

Lepton flavor violation induced by a neutral scalar at future lepton colliders

Yongchao Zhang Washington University in St. Louis

March 17, 2018, UIUC 5th Annual PIKIO Meeting

based on

Bhupal Dev, Mohapatra & YCZ, 1711.08430 Lepton Flavor Violation Induced by a Neutral Scalar at Future Lepton Colliders Bhupal Dev, Mohapatra & YCZ, 18xy.abcde Probing TeV scale origin of Neutrino Masses at lepton colliders

Outline

- Motivations
- Effective LFV couplings of a (light) BSM neutral scalar H
- On-shell production of H at CEPC & ILC
- Off-shell production of H at CEPC & ILC
- Prospects and discussions

Motivation: LFV beyond SM

ullet muon g-2 [Carena, Giudice, Wagner '96; Raidal+ '08; Wolfgang Altmannshofer, Carena, Crivellin '16]

H: beyond SM scalar

neutrino mass generation [Dreiner, Nickel, Staub+ '12; de Gouvea, P. Vogel '13;
 Vicente '15; Lindner, Platscher, Queiroz '16]

charged LFV is always connected to neutrino mass generation by beyond SM scalars.

see also Altmannshofer, Gori Kagan+ '15; Altmannshofer, Eby, Gori '16

charged LFV beyond SM & lepton colliders

- The LFV couplings of the SM Higgs h, e.g. $y_{\mu\tau}$; [Blankenburg, Ellis, Isidori '12; Harnik, Kopp, Zupan '12]
- Beyond SM doubly-charged scalars $H^{\pm\pm}$, e.g. from type-II seesaw; [Fileviez Perez, Han, Huang+ '08; Rentala, Shepherd, Su '11; King, Merle, Panizzi '14]
- Beyond SM (light) neutral scalar H with LFV couplings $h_{\alpha\beta}$
- Beyond SM neutral scalar:

its mass & the LFV couplings: model-dependent...

• The most efficient way to probe the LFV couplings:

future lepton colliders, like CEPC, ILC, FCC-ee, CLIC

if the beyond scalar H is hadrophobic and does not mixing sizably with the SM Higgs.

Well-motivated underlying models

RPV SUSY: LFV couplings of sneutrino to the charged leptons
 [Aulakh, Mohapatra '82; Hall, Suzuki '84; Ross, Valle '85, Barbier+ '04; Duggan, Evans,
 Hirschauer '13]

$$\mathcal{L}_{\mathrm{RPV}} \; = \; \frac{1}{2} \lambda_{\alpha\beta\gamma} \widehat{L}_{\alpha} \widehat{L}_{\beta} \widehat{E}_{\gamma}^{c}$$

Left-right symmetric models: the SU(2)_R-breaking scalar H₃
 [Dev, Mohapatra, YCZ '16; '16; '17; Maiezza, Senjanović, Vasquez '16]

LFV couplings are generated through mixing of H_3 with other heavy scalars

• 2HDM: CP-even or odd (heavy) scalars from the 2nd doublet [Branco+ '11; Crivellin, Heeck, Stoffer '15]

LFV couplings are induced from small deviation from the lepton-specific structure.

 Mirror models: singlet scalar connecting the SM leptons to heavy mirror leptons [Hung '06, '07; Bu, Liao, Liu '08; Chang, Chang, Nugroho+ '16; Hung, Le, Tran+ '17]

LFV couplings arise from the SM-heavy lepton mixing

Model-independent effective couplings

Model-independent effective LFV couplings of H

$$\mathcal{L}_{Y} = h_{\alpha\beta}\bar{\ell}_{\alpha, L}H\ell_{\beta, R} + \text{H.c.}.$$

• For simplicity, we assume $h_{\alpha\beta}$ are real and and chirality-independent.

symmetric matrix :
$$h_{\alpha\beta}=h_{etalpha}$$

- For concreteness we assume H is CP-even. A CP-odd scalar leads to some differences, e.g. to muonium oscillation [Hou, Wong '95], but would not change qualitatively the main results.
- H might originate from a isospin singlet, doublet or triplet, depending on specific underlying models.

Effective Dim-4 couplings \neq Effective 4-fermion couplings like $\frac{1}{\hbar^2}(\bar{e}e)(\bar{e}\mu)$

[Kabachenko, Pirogov '97; Ferreira, Guedes, Santos '06; Aranda, Flores-Tlalpa,

Ramirez-Zavaleta+ '09; Murakami, Tait '14; Cho, Shimo '14]

$$m_H < \sqrt{s} \Rightarrow$$
 on-shell production

On-shell & off-shell production

ullet On-shell production (based on the process $ee
ightarrow \ell\ell$)

• Off-shell production (at resonance when $m_H \simeq \sqrt{s}$) might also be mediated by a (light) gauge boson Z' with LFV couplings [Heeck '16]

