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ABSTRACT

The study of CP structure of the Higgs sector is of great importance to current and
future colliders. A pair of fermions can couple to CP-even and CP-odd Higgs states
with comparable strength; hence reactions involving these interactions are the best
places to study the CP properties of a neutral Higgs boson. The Higgs boson couplings
may also be probed through the polarization of top quark, thus giving an additional
handle on these couplings. Also, the effects of new physics on various observables can
be enhanced by appropriately choosing the initial beam polarizations.

In this project work, we have studied the process e−e+ → tt̄φ in a com-
pletely model independent way in order to get some important information on the
quantum numbers and the interactions of the Higgs boson. The effects of anomalous
couplings of a Higgs boson to a tt̄ pair and a pair of Z bosons have been investigated.
The anomalous γtt̄φ and Ztt̄φ vertices have also been derived. Top quark polariza-
tion asymmetries with polarized and unpolarized initial e−/e+ beams have been con-
structed to probe the non-standard Higgs boson couplings.

Chapter 1 is devoted to a brief description of the Standard Model (SM). After
recalling the basic ingredients of the model, we discuss the mechanism of spontaneous
symmetry breaking, a cornerstone of the SM, and the Glashow-Weinberg-Salam the-
ory of electroweak interactions. Then we discuss the fermion and the Higgs sector of
the SM. The phenomenon of CP violation and the CKM formalism are also described.
Finally, we mention some of the reasons to look beyond the SM and the motivation for
our work.

In Chapter 2, we derive the anomalous Higgs boson couplings. These ef-
fective vertices may come from contributions of loops including the effects of New
Physics beyond the SM. The dominant anomalous contributions to the vertices come
from the dimension-six operators, which have been written down in literature. Contri-
butions from these dimension-six operators to the above mentioned vertices have been
derived in this chapter.

Chapter 3 describes the process e−e+ → tt̄φ in detail. We calculate the in-
dividual helicity amplitudes for this process and also obtain the analytical expressions
for the squared matrix elements. Then we study some aspects of the production cross
section in the context of the SM in order to make comparisons with the known results
and to ensure that our formalism is correct. We have also done consistency checks on
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ii ABSTRACT

our expressions for squared amplitudes by deriving them in two completely indepen-
dent ways, namely the helicity method and the Bouchiat-Michel method.

In Chapter 4, we study the effect of the pseudo-scalar coupling parameter
in the most general tt̄φ Yukawa coupling on the cross section and the polarization
asymmetry. The sensitivity of this pseudo-scalar coupling parameter to cross section
and polarization asymmetry measurements has also been investigated.

The contents of Chapter 5 are not quite relevant in the context of the main
project work. However, as we plan to include the top decay part and then to calculate
the angular and energy distributions of the decay products which are known to be true
probes of the non-standard effects in the production of t quark, we have included the
work done on the decay width of a heavy quark in general. This gives us a feeling on
the time scale of top quark decay.

Finally in Chapter 6, we summarize the progress made so far and anticipate
some future directions of the ongoing work.
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CHAPTER 1

INTRODUCTION

Higgs boson is a massive spin-0 particle appearing in a local gauge theory, where the
local gauge invariance is broken completely, or at least partially, by the mechanism of
spontaneous symmetry breaking. The simplest way in which spontaneous breaking
of a symmetry is achieved is by the introduction of elementary scalar fields in the the-
ory. These ideas are used to write down the Standard Model (SM) of electromagnetic,
weak and strong interactions which provides a unified mathematical framework to de-
scribe these three forces of Nature at the quantum level. Since the SM explains most
of the experimentally observed phenomena with rather high accuracy, it now serves as
the starting point for discussions of fundamental particles and the interactions among
them. So in the following section, we present a brief introduction to the SM of ele-
mentary particle physics. For a detailed discussion, we refer to standard textbooks on
quantum field theory [1] and elementary particle physics [2].

