Perturbativity constraints in $U(1)_{B-L}$ and Left-Right Models

Garv Chauhan Washington University in St. Louis

Particle Physics on the Plains University of Kansas Oct 14, 2018

In collaboration with P.S.B Dev, R.N Mohapatra & Y. Zhang (arXiv: 1810.xxxxx)

- Introduction & Motivation
- Theoretical Constraints
- Bounds in $U(1)_{B-L}$ model
- Bounds in Minimal LRSM
- Conclusions

• The Standard Model(SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.

- The Standard Model(SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.
- From experimental point of view, interesting to look at prospects of new physics at TeV scale, to be probed by current and planned future experiments.

- The Standard Model(SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.
- From experimental point of view, interesting to look at prospects of new physics at TeV scale, to be probed by current and planned future experiments.
- Many TeV scale extensions introduce extended gauge groups like extra $U(1){\rm 's}~{\rm or}~SU(2)\times U(1).$

- The Standard Model(SM) has been highly successful but needs extension to include new physics such as tiny neutrino masses, DM and baryon asymmetry.
- From experimental point of view, interesting to look at prospects of new physics at TeV scale, to be probed by current and planned future experiments.
- Many TeV scale extensions introduce extended gauge groups like extra $U(1){\rm 's}~{\rm or}~SU(2)\times U(1).$
- Our results apply to a subclass of these gauge extensions of SM, where the generators of the extra gauge groups contribute to the electric charge.

• In such cases, there are upper and lower limits on the gauge couplings by requiring perturbativity upto GUT scale.

- In such cases, there are upper and lower limits on the gauge couplings by requiring perturbativity upto GUT scale.
- The motivation is to embed the TeV-scale gauge extension into a larger gauge symmetry at GUT scale.

- In such cases, there are upper and lower limits on the gauge couplings by requiring perturbativity upto GUT scale.
- The motivation is to embed the TeV-scale gauge extension into a larger gauge symmetry at GUT scale.
- We'll specifically focus on $U(1)_{B-L}$ & minimal LRSM, and discuss the implications for gauge boson searches.

• Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

$$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$

• Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

$$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$

• Then following relation holds:

$$\frac{1}{g_Y^2} = \frac{1}{g_X^2} + \frac{1}{g_Z^2}$$

• Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

$$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$

• Then following relation holds:

$$\frac{1}{g_Y^2} = \frac{1}{g_X^2} + \frac{1}{g_Z^2} \quad \leftarrow \text{This holds even if coupling } g_X \text{ is SU(2)}$$

• Consider a SM extension: $SU(2)_L \times U(1)_X \times U(1)_Z$ such that:

$$Q = I_{3L} + I_X + \frac{Q_Z}{2}$$

• Then following relation holds:

$$\frac{1}{g_Y^2} = \frac{1}{g_X^2} + \frac{1}{g_Z^2} \quad \leftarrow \text{ This holds even if coupling } g_X \text{ is SU(2)}$$

• Then requiring that coupling g_Z is perturbative at breaking scale,

$$\Rightarrow \quad \left| r_g \equiv \frac{g_X}{g_L} > \tan \theta_W \left(1 - \frac{4\pi}{g_Z^2} \frac{\alpha_{EM}}{\cos^2 \theta_W} \right)^{-1/2} \right.$$

• Particle content of the $SU(2)_L \times U(1)_{I_{3R}} \times U(1)_{B-L}$ model:

	$SU(2)_L$	$U(1)_{I_{3R}}$	$U(1)_{B-L}$
Q	2	0	$\frac{1}{3}$
u_R	1	$+\frac{1}{2}$	$\frac{1}{3}$
d_R	1	$-\frac{1}{2}$	$\frac{1}{3}$
L	2	0	-1
N	1	$+\frac{1}{2}$	-1
e_R	1	$-\frac{1}{2}$	-1
H	2	$-\frac{1}{2}$	0
Δ_R	1	$-\overline{1}$	2

• Particle content of the $SU(2)_L \times U(1)_{I_{3R}} \times U(1)_{B-L}$ model:

	$SU(2)_L$	$U(1)_{I_{3R}}$	$U(1)_{B-L}$
Q	2	0	$\frac{1}{3}$
u_R	1	$+\frac{1}{2}$	$\frac{1}{3}$
d_R	1	$-\frac{1}{2}$	$\frac{1}{3}$
L	2	0	-1
N	1	$+\frac{1}{2}$	-1
e_R	1	$-\frac{1}{2}$	-1
H	2	$-\frac{1}{2}$	0
Δ_R	1	-1	2

 $\bullet\,$ The RGEs for the gauge couplings of the two U(1) 's are respectively

$$16\pi^2\beta(g_{I_{3R}}) = \frac{9}{2}g^3_{I_{3R}}, \quad 16\pi^2\beta(g_{BL}) = 3g^3_{BL}$$

$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Gauge Couplings)

$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Gauge Couplings)

$SU(2)_L \times U(1)_{I3R} \times U(1)_{B-L}$ (Gauge Couplings)

 $0.398 < g_R < 0.768; \quad 0.416 < g_{BL} < 0.931, \text{ with } 0.631 < r_g < 1.218$

at $v_R = 5$ TeV

Minimal LRSM

• Particle content of the minimal LRSM based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$:

 $\bullet\,$ The RGEs for the gauge couplings in the minimal LRSM are 1

$$16\pi^{2}\beta(g_{L}) = -3 g_{L}^{3},$$

$$16\pi^{2}\beta(g_{R}) = -\frac{7}{3} g_{R}^{3},$$

$$16\pi^{2}\beta(g_{BL}) = \frac{11}{3} g_{BL}^{3}$$

¹I. Z. Rothstein, Nucl. Phys. B358, 181 (1991)

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Gauge Couplings)

 $0.406 < g_R < \sqrt{4\pi};$ $0.369 < g_{BL} < 0.857,$ with $0.648 < r_g < 5.65$ at $v_R =$ 10 TeV

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Scalar sector)

$SU(2)_L \times SU(2)_R \times \overline{U(1)_{B-L}}$ (Scalar sector)

15 / 19

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (Z_R and W_R searches)

(arXiv: 1803.11116)

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (v_R bound)

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ (v_R bound)

• There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.

- There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
- $\bullet~{\rm For}~U(1)_{B-L}$ model, we found that it can be probed(almost) at HL-LHC for v_R at 5 TeV .

- There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
- $\bullet~{\rm For}~U(1)_{B-L}$ model, we found that it can be probed(almost) at HL-LHC for v_R at 5 TeV .
- For minimal LRSM, we found W_R and Z_R couldn't have been seen at LHC13.

- There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
- $\bullet~{\rm For}~U(1)_{B-L}$ model, we found that it can be probed(almost) at HL-LHC for v_R at 5 TeV .
- For minimal LRSM, we found W_R and Z_R couldn't have been seen at LHC13.
- In case, Z_R is found in HL-LHC run then couldn't be from minimal LRSM.

- There are strong limits on the gauge couplings from the requirement to be perturbative till the GUT scale.
- \bullet For $U(1)_{B-L}$ model, we found that it can be probed(almost) at HL-LHC for v_R at 5 TeV .
- For minimal LRSM, we found W_R and Z_R couldn't have been seen at LHC13.
- In case, Z_R is found in HL-LHC run then couldn't be from minimal LRSM.
- The results can be generalized to other gauge group extensions.