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e |t also features heavy right-handed Majorana neutrinos,
and thus explains small masses of neutrinos via see-saw
mechanism.
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e This motivates us to to ensure the stability of the scalar
Higgs potential in LRSM as a candidate for beyond SM.



Particle Content of LRSM
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Scalar Potential
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ignored in comparison to the quartic terms.

e Requiring V4(¢;) > 0 as field values ¢; — oo is a strong
condition for boundedness. (BFB)

e For applying BFB criterion, concepts of copositivity criteria

and gauge orbit spaces can help simplify the analysis.
Kim (JMP '84), Kannike (EPJC "12)
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e The dimensionless ratios of invariants called orbit space
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e Similarly, for coupled terms Cn(ngS,fr) can be defined but
normalized by gb,?‘gbmj‘wj.
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Gauge Orbit Spaces

e The potential can be written as:
Vg, m) = —idIof — ila + |8I*A(N, §) + [x|*B(p, 7)
+Ho P Cla, 6, 7)
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e Requiring boundedness YA(X, ), B(p, #), C(c, ¢, 7) :
[$I“AA, @) + |m|*B(p, &) + |9 *Clar, §,7) > O
e Given a condition of this form, is termed as copositive:
ax> +bx+c>0 xeRFT
e The conditions for copositivity are:

a>0,c>0,b+2v/ac>0

= A>0,B>0,C+2VvVAB>0
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Voo —Tilele] - i (Tride'] + gt
+0Tr[g1 91 + Xz (TrBS1 + THI3' ) + NaTrldg'TTr(B1g]
+ATroto] (Tride!] + Trigle )

e we parametrize V2 as follows:

TroTe] =
Tr[dof)/Trofe] = ¢
Tr[®fe]/Tridte] = e

wherer >0, ¢ € [0,1] and w € [0, 27].
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Stability : ) terms

e Using parametrization,
Ve = r* (M + 20082 cos 2w + A3€% + 204 Ecosw) = (), €, w)

e By analyzing the boundedness of A sector of the potential,

A1 >0 (1)
)\2
M——2% >0 2
1 2)\2+/\3> (2)
X
A A3—20 ——F—>0 3
1+ A3 2 4/\2> (3)

M4+ +200 — M) >0 (4)
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Dreaded case: a3 # 0
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withr >0, [ <1,0€[0,5],y€[0,5], m,ne € [0,1] , 61,62 € [0,27] and (1, (2 € [0,1].
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Analytic Conditions for Vacuum Stability in LRSM
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Analytic Conditions for Vacuum Stability in LRSM
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Symmetry Breaking in LRSM

e A BFB potential does not necessarily leads to correct
symmetry breaking. Dev, Mohapatra, Rodejohann, Xu (JHEP '19)
e The desired VEV structure for LRSM vacuum is

o_ 1 [m O A1 0 o
V2 \ 0 ket ) T2\ vet o )7

0 O
—
AR V2 v O

e We can generalize the gauge-independent conditions for
correct vacuum in the LRSM as:
Tr[(®){®)] # 0
Tr(AL(ALD] = Tr[{Ar)(Ar)] =0

TIA(AD] < Ti{AR)(AR)]
14



Symmetry Breaking in LRSM

e Plugging the VEV structure in the scalar potential, we get:
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e Plugging the VEV structure in the scalar potential, we get:
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Analytic Conditions for Symmetry Breaking to Correct Vacuum

M>0, o0=0,
(M= i) >0 4= o+ 25> el o= —pp,
M+ 23 +200 — [Aal)) >0, o =—sgn(),
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Numerical Minimization

-2t -2
-4+ , -4
a4 2 0 2z a4 4 2 o0 2  a
Az as
4 4
-2F , -2
-4 -4
4 -2 0 2 - -4 -2 0 2 4 17

a P3



Renormalization Group Analysis

e The scalar mass spectrum for LRSM :

2
o
MZ — A — 2
Hg ( 1 4ﬂ1> e
1 2
MH:E = MAO = M — EOQVR,
MHS = 2p1V2R>
2 1 2
MHF: —M,_,i —MAO —MHg = 5(03—201)VR7
MzH;:j: = 2p2VR + 2a3/£+

Duka,Gluza,Zralek (Ann.Phys. '00), Chakrabortty,Gluza,jelinski Srivastava
(Phys.Lett. "16)
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MHS = 2p1V2R>
2 1 2
MHF: —M,_,i —MAO —MHg = 5(03—201)VR7
MzH;:j: = 2p2VR + 2a3/£+

Duka,Gluza,Zralek (Ann.Phys. '00), Chakrabortty,Gluza,jelinski Srivastava
(Phys.Lett. "16)
e We have taken the best fit value of Myg = mp =125 GeV.
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e There are strong experimental bounds on most scalar
masses in LRSM. GC,Dev,Mohapatra,zhang (JHEP '19)

e Stringent limits on the heavy neutral scalars masses from
the FCNC constraints : ZhangAn,JiMohapatra (Nucl.Phys. '08)

MH?,A? > 15 TeV

e The current bounds on doubly charged Higgs masses are
from LHC 13 TeV run data : ATLAS, CMS

Mys+ 2 (770 —870) GeV  M,++ 2 (660 — 760) GeV
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Renormalization Group Analysis

e This sample benchmark is in complete agreement with the
current experimental bounds on the scalar masses.
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e The VEVs for the Higgses are:

Ky = \/KS + K3 =246 GeV, v = 0 TeV, vg = 26.8 TeV
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Renormalization Group Analysis
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Conclusions

e We obtained necessary and sufficient conditions for the
stability of LRSM potential using copositivity and gauge
orbit spaces.

e Only requiring vacuum stability does not ensure SSB to a
vacuum which reproduces SM at low-energies.

e Extended the vacuum stability analysis to yield necessary
and sufficient conditions to achieve SSB to the correct
vacuum which should be charge conserving and also
parity violating at low-energies.

e These analytic techniques can be extended to analyze
metastability of the vacuum and one-loop effective
potential.
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