1.1 THE STANDARD MODEL

The electroweak theory, proposed by Glashow, Salam and Weinberg [3] to describe the
electromagnetic and weak interactions between quarks and leptons, is a Yang-Mills
theory [4] based on the symmetry group SU(2)L ⊗ U(1)Y of weak left-handed isospin
and hypercharge. Combined with Quantum Chromo-Dynamics (QCD), the theory of
strong interaction between colored quarks based on the symmetry group SU(3)C [5],
it makes up the SM – a gauge theory with an SU(3)C ⊗ SU(2)L ⊗U(1)Y gauge group.

The SM, before introducing the electroweak symmetry breaking mecha-
nism, has two kinds of fields:

1. The fermionic matter fields corresponding to the three generations of quarks and
leptons which transform according to left-handed (L) doublet and right-handed
(R) singlet representations of SU(2)L to account for the V − A nature of the
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2 CHAPTER 1. INTRODUCTION

charged-current weak interactions:

L1 =

(
νe
e−
)

L
, eR1 = e−R ; Q1 =

(
u
d

)

L
, uR1 = uR, dR1 = dR

L2 =

(
νµ
µ−

)

L
, eR2 = µ−R ; Q2 =

(
c
s

)

L
, uR2 = cR, dR2 = sR

L3 =

(
ντ
τ−

)

L
, eR3 = τ−R ; Q3 =

(
t
b

)

L
, uR3 = tR, dR3 = bR

(1.1)

where the L,R fermion states are defined as fL,R = PL,R f with PL,R = 1
2 (1 ∓ γ5)

being the chirality projection operators. It may be mentioned here that in the SM, the
number of fermion generations is not fixed by any symmetry principle. However,
anomaly cancellation requires that the number of lepton and quark families are
the same, whatever may be the number of generations. Experimentally, there is
strong evidence that there are only three generations.
The quarks (both L and R type) transform as color triplets of SU(3)C , to account
for the strong interaction of the quarks. The leptons are color singlets under
SU(3)C . The assignment of weak hypercharge Y f corresponding to the U(1)Y
group to the various SU(2)L and SU(3)C fermion multiplets is according to the
charge formula:

Y f = 2(Q f − I3L
f ), (1.2)

where Q f is the electric charge in units of the proton charge +e and I3L
f the third

component of weak isospin corresponding to SU(2)L. For the various fermions
listed in (1.1) I3L,3R

f takes values ± 1
2 or 0. Using Eq. (1.2) it is easy to see that

YLi = −1, YeRi
= −2, YQi =

1
3 , YuRi

=
4
3 , YdRi

= −2
3 (1.3)

Since no generator of SU(3)C appears in Eq. (1.2), electric charge is independent
of color.

2. The bosonic gauge fields corresponding to the vector bosons which mediate the
interactions. In the electroweak sector, we have the gauge field Bµ correspond-
ing to the generator Y of the U(1)Y group and the three fields Wa

µ (a = 1, 2, 3)
corresponding to the generators

Ta =
1
2τ

a (1.4)

of the SU(2)L group where τ a are the non-commuting 2 × 2 Pauli matrices. The
commutation relations obeyed by these generators (1.4) are given by

[

Ta, Tb
]

= iεabcTc and [Y, Y] = 0 (1.5)
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where εabc is the antisymmetric Levi-Civita tensor. In the strong interaction sec-
tor, we have an octet of gluon fields Wa

µ (a = 1, ..., 8) corresponding to the eight
generators T′a = 1

2λ
a of the SU(3)C group where λa are the 3× 3 anti-commuting

Gell-Mann matrices. These generators obey the relations
[

T′a, T′b
]

= i f abcT′c with Tr
[

T′a, T′b
]

=
1
2δ

ab (1.6)

where the tensor f abc stands for the structure constants of the SU(3)C group.
The field strengths are given by

Bµν = ∂µBν − ∂νBµ
Wa
µν = ∂µWa

ν − ∂νWa
µ + g2ε

abcWb
µWc

ν (a = 1, 2, 3)

Ga
µν = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν (a = 1, ..., 8) (1.7)

where gs, g2 and g1 are, respectively, the coupling constants of SU(3)C , SU(2)L
and U(1)Y.
The matter fieldsψ are minimally coupled to the gauge fields through the covari-
ant derivative Dµ which is defined as

Dµψ =

(

∂µ − ig2
τ a

2 Wa
µ − ig1

Y
2 Bµ − igs

λb

2 Gb
µ

)

ψ (1.8)

where the sum over a is from 1 to 3 while that over b is from 1 to 8. Dµ is a
differential operator and a matrix in SU(2)L space (2 × 2) as well as in SU(3)C
color space (3 × 3).