Mar 17, 2018

Constraints on the LFV couplings: on-shell

On-shell production amplitudes depend *linearly* on the LFV couplings

• muonium anti-muonium oscillation: $(\bar{\mu}e) \leftrightarrow (\mu\bar{e}) \ (h_{e\mu})$

Oscillation probablity [Clark, Love '03]

$$\mathcal{P} = \frac{2(\Delta M)^2}{\Gamma_{\mu}^2 + 4(\Delta M)^2}$$

with the H-induced mass splitting

$$\Delta M = \frac{2\alpha_{\rm EM}^3 h_{\rm e\mu}^2 \mu^3}{\pi m_H^2} \,, \quad \mu = \frac{m_{\rm e} m_{\mu}}{m_{\rm e} + m_{\mu}}$$

Constraints on the LFV couplings: on-shell

• Electron and muon g-2 ($h_{e\ell}$, $h_{\mu\ell}$) [Lindner, Platscher, Queiroz '16]

$$(g/2)_e = 1.00115965218073(28)$$

used to determine $lpha_{\rm EM}$, 20 times more accurate than other experiments

The value of $h_{e\mu}$ to explain $(g-2)_{\mu}$ discrepancy is excluded by the $(g-2)_e$ constraint.

$$\Delta a_\mu \equiv \Delta a_\mu^{\rm exp} - \Delta a_\mu^{\rm th} = (2.87 \pm 0.80) \times 10^{-9}$$

Constraints on the LFV couplings: on-shell

• Bhabha scattering, LEP $ee \rightarrow \ell\ell$ data $(h_{e\ell})$ [OPAL '03; L3 '03; DELPHI '05]

Effective 4-fermion interaction

$$\sim rac{h^2}{m_H^2} (ar{f e}\ell) (ar{f e}\ell) \stackrel{{\sf Fierz\ transformation}}{=\!=\!=\!=\!=} rac{1}{{f \Lambda}^2} (ar{f e}\gamma_\mu {f e}) (ar{\ell}\gamma^\mu \ell)$$

If $m_H \lesssim \sqrt{s}$, the LEP limits on the cut-off scale Λ do not apply, and we have to consider the kinetic dependence

$$\frac{1}{m_H^2} \rightarrow \frac{1}{q^2 - m_H^2} \simeq \frac{1}{-s\cos\theta/2 - m_H^2}$$

SM backgrounds: on-shell

Main SM backgronds are particle misidentification for

$$e^+e^- \to \ell_{\alpha}^+\ell_{\beta}^- + X$$
, $(\alpha \neq \beta)$

The mis-identification rate is expected to be small, of order 10^{-3}

[Milstene, Fisk, Para '06; Hammad, Khalil, Un '16; Yu, Ruan, Boudry+ '17]

Examle:

$$e^{+}e^{-} \rightarrow Zh \rightarrow (e^{+}e^{-}/\mu^{+}\mu^{-})h \rightsquigarrow e^{\pm}\mu^{\mp} + h$$

$$1000 \qquad m_{\rm H} = 50~{\rm GeV} \qquad \sqrt{s} = 240~{\rm GeV} \qquad 5~{\rm ab}^{-1} \qquad m_{\rm H} = 300~{\rm GeV} \qquad \sqrt{s} = 1~{\rm TeV} \qquad m_{\rm H} = 300~{\rm GeV} \qquad \sqrt{s} = 1~{\rm TeV} \qquad m_{\rm H} = 0.01 \qquad 1~{\rm ab}^{-1} \qquad 1~{\rm ab}^{-1$$

CEPC & ILC prospects: on-shell

Long-dashed, short-dashed, solid lines: 1%, 10%, and 100% of the decay products of H is reconstructible (visible).

Shaded regions are excluded.

Dotted brown line: central values of muon g-2 anomaly, green and yellow bands: the 1σ and 2σ regions.

CEPC & ILC prospects: on-shell

Long-dashed, short-dashed, solid lines: 1%, 10%, and 100% of the decay products of ${\it H}$ is reconstructible (visible).

Shaded regions are excluded.

CEPC & ILC prospects: on-shell

Long-dashed, short-dashed, solid lines: 1%, 10%, and 100% of the decay products of H is reconstructible (visible).

Shaded regions are excluded.

Dotted brown line: central values of muon g-2 anomaly, green and yellow bands: the 1σ and 2σ regions.

