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Cosmic Ray Flux
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Cosmic Ray Flux
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Figure: Cosmic ray flux as a function of energy 2
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Detectors and their search strategies
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Detectors and their search strategies

e Direct and indirect detection.

e Cherenkov detectors:
The current generation of IACT
used in the experiments - MAGIC
and VERITAS in northern
hemisphere and HESS and
CANGAROQO in southern
hemisphere.

Writasree Maitra Deep learning techniques for IACTs October 22, 2022 4/15


https://www.mpi-hd.mpg.de/hfm/HESS/pages/about/pictures/HESS_IMG/images/HESS-dark-full.jpg
https://www.mpi-hd.mpg.de/hfm/HESS/pages/about/pictures/HESS_IMG/images/HESS-dark-full.jpg

Detectors and their search strategies

e Direct and indirect detection.
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Motivation

e All the shower images have a pattern.

(a) (b) (©)

Figure: Generated telescopic images of air shower initiated by (a) ~, (b) proton
and (c) helium.
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Motivation

e All the shower images have a pattern.

(a) (b) (©)

Figure: Generated telescopic images of air shower initiated by (a) ~, (b) proton
and (c) helium.

* Machine learning techniques can be used to extract those patterns.
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Objective

® First, we’'ll predict the primary particle from shower images using CNN
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Objective

¢ First, we’'ll predict the primary particle from shower images using CNN

e Second, we’ll use an anomaly finder algorithm to detect new physics
signature in the shower images
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Convolutional Neural Network

Building blocks of CNN-

e Convolutional Layer ( filters and feature maps )

® Pooling Layer
e Fully Connected Layer

1

Input Convolution Pooling Convolution Pooling Fully connected

Figure: A typical CNN architecture’.

1 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Geron,Aurelien
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Autoencoder (used as anomaly finder)

x Encoder
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Figure: Schematic representation of an autoencoder architecture

e Autoencoder reconstructs an image.
¢ On the basis of the extent of reconstruction, we can use it as an anomaly

finder.
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Common methodology

Fixing primary particle type, its energy, zenith angle of the shower etc in the CORSIKA input card

llnput Card

CORSIKA

Simulated air-shower data

sim_telarray

Telescope specific data

ctapipe

Telescopic image of air shower

Neural Network model
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Remapping

a) Non-remapped v shower image b) Remapped ~ shower image
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Remapping

(a) Non-remapped ~ shower image (b) Remapped ~ shower image

(a) Non-remapped Z' shower image (b) Remapped Z’' shower image
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Results - part |
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Source of figure 8b:- Heinrich J. VIk and Konrad Bernihr. Imaging Very High Energy Gamma-Ray
Telescopes. Exper. Astron., 25:173-191, 2009
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Results - part | (continued)

Binary Classification

Classification — A.ccu.r acy .
Training Validation Testing

~y—proton 0.997 0.996 0.991
~v—helium 0.995 0.996 0.997
~—carbon 0.998 0.999 0.998
proton-helium 0.787 0.764 0.781
proton-carbon 0.967 0.948 0.934
helium-carbon 0.856 0.842 0.847

Table: Training, validation, and testing set accuracy scores for different pairs of SM
primaries using our trained binary classifiers.
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Results - part | (continued)

Multilabel Classification

Predicted Labels
~v | proton | helium | carbon
—w ~y 985 15 0 0
S |proton | 4 | 764 | 208 24
< % | helum | 0 231 564 205
carbon | 0 4 125 871

Table: The confusion matrix for v-proton-helium-carbon classification computed on the

testing data set.
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Results - part Il

Anomaly detection
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Summary

e Every shower image has a particular pattern.

¢ |n our work, we have used Convolutional Neural Network for binary and
multi category classification between cosmic showers initiated by different
primary nuclei.

e Cosmic ray spectrum extends over a huge range of energies. They
provide access to highly energetic phenomena which are not yet
accessable at terrestrial experiments like LHC.

* We have proposed the utilization of auto encoders to probe exotic BSM
events in the cosmic showers.
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Thanks to my collaborators
Prof. Vikram Rentala, Prof. Arun M. Thalapillil and Songshaptak De. }
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Thank you :)
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