The fermions interact with the gauge bosons through the minimal coupling:

Lfermion = ∑ψLiD/ ψL + ∑ψRiD/ ψR (1.9)

where the sum is over all fermion multiplets, quarks as well as leptons. Dµ is defined
as in Eq. (1.8) appropriate to the representation:

Dµ ≡







∂µ − i g2
2 τ

aWa
µ − i g1

6 Bµ − i gs
2 λ

bGb
µ for a left-handed quark

∂µ − i g2
2 τ

aWa
µ + i g1

2 Bµ for a left-handed lepton
∂µ − ig1QqBµ − i gs

2 λ
bGb
µ for a right-handed quark of charge Qq

∂µ + ig1Bµ for a right-handed electron with charge −e

The use of covariant derivative in constructing the Lagrangian Lfermion guarantees
that it is invariant under local SU(3)C ⊗ SU(2)L ⊗U(1)Y gauge transformations of the
fermion and gauge fields. The gauge transformations for the electroweak sector, for
example, are given as

ψL(x) → eiαa(x)Ta+iβ(x)YψL(x) , ψR(x) → eiβ(x)YψR(x);
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~Wµ(x) → ~Wµ(x) − 1
g2

∂µ~α(x) −~α(x) × ~Wµ(x) , Bµ(x) → Bµ(x) − 1
g1

∂µβ(x)

The Lagrangian for gauge fields is given by

Lgauge = −1
4 BµνBµν − 1

4Wa
µνWµνa − 1

4 Ga
µνGµνa (1.10)

The gauge-invariant theory described above can not accommodate masses
for any of the particles. Gauge boson mass terms are forbidden by SU(2) ⊗U(1) local
gauge invariance. Fermion mass terms are of the the form mψLψR + H.c., and are
forbidden by even global gauge invariance. Thus the incorporation of mass terms by
brute force leads to a breakdown of the local gauge invariance. Generation of masses
for all the particles without violating the local gauge symmetry, and hence, without
sacrificing the renormalizability of the theory is achieved by using the mechanism of
spontaneous symmetry breaking (SSB).

1.2 SPONTANEOUS SYMMETRY BREAKING

A symmetry is said to be broken spontaneously if the Lagrangian of the theory is in-
variant under the symmetry, but the ground state (the vacuum state) is not. In this
situation, many degenerate vacuum states are related to one another by the symmetry
of the Lagrangian, and one of them is singled out to be the correct vacuum. Hence
states constructed out of this vacuum reflect this bias, and the dynamics of the theory
no longer shows the invariance.

The Lagrangian we described has a unique minimum energy state corre-
sponding to all the fields taking the value zero. This vacuum is gauge invariant. Hence
something has to be added to the theory to achieve spontaneous symmetry breaking.
Moreover, if the vacuum expectation value of any but a spin-0 field is nonzero, even
Lorentz invariance would be violated. To avoid this, one introduces non-zero vacuum
expectation value (VEV) only for scalar fields. These scalar field(s) may be elementary
or composite.