The muon g-2 discrepancy can be directly tested at CEPC via the searches of $ee \rightarrow \mu \tau + H$

Constraints on the LFV couplings: off-shell

Off-shell production amplitudes depend quadratically on the LFV couplings

• 3-body LFV decays of muon and tauon, e.g. [Sher, Yuan '91]

$$\Gamma(\tau^- o e^+ e^- e^-) \simeq \frac{1}{\delta} \frac{|h_{ee}^{\dagger} h_{e\tau}|^2 m_{\tau}^5}{3072 \pi^3 m_H^4} \,, \quad (\delta = 2)$$

• 2-body LFV decays of muon and tauon, e.g. [Harnik, Kopp, Zupan '12]

$$\Gamma(\tau \to e \gamma) = \frac{\alpha_{\rm EM} m_\tau^5}{64 \pi^4} \left(|c_L|^2 + |c_R|^2 \right) \,, \quad c_L = c_R \simeq \frac{h_{ee}^\dagger h_{e\tau}}{24 m_L^2} \,. \label{eq:chi}$$

• $h_{ee,\;e\mu,\;e au}$ contribute to $(g-2)_e$ & LEP $ee \to \ell\ell$ data, [DELPHI '05; Hou, Wong '95]

$$\begin{array}{lll} |h^{\dagger}_{ee}h_{e\tau}| & \Rightarrow & ee \rightarrow e\tau \\ |h^{\dagger}_{e\mu}h_{e\tau}| & \Rightarrow & ee \rightarrow \mu\tau \; \mbox{(t-channel)} \end{array}$$

process	current data	constraints $[GeV^{-2}]$
$\mu^- ightarrow e^- e^+ e^-$	$< 10^{-12}$	$ h_{ee}^{\dagger}h_{e\mu} /m_H^2 < 6.6 imes 10^{-11}$
$ au^- ightarrow e^- e^+ e^-$	$< 2.7 \times 10^{-8}$	$ h_{ee}^{\dagger}h_{e au} /m_H^2 < 2.6 imes 10^{-8}$
$ au^- ightarrow \mu^- e^+ e^-$	$< 1.8 imes 10^{-8}$	$ h_{ee}^{\dagger}h_{\mu au} /m_H^2 < 1.5 imes 10^{-8}$
$ au^- ightarrow \mu^+ e^- e^-$	$< 1.5 imes 10^{-8}$	$ h_{e\mu}^{\dagger}h_{e\tau} /m_H^2 < 1.9 \times 10^{-8}$
$ au^- ightarrow { m e}^- \gamma$	$< 3.3 imes 10^{-8}$	$ h_{ee}^{\dagger'}h_{e au} /m_H^2 < 1.0 imes 10^{-6}$
$\tau^- \to \mu^- \gamma$	$< 4.4 imes 10^{-8}$	$ h_{e\mu}^{\dagger}h_{e\tau} /m_H^2 < 1.2 imes 10^{-6}$
$(g-2)_e$	$< 5.0 \times 10^{-13}$	$ h_{ee}^{\dagger}h_{e au} /m_H^2 < 1.1 imes 10^{-7}$
		$ ~ h_{e\mu}^{\dagger}h_{e au} /m_{H}^{2} < 1.0 imes 10^{-8}$
ee ightarrow ee, au au	$\Lambda > 5.7 \& 6.3 \text{ TeV}$	$ h_{ee}^{\dagger}h_{e au} /m_H^2 < 1.4 imes 10^{-7}$
$ee o \mu\mu, au au$	$\Lambda > 5.7 \& 7.9 \text{ TeV}$	$ h_{e\mu}^{\dagger}h_{e\tau} /m_H^2 < 1.3 imes 10^{-7}$

The $\mu \to 3e$ limit is so strong that the it leaves no hope to see any signal in the channel $ee \to e\mu$ at CEPC & ILC.

16 / 20

SM backgrounds: off-shell

Main SM backgrounds:

$$e^+e^- o W^+W^- o \ell_i^+\ell_i^-
u \bar{
u}$$

The backgrounds can be well controlled by

[Kabachenko, Pirogov '97; Cho, Shimo '16; Bian, Shu, YCZ '15]

requiring that the constructed energy $E_\ell \simeq \sqrt{s}/2$, kinetic distribution analysis of the backgrounds and signals

CEPC & ILC prospects: off-shell

Resonance effect at $m_H \simeq \sqrt{s}$ for both CEPC & ILC Width $\Gamma_H = 10 \, (30)$ GeV at CEPC (ILC)

The off-shell scalar could be probed up to few TeV scale.

CEPC & ILC prospects: off-shell

Figure: The s and t channels depend on different $h^{\dagger}h$ couplings.

19 / 20

Conclusion: take-away messages

- A large variety of well-motivated models accommodate a BSM scalar with LFV couplings to the SM leptons, arising at tree or loop level.
- These LFV couplings can be studied in a *model-independent* way at future lepton colliders like CEPC, ILC, FCC-ee & CLIC, which strengthens the physics case for future lepton colliders.
- The BSM neutral scalar H can be produced on-shell via $e^+e^- o \ell_{lpha}^{\pm}\ell_{eta}^{\mp} + H$ or off-shell via $e^+e^- \rightarrow \ell_{\alpha}^{\pm}\ell_{\beta}^{\mp}$.
- It is promising future lepton colliders could probe a broad region of m_H and $h_{\alpha\beta}$ that goes well beyond the existing LFV constraints.
- The scalar mass and couplings for the explanation of the muon g-2 anomaly can be directly tested at future lepton colliders in $e^+e^- \to \mu^\pm \tau^\mp + H$.

Thank you for your attention!