bhupal Dev

Washington University in St. Louis

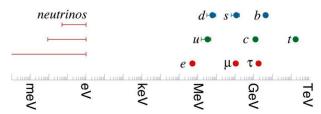

arXiv: 2212.00737 [astro-ph.HE]

with K. Carloni, I. Martínez-Soler, C. Argüelles, and K. S. Babu

CERN Neutrino Platform Pheno Week

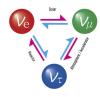

March 16, 2023

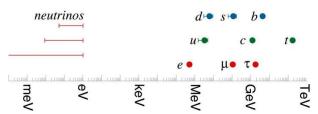
Nature of neutrino mass remains unknown!



 \Longrightarrow Nonzero Neutrino Mass \Longrightarrow BSM Physics

Nature of neutrino mass remains unknown!


⇒ Nonzero Neutrino Mass ⇒ BSM Physics

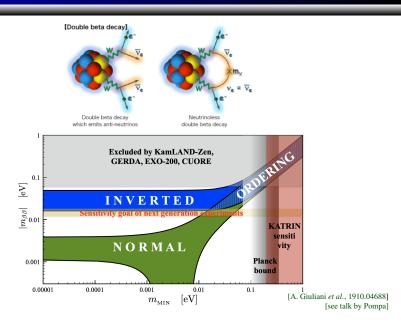

Perhaps something beyond the standard Higgs mechanism?

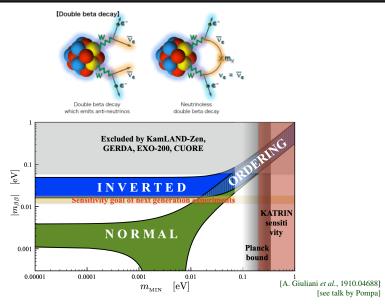
[see talk by Babu for a review]

Nature of neutrino mass remains unknown!

\Longrightarrow Nonzero Neutrino Mass \Longrightarrow BSM Physics

Perhaps something beyond the standard Higgs mechanism?


[see talk by Babu for a review]


Majorana or Dirac (or something in between)?

Only experiments can tell.

$0\nu\beta\beta$ experiments ... maybe?

$0\nu\beta\beta$ experiments ... maybe?

What if the Majorana mass is small?

- Neutrinos are massless in the SM, because
 - There are no right-handed partners to write the Dirac mass term $m_D \bar{\nu}_L \nu_R$.
 - $\bullet \,$ Majorana mass term $m_M \bar{\nu}^c_L \nu_L$ is forbidden by $SU(2)_L$ -gauge invariance.

- Neutrinos are massless in the SM, because
 - There are no right-handed partners to write the Dirac mass term $m_D \bar{\nu}_L \nu_R$.
 - Majorana mass term $m_M \bar{\nu}_L^c \nu_L$ is forbidden by $SU(2)_L$ -gauge invariance.
- Simplest possibility is to add Dirac partners ν_R (SM-singlets).
- Can allow for a Majorana mass term $m_R \bar{\nu}_R^c \nu_R$.
- Mass matrix (with multiple flavors):

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & m_R \end{pmatrix}.$$

- Neutrinos are massless in the SM, because
 - There are no right-handed partners to write the Dirac mass term $m_D \bar{\nu}_L \nu_R$.
 - Majorana mass term $m_M \bar{\nu}^c_L \nu_L$ is forbidden by $SU(2)_L$ -gauge invariance.
- Simplest possibility is to add Dirac partners ν_R (SM-singlets).
- Can allow for a Majorana mass term $m_R \bar{\nu}_R^c \nu_R$.
- Mass matrix (with multiple flavors):

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & m_R \end{pmatrix}.$$

- If $m_R = 0$, lepton number is preserved and neutrinos are **Dirac**.
- If $m_R \neq 0$, neutrinos are Majorana.
- If $||m_R|| \ll ||m_D||$, neutrinos are **pseudo-Dirac** with small active-sterile mass splitting and large mixing.

- Neutrinos are massless in the SM, because
 - There are no right-handed partners to write the Dirac mass term $m_D \bar{\nu}_L \nu_R$.
 - Majorana mass term $m_M \bar{\nu}_L^c \nu_L$ is forbidden by $SU(2)_L$ -gauge invariance.
- Simplest possibility is to add Dirac partners ν_R (SM-singlets).
- Can allow for a Majorana mass term $m_R \bar{\nu}_R^c \nu_R$.
- Mass matrix (with multiple flavors):

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & m_R \end{pmatrix}.$$

- If $m_R = 0$, lepton number is preserved and neutrinos are **Dirac**.
- If $m_R \neq 0$, neutrinos are Majorana.
- If $||m_R|| \ll ||m_D||$, neutrinos are **pseudo-Dirac** with small active-sterile mass splitting and large mixing.
- Isn't it more natural to have $||m_R|| \gg ||m_D||$, as motivated by the seesaw mechanism?