Next we discuss the phenomenon of SSB for three cases, viz. global sym-
metry (both discrete and continuous), and U(1) abelian and SU(2) non-abelian local
gauge symmetries.
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1.2.1 SSB OF A GLOBAL SYMMETRY

Let us consider the Lagrangian of a simpleφ4 theory:

L =
1
2 (∂µφ)2 − V(φ) , V(φ) =

1
2µ

2φ2 +
λ

4φ
4 (1.11)

with λ > 0, which is needed to make the potential bounded from below. This La-
grangian is invariant under the discrete symmetry φ → −φ. If the mass term µ2 >
0, the potential V(φ) is also positive and the minimum of the potential occurs for
〈0|φ|0〉 ≡ φ0 = 0 which is the vacuum state as shown in Figure 1.1(a). On the other
hand, if µ2 < 0, then V(φ) has two minima given by

〈0|φ|0〉 ≡ φ0 = ±
√

−µ2

λ
= ±v (1.12)

as shown in Figure 1.1(b). The quantity v is the VEV of the fieldφ.

Figure 1.1: The scalar potential V(φ) (a) for µ2 > 0 and (b) for µ2 < 0.

In this case, L is no more the Lagrangian of a scalar particle with mass µ; to interpret
this theory correctly, we have to define the field by expanding it around one of the
minima:

φ(x) = v +σ(x) (1.13)
In terms of the new field σ(x), the Lagrangian becomes

L =
1
2 (∂µσ)2 − 1

2 (−2µ2)σ2 −
√

−µ2λ σ3 − λ

4σ
4 + const. (1.14)

This Lagrangian describes a scalar field of mass m =
√

−2µ2, with σ3 and σ4 interac-
tions. The cubic term breaks the reflection symmetryφ→ −φ; it is no longer apparent
in L. This is the simplest example of a spontaneously broken symmetry.
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Now we generalize the φ4 theory to a set of N real scalar fields φi(x) to il-
lustrate the case of continuous symmetry rather than the discrete one. The Lagrangian
in this case (called the linear sigma model) is given by

L =
1
2∂µφi∂µφi −

1
2µ

2(φiφi) −
λ

4 (φiφi)
2 (1.15)

which is invariant under the O(N) group of transformations φi(x) → Ri jφ j(x) for any
N × N orthogonal matrix R. Again, for µ2 < 0, the potential has a minimum at

φ2
0 =

−µ2

λ
≡ v2 (1.16)

This condition determines only the length of the vectorφ0 and its direction is arbitrary.
Without loss of generality, it is possible to choose coordinates so that φ0 points in the
Nth direction:

φ0 = (0, 0, ..., 0, v) (1.17)
Now we define a set of shifted fields as

φi(x) = (πk(x), v +σ(x)) , k = 1, ..., N − 1 (1.18)
Then the Lagrangian in terms of the new fields σ(x) and πk(x) becomes

L =
1
2 (∂µσ)2 − 1

2 (−2µ2)σ2 − λvσ3 − λ

4σ
4

+
1
2∂µπk∂µπk −

λ

4 (πkπk)
2 − λv(πkπk)σ − λ

2 (πkπk)σ
2 (1.19)

We still obtain a massive σ field with m =
√

−2µ2 just as in Eq. (1.14), but also a set of
N − 1 massless π fields since all the bilinear πkπk terms in the Lagrangian have van-
ished. The original O(N) symmetry is hidden, leaving only the O(N − 1) subgroup,
which rotates the π fields among themselves. As shown in Figure 1.2, the massive σ
field describes oscillations of φi in the radial direction, in which the potential has a
non vanishing second derivative. The massless π fields describe oscillations of φi in
the tangential directions, along the trough of the potential. The trough is an (N − 1)-
dimensional surface, and all N − 1 directions are equivalent, reflecting the unbroken
O(N − 1) symmetry.

The appearance of massless particles when a continuous symmetry is spon-
taneously broken is a general result, known as the Goldstone theorem [6].

The Goldstone Theorem: For every spontaneously broken continuous sym-
metry, the theory must contain a massless particle. The massless fields arising through
spontaneous symmetry breaking are called Goldstone bosons and the number of Gold-
stone bosons is equal to the number of broken generators. For an O(N) continuous
symmetry, for instance, there are 1

2 N(N − 1) generators; the residual unbroken sym-
metry O(N − 1) has 1

2 (N − 1)(N − 2) generators, and therefore, the number of Gold-
stone bosons is the difference, N − 1.
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Figure 1.2: The scalar potential for spontaneous symmetry breaking of a continuous
O(N) symmetry, drawn for the case N = 2.

