Deep learning techniques for Imaging Air Cherenkov Telescopes arXiv: 2206.05296

Writasree Maitra *m.writasree@wustl.edu*

Particle Physics on the Plains October 22, 2022

Writasree Maitra

Brief Overview of Cosmic Ray

- Brief Overview of Cosmic Ray
- Detectors and their search strategies

- Brief Overview of Cosmic Ray
- Detectors and their search strategies
- Motivation and Objective

- Brief Overview of Cosmic Ray
- Detectors and their search strategies
- Motivation and Objective
- Convolutional Neural Network and Autoencoder

- Brief Overview of Cosmic Ray
- Detectors and their search strategies
- Motivation and Objective
- Convolutional Neural Network and Autoencoder
- Methodology and Result

Cosmic Ray Flux

^aMALCOLM S. LONGAIR. High Energy Astrophysics. Cambridge University Press, 2011

Writasree Maitra

Deep learning techniques for IACTs

Cosmic Ray Flux

^aMALCOLM S. LONGAIR. High Energy Astrophysics. Cambridge University Press, 2011

Detectors and their search strategies

Detectors and their search strategies

- Direct and indirect detection.
- Cherenkov detectors: The current generation of IACT used in the experiments - MAGIC and VERITAS in northern hemisphere and HESS and CANGAROO in southern hemisphere.

Detectors and their search strategies

- Direct and indirect detection.
- Cherenkov detectors: The current generation of IACT used in the experiments - MAGIC and VERITAS in northern hemisphere and HESS and CANGAROO in southern hemisphere.

Motivation

• All the shower images have a pattern.

Figure: Generated telescopic images of air shower initiated by (a) γ , (b) proton and (c) helium.

Motivation

• All the shower images have a pattern.

Figure: Generated telescopic images of air shower initiated by (a) γ , (b) proton and (c) helium.

• Machine learning techniques can be used to extract those patterns.

Objective

· First, we'll predict the primary particle from shower images using CNN

Objective

- First, we'll predict the primary particle from shower images using CNN
- Second, we'll use an anomaly finder algorithm to detect new physics signature in the shower images

Convolutional Neural Network

Building blocks of CNN-

- Convolutional Layer (filters and feature maps)
- Pooling Layer
- Fully Connected Layer

Figure: A typical CNN architecture¹.

¹ Hands-On Machine Learning with Scikit-Learn and TensorFlow, Geron, Aurelien

Autoencoder (used as anomaly finder)

Figure: Schematic representation of an autoencoder architecture

- Autoencoder reconstructs an image.
- On the basis of the extent of reconstruction, we can use it as an anomaly finder.

Common methodology

Fixing primary particle type, its energy, zenith angle of the shower etc in the CORSIKA input card

Remapping

(a) Non-remapped γ shower image

(b) Remapped γ shower image

Remapping

(a) Non-remapped γ shower image

(a) Non-remapped Z' shower image

(b) Remapped γ shower image

(b) Remapped Z' shower image

Results - part I

Results - part I

Source of figure 8b:- Heinrich J. Vlk and Konrad Bernlhr. Imaging Very High Energy Gamma-Ray Telescopes. Exper. Astron., 25:173–191, 2009

Results - part I (continued)

Binary Classification

Classification	Accuracy			
Olassification	Training	Validation	Testing	
$\gamma-$ proton	0.997	0.996	0.991	
$\gamma-$ helium	0.995	0.996	0.997	
$\gamma-$ carbon	0.998	0.999	0.998	
proton-helium	0.787	0.764	0.781	
proton-carbon	0.967	0.948	0.934	
helium-carbon	0.856	0.842	0.847	

Table: Training, validation, and testing set accuracy scores for different pairs of SM primaries using our trained binary classifiers.

Results - part I (continued)

Multilabel Classification

		Predicted Labels			
		γ	proton	helium	carbon
Actual Labels	γ	985	15	0	0
	proton	4	764	208	24
	helium	0	231	564	205
	carbon	0	4	125	871

Table: The confusion matrix for γ -proton-helium-carbon classification computed on the testing data set.

Results - part II

Anomaly detection

Summary

- Every shower image has a particular pattern.
- In our work, we have used Convolutional Neural Network for binary and multi category classification between cosmic showers initiated by different primary nuclei.
- Cosmic ray spectrum extends over a huge range of energies. They provide access to highly energetic phenomena which are not yet accessable at terrestrial experiments like LHC.
- We have proposed the utilization of auto encoders to probe exotic BSM events in the cosmic showers.

Summary

- Every shower image has a particular pattern.
- In our work, we have used Convolutional Neural Network for binary and multi category classification between cosmic showers initiated by different primary nuclei.
- Cosmic ray spectrum extends over a huge range of energies. They provide access to highly energetic phenomena which are not yet accessable at terrestrial experiments like LHC.
- We have proposed the utilization of auto encoders to probe exotic BSM events in the cosmic showers.

Thanks to my collaborators

Prof. Vikram Rentala, Prof. Arun M. Thalapillil and Songshaptak De.

Summary

- Every shower image has a particular pattern.
- In our work, we have used Convolutional Neural Network for binary and multi category classification between cosmic showers initiated by different primary nuclei.
- Cosmic ray spectrum extends over a huge range of energies. They provide access to highly energetic phenomena which are not yet accessable at terrestrial experiments like LHC.
- We have proposed the utilization of auto encoders to probe exotic BSM events in the cosmic showers.

Thanks to my collaborators

Prof. Vikram Rentala, Prof. Arun M. Thalapillil and Songshaptak De.

Thank you :)