[Minkowski (PLB '77); Mohapatra, Senjanović (PRL '80); Yanagida '79; Gell-Mann, Ramond, Slansky '79]

[talks by Bolton, Marcano, Fernández-Martínez, Schmidt]

• Maybe, but $||m_R|| \ll ||m_D||$ remains a logical possibility.

[Wolfenstein (NPB '81); Petcov (PLB '82); Valle, Singer (PRD '83); Kobayashi, Lim (PRD '01)]

• A good starting point: Dirac neutrino models in which with m_D naturally small and $m_R = 0$ at renormalizable level, e.g. in **Dirac seesaw**.

[Roncadelli, Wyler (PLB '83); Roy, Shanker (PRL '84); Dick, Lindner, Ratz, Wright (PRL '00); Murayama, Pierce (PRL '02); Gu, He (JCAP '06); Joshipura, Mohanty, Pakvasa (PRD '14); Ma, Srivastava (PLB '15); Ma, Popov (PLB '17); ...]

• Global lepton number symmetry.

• A good starting point: Dirac neutrino models in which with m_D naturally small and $m_R = 0$ at renormalizable level, e.g. in **Dirac seesaw**.

[Roncadelli, Wyler (PLB '83); Roy, Shanker (PRL '84); Dick, Lindner, Ratz, Wright (PRL '00); Murayama, Pierce (PRL '02); Gu, He (JCAP '06); Joshipura, Mohanty, Pakvasa (PRD '14); Ma, Srivastava (PLB '15); Ma, Popov (PLB '17); ...]

- Global lepton number symmetry.
- Broken by quantum gravity corrections and a small m_R is induced.
- E.g., Weinberg operators of the type $(\Psi\Psi HH)/M_{\rm Pl}$ [and $(\Psi'\Psi'H'H')/M_{\rm Pl}$ in mirror models] induce small diagonal M_{ν} entries \Longrightarrow **Pseudo-Dirac neutrinos**.
- Gives $\delta m^2 \approx 2m\delta m \sim 10^{-6} \text{ eV}^2$ (for $m_a \simeq 0.05 \text{ eV}$).

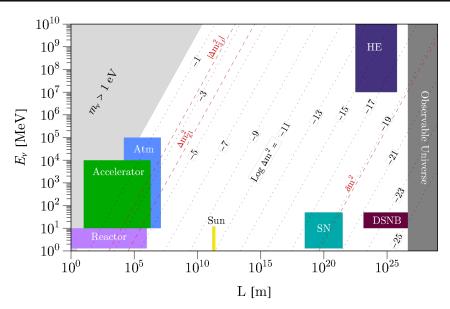
• A good starting point: Dirac neutrino models in which with m_D naturally small and $m_R=0$ at renormalizable level, e.g. in **Dirac seesaw**.

[Roncadelli, Wyler (PLB '83); Roy, Shanker (PRL '84); Dick, Lindner, Ratz, Wright (PRL '00); Murayama, Pierce (PRL '02); Gu, He (JCAP '06); Joshipura, Mohanty, Pakvasa (PRD '14); Ma, Srivastava (PLB '15); Ma, Popov (PLB '17); ...]

- Global lepton number symmetry.
- ullet Broken by quantum gravity corrections and a small m_R is induced.
- E.g., Weinberg operators of the type $(\Psi \Psi H H)/M_{\rm Pl}$ [and $(\Psi' \Psi' H' H')/M_{\rm Pl}$ in mirror models] induce small diagonal M_{ν} entries \Longrightarrow **Pseudo-Dirac neutrinos**.
- Gives $\delta m^2 \approx 2m\delta m \sim 10^{-6} \text{ eV}^2$ (for $m_a \simeq 0.05 \text{ eV}$).
- But excluded by BBN and solar neutrino constraints.