1.2.2 SSB OF AN ABELIAN LOCAL GAUGE SYMMETRY

Let us now consider a complex scalar field coupled both to itself and to an electromag-
netic field Aµ :

L = −1
4 FµνFµν + Dµφ∗Dµφ− V(φ) (1.20)

with Dµ = ∂µ − ieAµ and with the complex scalar potential

V(φ) = µ2φ∗φ+ λ(φ∗φ)2 (1.21)

This Lagrangian is invariant under the local U(1) transformation

φ(x) → eiα(x)φ(x) , Aµ(x) → Aµ(x) − 1
e ∂µα(x)

with α(x) real. For µ2 > 0, L is simply the QED Lagrangian for a charged scalar
particle of mass µ and with φ4 self-interactions. For µ2 < 0, the fieldφ(x) will acquire
a VEV and the U(1) local symmetry will be spontaneously broken. The minimum of
this potential occurs at

〈φ〉 ≡ φ0 =

√

−µ2

2λ ≡ v√
2

(1.22)

As before, we expand the Lagrangian about the vacuum state 〈φ〉. The complex field
φ(x) can be decomposed as

φ(x) =
1√
2
[v +φ1(x) + iφ2(x)] (1.23)

The Lagrangian then becomes (omitting the terms cubic and quartic in the fields Aµ , φ1
andφ2)

L = −1
4 FµνFµν + (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2
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= −1
4 FµνFµν +

1
2 (∂µφ1)

2 +
1
2 (∂µφ2)

2 − v2λφ2
1 +

1
2 e2v2 AµAµ − evAµ∂µφ2

(1.24)

so that the fieldφ1 acquires a mass m =
√

−2µ2 andφ2 is the massless would-be Gold-
stone boson. Also, there is a photon mass term 1

2 m2
AAµAµ appearing in the Lagrangian

with mass mA = ev = −µ2e
λ

.

However, the following problem is now to be addressed: Before the sym-
metry was broken, we had four degrees of freedom in the theory, two for the complex
scalar field φ and two for the massless electromagnetic field Aµ; but now we have ap-
parently five degrees of freedom, one each for φ1 and φ2, and three for the massive
photon Aµ. Therefore, there must be an unphysical field in the new Lagrangian which
has to be eliminated. To do so, we notice that at first order, we have for the original
fieldφ

φ =
1√
2
(v +φ1 + iφ2) ≡

1√
2
[v + η(x)]eiζ(x)/v (1.25)

By using the freedom of gauge transformation and also by performing the substitution

Aµ → Aµ −
1
ev∂µζ(x)

the Aµ∂µζ term, and in fact, all ζ terms disappear from the Lagrangian. This choice
of gauge for which only the physical particles are left in the Lagrangian is called the
unitary gauge. Thus the massless photon which had only two physical transverse po-
larization states has absorbed the Goldstone boson and becomes massive with three
physical polarization states. The longitudinal polarization state is the extra degree of
freedom that appears after canceling the unphysical contributions. The U(1) gauge
symmetry is no more apparent in the theory.

This mechanism, by which spontaneous symmetry breaking generates masses
for gauge bosons, was explored and generalized to the non-Abelian case by Higgs, En-
glert, Brout, Guralnik, Hagen and Kibble [7], and is commonly known as the Higgs
mechanism.

1.2.3 SSB OF A NON-ABELIAN LOCAL GAUGE SYMMETRY

Let us consider a model with an SU(2) gauge field coupled to a scalar field Φ that
transforms as a spinor of SU(2). The Lagrangian is given by (with a = 1, 2, 3)

L = −1
4Wa

µνWµνa + (DµΦ)† (DµΦ) − V(Φ) (1.26)

with
Dµ ≡ ∂µ − ig2

τ a

2 Wa
µ and V(Φ) = µ2Φ†Φ+ λ

(

Φ†φ
)2

(1.27)
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For µ2 < 0, Φ acquires a VEV which, using the freedom of SU(2) rotations, can be
written as

〈Φ〉 =
1√
2

(
0
v

)

(1.28)

Then the gauge boson masses arise from the scalar field kinetic energy term

|DµΦ|2 =
1
8 g2

2
(

0 v
)
τ aτb

(
0
v

)

Wa
µWµb + ... (1.29)

Symmetrizing the matrix product under the interchange of a and b, using {τ a, τb} =
2δab, we find the mass term

∆L =
g2

2v2

8 Wa
µWµa (1.30)

Thus all three gauge bosons acquire the mass

mW =
g2v
2 (1.31)

implying that all three generators of SU(2) are broken equally by (1.28).

1.3 THE GLASHOW-WEINBERG-SALAM THEORY OF
ELECTROWEAK INTERACTION

The Glashow-Weinberg-Salam (GWS) theory [3] is a spontaneously broken gauge the-
ory which provides a description of weak and electromagnetic interactions which has
been verified to the loop level by experiments. In this unified picture, the three gauge
bosons W± and Z0 acquire mass from the broken SU(2) sector while photon remains
massless due to the unbroken U(1) sector after spontaneous breaking of SU(2) ⊗U(1)
local gauge symmetry.

To break the SU(2) gauge symmetry spontaneously, we introduce a scalar
field in the spinor representation of SU(2), as in Eq. (1.27). However, as we saw in
§1.2.3, this theory will lead to a system with no massless gauge bosons. We therefore
introduce an additional U(1) gauge symmetry by assigning the scalar field a U(1)
charge + 1

2 under this symmetry. The simplest choice is then a complex SU(2) doublet
of scalar fields Φ with YΦ = +1 (corresponding to charge Y

2 ):

Φ =

(
φ+

φ0

)

(1.32)

The Lagrangian of the theory is then given by

L = Lfermion +Lgauge +Lscalar (1.33)
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with Lfermion and Lgauge defined in Eqs. (1.9) and (1.10) respectively, but excluding the
strong interaction part which does not concern us here. Lscalar given by

Lscalar = (DµΦ)† (DµΦ) − µ2Φ†Φ− λ
(

Φ†Φ
)2

(1.34)

For µ2 < 0, the minimum of the scalar potential occurs when the neutral component
of the doublet field Φ has a non-zero VEV1

〈Φ〉0 =
1√
2

(
0
v

)

(1.35)

with v =
√

−µ2
λ

. Now we write the doublet field Φ in terms of four fields θa(x) (a =

1, 2, 3) and H(x) at first order:

Φ(x) =

(

θ2 + iθ1
1√
2 (v + H) − iθ3

)

= eiθa(x)τ a(x)/v
(

0
1√
2 (v + H(x))

)

(1.36)

Then we make a gauge transformation on this field to move to the unitary gauge:

Φ(x) → e−iθa(x)τ a(x)/vΦ(x) =
1√
2

(
0

v + H(x)

)

(1.37)

The terms relevant for masses in the Lagrangian (1.33) are

|DµΦ|2 =

∣
∣
∣
∣

(

∂µ − ig2
τ a

2 Wa
µ − ig1

1
2 Bµ

)

Φ

∣
∣
∣
∣

2

=
1
2

∣
∣
∣
∣
∣

(

∂µ − i
2
(

g2W3
µ + g1Bµ

) −ig2
2
(
W1
µ − iW2

µ

)

−ig2
2
(
W1
µ + iW2

µ

)
∂µ + i

2
(

g2W3
µ − g1Bµ

)

)(
0

v + H(x)

)
∣
∣
∣
∣
∣

2

=
1
2 (∂µH)2 +

1
8 (v + H)2

[

g2
2

∣
∣
∣W1

µ + iW2
µ

∣
∣
∣

2
+
∣
∣
∣g2W3

µ − g1Bµ
∣
∣
∣

2
]

(1.38)

Defining new fields W±
µ and Zµ :