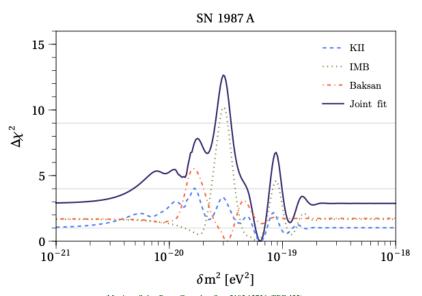
$$\delta m^2 \lesssim 10^{-8}~{\rm eV^2~from~BBN,~[Barbieri,~Dolgov~(PLB~'90)]}$$

$$10^{-11}~{\rm eV^2~from~solar.~[de~Gouvêa,~Huang,~Jenkins,~0906.1611~(PRD~'09);~Ansarifard,~Farzan,~2211.09105]}$$

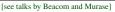

- An alternative is to gauge B L.
- Introduce a singlet scalar S carrying two units of B-L.
- Lowest-order quantum gravity corrections are of the form $(\Psi \Psi HHS)/M_{\rm Pl}^2$.
- For $\langle S \rangle = v_{BL}$, leads to diagonal elements of M_{ν} of order $v^2 v_{BL}/M_{\rm Pl}^2$.
- For $v_{BL} = (10^4 10^{14}) \text{ GeV}$, generates $\delta m^2 \sim (10^{-22} 10^{-12}) \text{ eV}^2$.
- Consistent with solar neutrino data. ©

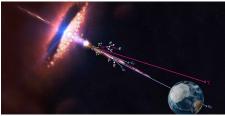
- An alternative is to gauge B L.
- Introduce a singlet scalar S carrying two units of B-L.
- Lowest-order quantum gravity corrections are of the form $(\Psi \Psi HHS)/M_{\rm Pl}^2$.
- For $\langle S \rangle = v_{BL}$, leads to diagonal elements of M_{ν} of order $v^2 v_{BL}/M_{\rm Pl}^2$.
- For $v_{BL} = (10^4 10^{14}) \text{ GeV}$, generates $\delta m^2 \sim (10^{-22} 10^{-12}) \text{ eV}^2$.
- Consistent with solar neutrino data. ©
- Another example is left-right symmetry-based model with universal seesaw, where δm^2 depends on both the $SU(2)_R$ and B-L breaking scales. [Babu, He, Su, Thapa, 2205.09127 (JHEP '22)]
- Any model of Dirac neutrinos with Planck-suppressed operators would predict pseudo-Dirac neutrinos.

- An alternative is to gauge B L.
- Introduce a singlet scalar S carrying two units of B-L.
- Lowest-order quantum gravity corrections are of the form $(\Psi \Psi HHS)/M_{\rm Pl}^2$.
- For $\langle S \rangle = v_{BL}$, leads to diagonal elements of M_{ν} of order $v^2 v_{BL}/M_{\rm Pl}^2$.
- For $v_{BL} = (10^4 10^{14}) \text{ GeV}$, generates $\delta m^2 \sim (10^{-22} 10^{-12}) \text{ eV}^2$.
- Consistent with solar neutrino data. ©
- Another example is left-right symmetry-based model with universal seesaw, where δm^2 depends on both the $SU(2)_R$ and B-L breaking scales. [Babu, He, Su, Thapa, 2205.09127 (JHEP '22)]
- Any model of Dirac neutrinos with Planck-suppressed operators would predict pseudo-Dirac neutrinos.


How to probe these tiny δm^2 values?

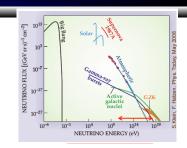
Need astrophysical baselines

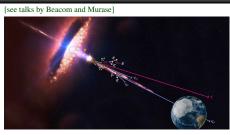

Beacom, Bell, Hooper, Learned, Pakvasa, Weiler, 0307151 (PRL '04); Martínez-Soler, Perez-Gonzalez, Sen, 2105.12736 (PRD '22)

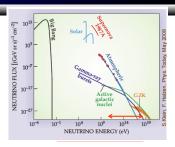

Constraint from supernova neutrinos

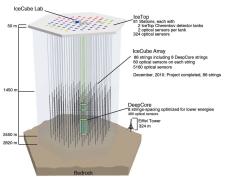
Martinez-Soler, Perez-Gonzalez, Sen, 2105.12736 (PRD '22)

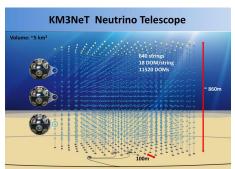
Astrophysical neutrinos

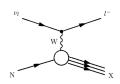



ç

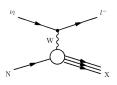

Astrophysical neutrinos



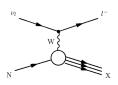

Astrophysical neutrinos



Need gigantic detectors to compensate for the tiny flux.