W±
µ =

1√
2

(

W1
µ ∓ iW2

µ

)

, Zµ =
g2W3

µ − g1Bµ
√

g2
2 + g2

1

, Aµ =
g1W3

µ + g2Bµ
√

g2
2 + g2

1

(1.39)

with Aµ field orthogonal to Zµ , we can pick up the terms from Eq. (1.38) which are
bilinear in the fields W±

µ , Zµ and Aµ :

∆L =
1
4 v2g2

2W+
µ W−µ +

1
8v2(g2

2 + g2
1)ZµZµ +

1
2 (0)AµAµ

= m2
WW+

µ W−µ +
1
2m2

ZZµZµ +
1
2m2

AAµAµ (1.40)

1The VEV should not be in the charged direction to preserve U(1)QED.
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with
mW =

1
2vg2 , mZ =

1
2 v
√

g2
2 + g2

1 , mA = 0 (1.41)

Thus we get three massive vector bosons W± and Z while the fourth vector field Aµ ,
orthogonal to Zµ , remains massless. We identify this massless field with the usual
electromagnetic field.

Thus by spontaneously breaking the local gauge symmetry SU(2)L ⊗U(1)Y
to U(1)Q, the three Goldstone modes have been absorbed by the W± and Z bosons
to form their longitudinal components and thus become massive. Since the U(1)Q
symmetry is still unbroken, the photon which is its generator remains massless as it
should be.

It is more convenient to write all expressions in terms of these mass eigen-
states. Let us consider, for example, the coupling of the vector fields to fermions. The
general form of the covariant derivative is given by Eq. (1.8):

Dµ = ∂µ − ig2TaWa
µ − ig1

Y
2 Bµ (1.42)

In terms of the mass eigenstate-fields, this becomes

Dµ = ∂µ − i g2√
2
(W+

µ T+ + W−
µ T−) − i 1

√

g2
2 + g2

1

Zµ
(

g2
2T3 − g2

1
Y
2

)

−i g2g1
√

g2
2 + g2

1

Aµ
(

T3 +
Y
2

)

(1.43)

where T± = T1 ± iT2. The last term of Eq. (1.43) is identified as the electromagnetic
interaction term with electric charge quantum number Q = T3 + Y

2 as given in Eq. (1.2),
where I3 corresponds to the eigenvalue of the operator T3. To put expression (1.43)
into a more useful form, we should then identify the coefficient of the electromagnetic
interaction as the proton charge e:

e =
g2g1

√

g2
2 + g2

1

=
g2g1
gZ

(1.44)

with gZ =
√

g2
2 + g2

1. Eqs. (1.39) for the field rotation which lead to the physical gauge
bosons define the electroweak mixing angle (or Weinberg angle), θW:

(
Zµ
Aµ

)

=

(
cosθW − sinθW
sinθW cosθW

)(
W3
µ

Bµ

)

, (1.45)

that is,
cosθW ≡ cW =

g2
√

g2
2 + g2

1

, sinθW ≡ sW =
g1

√

g2
2 + g2

1

(1.46)
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Then, with the manipulation in the Z coupling

g2
2T3 − g2

1
Y
2 = (g2

2 + g2
1)T3 − g2

1Q

we can rewrite the covariant derivative (1.43) in the form

Dµ = ∂µ − i g2√
2
(W+

µ T+ + W−
µ T−) − i g2

cW
Zµ(T3 − s2

WQ) − ieQAµ , (1.47)

where
g2 =

e
sW

(1.48)

Thus we see here that the weak boson couplings are described by two parameters: e
and θW . The couplings induced by W and Z exchange will also involve the masses
of these particles. However, these masses are not independent, since it follows from
Eqs. (1.41) that

mW = cWmZ (1.49)
So all effects of W and Z exchange processes, at least at tree level, can be written in
terms of the three basic parameters e,θW , and mZ.