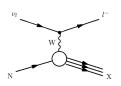


$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

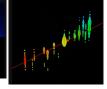

$$u_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

CC EM/NC all (shower)

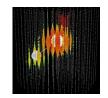
$$u_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$



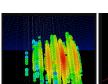
CC EM/NC all (shower)


CC Muon (track)

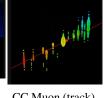
$$u_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$



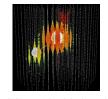
CC EM/NC all (shower)

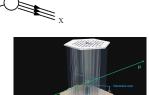


CC Muon (track)



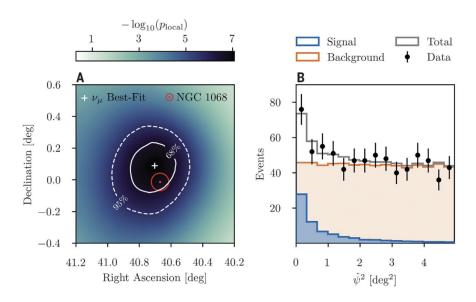
CC tau 'double bang' (only at $E_{\nu} \gtrsim 100~{\rm TeV})$


$$\nu_{\ell} + N \rightarrow \begin{cases} \ell + X & (CC) \\ \nu_{\ell} + X & (NC) \end{cases}$$

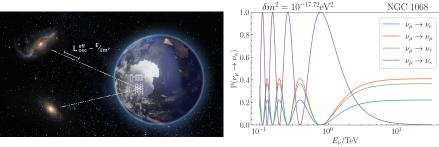

CC EM/NC all (shower)

CC Muon (track)

CC tau 'double bang' (only at $E_{\nu} \gtrsim 100~{\rm TeV})$

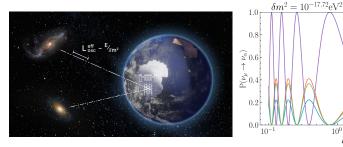


Throughgoing muon (track only, huge statistics)


[Picture courtesy: C. Kopper]

Showers: Good energy resolution, but poor angular resolution **Tracks:** Excellent angular resolution ($< 1^{\circ}$), modest energy resolution

Track events are ideal for astrophysical source identification.



Carloni, Martínez-Soler, Argüelles, Babu, BD, 2212.00737

• Oscillation probability:

$$P_{\alpha\beta} = \frac{1}{2} \sum_{j=1}^{3} |U_{\beta j}|^2 |U_{\alpha j}|^2 \left[1 + \cos \left(\frac{\delta m_j^2 L_{\text{eff}}}{2E_{\nu}} \right) \right],$$

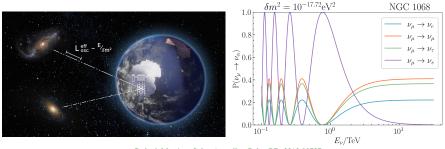
with
$$L_{\mathrm{eff}}=\int \frac{dz}{H(z)(1+z)^2}$$
 and $H(z)=H_0\sqrt{\Omega_m(1+z)^3+\Omega_\Lambda+(1-\Omega_m-\Omega_\Lambda)(1+z)^2}.$

Carloni, Martínez-Soler, Argüelles, Babu, BD, 2212.00737

Oscillation probability:

$$P_{\alpha\beta} = \frac{1}{2} \sum_{j=1}^{3} |U_{\beta j}|^2 |U_{\alpha j}|^2 \left[1 + \cos\left(\frac{\delta m_j^2 L_{\text{eff}}}{2E_{\nu}}\right) \right],$$

with
$$L_{\mathrm{eff}}=\int \frac{dz}{H(z)(1+z)^2}$$
 and $H(z)=H_0\sqrt{\Omega_m(1+z)^3+\Omega_\Lambda+(1-\Omega_m-\Omega_\Lambda)(1+z)^2}.$


• Typical oscillation length: $L_{\rm osc} = \frac{2E_{\nu}}{\delta m^2} \approx 6.4 \ {\rm Mpc} \left(\frac{E_{\nu}}{1 \ {\rm TeV}}\right) \left(\frac{2 \times 10^{-18} \ {\rm eV}^2}{\delta m^2}\right)$.

12

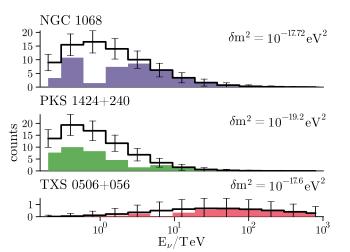
NGC 1068

 10^{1}

 E_{**}/TeV

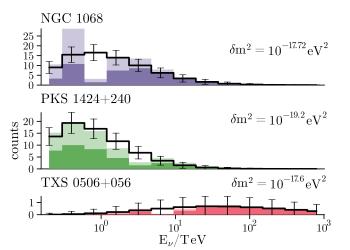
Carloni, Martínez-Soler, Argüelles, Babu, BD, 2212.00737

Oscillation probability:


$$P_{\alpha\beta} = \frac{1}{2} \sum_{i=1}^{3} |U_{\beta j}|^2 |U_{\alpha j}|^2 \left[1 + \cos \left(\frac{\delta m_j^2 L_{\rm eff}}{2E_{\nu}} \right) \right],$$

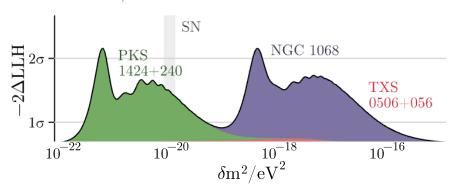
with
$$L_{\mathrm{eff}}=\int \frac{dz}{H(z)(1+z)^2}$$
 and $H(z)=H_0\sqrt{\Omega_m(1+z)^3+\Omega_\Lambda+(1-\Omega_m-\Omega_\Lambda)(1+z)^2}.$

- Typical oscillation length: $L_{\rm osc} = \frac{2E_{\nu}}{\delta m^2} \approx 6.4 \, {\rm Mpc} \left(\frac{E_{\nu}}{1 \, {\rm TeV}} \right) \left(\frac{2 \times 10^{-18} \, {\rm eV}^2}{\delta m^2} \right)$.
- Typical coherence length: [Kersten, Smirnov, 1512.09068 (EPJC '16); Rink, Sen, 2211.16520] $L_{\rm coh} = \frac{4\sqrt{2}E_{\nu}^{2}}{|\delta m^{2}|} \approx 10^{10} \; {\rm Mpc} \left(\frac{E_{\nu}}{1 \; {\rm TeV}}\right)^{2} \left(\frac{2\times 10^{-18} \; {\rm eV}^{2}}{|\delta m^{2}|}\right) \left(\frac{\sigma_{x}}{10^{-10} \; {\rm m}}\right) \gg L_{\rm osc}.$


Event Distributions

Source	Source Type	$-\log_{10} p_{\mathrm{local}}$	\hat{n}_s	$\hat{\gamma}$	z
NGC 1068	SBG/AGN	$7.0 (5.2\sigma)$	79	3.2	0.0038 (16 Mpc)
PKS 1424+240	BLL	$4.0 \ (3.7\sigma)$	77	3.5	0.6047 (2.6 Gpc)
TXS 0506+056	BLL/FSRQ	$3.6 (3.5\sigma)$	5	2.0	0.3365 (1.4 Gpc)

Event Distributions


Source	Source Type	$-\log_{10} p_{\mathrm{local}}$	\hat{n}_s	$\hat{\gamma}$	z
NGC 1068	SBG/AGN	$7.0 (5.2\sigma)$	79	3.2	0.0038 (16 Mpc)
PKS 1424+240	BLL	$4.0 \ (3.7\sigma)$	77	3.5	0.6047 (2.6 Gpc)
TXS 0506+056	BLL/FSRQ	$3.6 (3.5\sigma)$	5	2.0	0.3365 (1.4 Gpc)

IceCube constraints on δm^2

Source	Source Type	$-\log_{10}p_{\mathrm{local}}$	\hat{n}_s	$\hat{\gamma}$	z
NGC 1068	SBG/AGN	$7.0 (5.2\sigma)$	79	3.2	0.0038 (16 Mpc)
PKS 1424+240	BLL	$4.0 \ (3.7\sigma)$	77	3.5	0.6047 (2.6 Gpc)
TXS 0506+056	BLL/FSRQ	$3.6 (3.5\sigma)$	5	2.0	0.3365 (1.4 Gpc)

IceCube, current

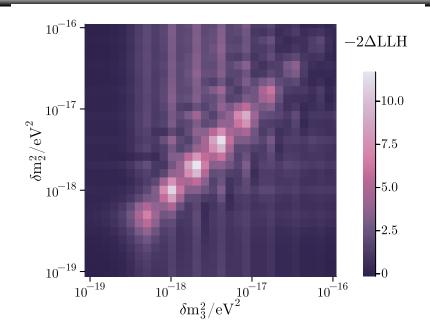
Future IceCube-Gen2 sensitivity

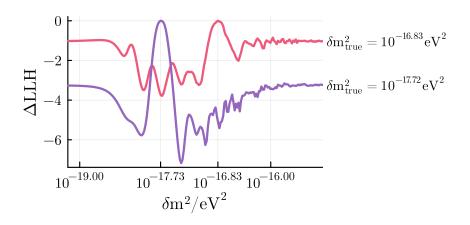
Source	Source Type	$-\log_{10} p_{local}$	\hat{n}_s	Ŷ	z
NGC 1068	SBG/AGN	7.0	79	3.2	0.0038
PKS 1424+240	BLL	4.0	77	3.5	0.6047
TXS 0506+056	BLL/FSRQ	3.6	5	2.0	0.3365
S5 1044+71	FSRQ	1.3	45	4.3	1.1500
IC 678	GAL	0.9	22	3.1	0.04799 ± 0.00002
NGC 5380	GAL	0.9	4	2.4	0.010584
B2 1520+31	FSRQ	1.0	35	4.3	1.48875
PKS 1717+177	BLL	1.0	34	4.3	0.137
3C 454.3	FSRQ	1.2	1	1.5	0.859

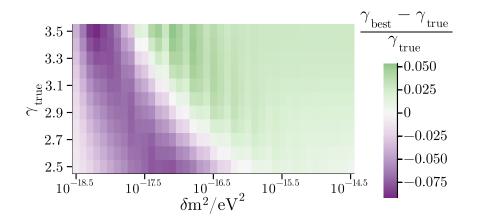
IceCube-Gen2, projected

- The nature of neutrino mass (Majorana, Dirac, or pseudo-Dirac) has to be experimentally determined.
- We proposed a new experimental probe of pseudo-Diracness of neutrinos using astrophysical baselines.
- Made possible by recent breakthroughs in multi-messenger neutrino astrophysics.
- Current IceCube data on the three most significant astrophysical neutrino sources already constrain δm^2 in the range of $10^{-20}-10^{-16}~{\rm eV}^2$ with up to 2σ significance.
- Including additional sources and assuming more statistics at IceCube-Gen2, a larger range of δm^2 can be probed in the future.
- Modification of flavor ratios is a promising way to probe distinct mass splittings.
 [Keranen, Maalampi, Myyrylainen, Riittinen, 0307041 (PLB '03); Beacom, Bell, Hooper, Learned, Pakvasa, Weiler, 0307151 (PRL
 - '04); Shoemaker, Murase, 1512.07228 (PRD '16)]

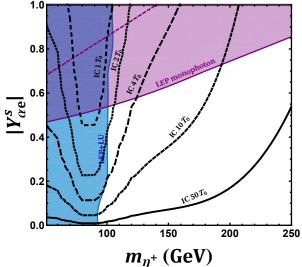
Conclusion


- The nature of neutrino mass (Majorana, Dirac, or pseudo-Dirac) has to be experimentally determined.
- We proposed a new experimental probe of pseudo-Diracness of neutrinos using astrophysical baselines.
- Made possible by recent breakthroughs in multi-messenger neutrino astrophysics.
- Current IceCube data on the three most significant astrophysical neutrino sources already constrain δm^2 in the range of $10^{-20}-10^{-16}~{\rm eV}^2$ with up to 2σ significance.
- Including additional sources and assuming more statistics at IceCube-Gen2, a larger range of δm^2 can be probed in the future.
- Modification of flavor ratios is a promising way to probe distinct mass splittings.
 [Keranen, Maalampi, Myyrylainen, Riittinen, 0307041 (PLB '03); Beacom, Bell, Hooper, Learned, Pakvasa, Weiler, 0307151 (PRL


'04); Shoemaker, Murase, 1512.07228 (PRD '16)]


Thank You.

Sensitivity to distinct mass splittings



With additional sterile interactions

- Consider $SU(2)_L$ -singlet charged scalars, $\mathcal{L} \supset Y^s_{\alpha\beta}\overline{\nu^c_{s\alpha}}\eta^+\ell_{\beta R} + \text{H.c.}$.
- Glashow-like new resonance at IceCube: $\bar{\nu}_{s\alpha}e_R \to \eta^+$.