Using the fermionic part of the SM Lagrangian, Eq. (1.33) written in terms
of the new fields, and using the expression (1.47) for the covariant derivative, we the
neutral-current (NC) and charged-current (CC) interactions

LNC = eJA
µ Aµ +

g2
cW

JZ
µ Zµ

LCC =
g2√

2
(J+
µ W+µ + J−µ W−µ) (1.50)

The currents Jµ are given by

JA
µ = Q f fγµ f

JZ
µ =

1
4 fγµ[(2I3

f − 4Q f s2
W) −γ5(2I3

f )] f

J+
µ =

1
2 f uγµ(1 −γ5) fd (1.51)

where fu( fd) is the up (down)-type fermion of isospin I3
f = +(−) 1

2 .

1.4 FERMION MASSES IN THE STANDARD MODEL

So far, we have discussed only the generation of gauge boson masses. We can also
generate fermion masses using the same scalar field φ, with hypercharge Y = 1, and
the isodoublet Φ̃ = iτ2Φ∗ which has hypercharge Y = −1.
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We introduce the SU(2)L ⊗ U(1)Y invariant Yukawa Lagrangian in an ng-
dimensional generation space involving the left-handed doublets

QL =

(
pL
nL

)

, LL =

(
νL
lL

)

and right-handed singlets pR, nR, lR of fermions, and the Higgs doublet:

LYukawa = −
(
QLΓΦnR + QL∆Φ̃pR + LLΠΦlR

)
+ H.c.

= −
[
(

pL nL
)
Γ

(
φ+

φ0

)

nR +
(

pL nL
)
∆

(

φ0†

−φ−

)

pR

+
(

νL lL
)
Π

(
φ+

φ0

)

lR

]

+ H.c. (1.52)

where the couplings Γ , ∆ and Π are ng × ng matrices and pL, nL, pR, nR are ng ×
1 vectors in generation space. In the SM, for instance, ng = 3 and Γ , ∆ and Π are
3 × 3 matrices in generation space 2. Gauge invariance does not constrain the flavor
structure of the Yukawa interactions; as a result, Γ , ∆ and Π are completely arbitrary 3.

If we substitute φ0 by its VEV v, we obtain the mass terms

Lmass = −nLMnnR − pLMp pR − lLMllR + H.c., (1.53)

with fermion mass matrices

Mn =
vΓ√

2
, Mp =

v∆√
2

, Ml =
vΠ√

2
(1.54)

The interaction terms in Eq. (1.52) are given by

Lint = LYukawa −Lmass

= −nL
Mn√

2v
HnR − pL

Mp√
2v

HpR − lL
Ml√

2v
HlR − pL

Mn√
2v
φ+nR

+nL
Mp√

2v
φ−pR − νL

Ml√
2v
φ+lR + H.c. + ... (1.55)

The Yukawa-coupling matrices are not necessarily Hermitian. In the quark
sector, they may be diagonalized by bi-unitary transformations

pL = Up
LuL,

pR = Up
RuR,

nL = Un
LdL,

nR = Un
RdR, (1.56)

2Henceforth, we shall discuss only the SM case of ng = 3 unless otherwise specified.
3This arbitrariness is actually responsible for most of the free parameters in the SM. This is the so-

called flavor problem, one of the fundamental open questions in particle physics.
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where uL,R and dL,R denote the 3 × 1 column matrices with the chiral components of
the physical quark mass eigenstates. The 3 × 3 unitary matrices U p

L and Up
R are chosen

such as to bi-diagonalize Mp (or, equivalently, ∆), while Un
L and Un

R bi-diagonalize Mn
(or, equivalently, Γ ):

Up†
L MpUp

R = Mu =





mu 0 0
0 mc 0
0 0 mt





Un†
L MnUn

R = Md =





md 0 0
0 ms 0
0 0 mb



 (1.57)

The matrices Mu and Md are, by definition, diagonal; their diagonal elements are real
and non-negative.
In the leptonic sector, we bi-diagonalize Ml by performing unitary transformations of
the fields, analogously to what is done in the quark sector. However, as the neutrinos
are massless in the SM, we are free to transform them in such a way that a mixing
matrix does not arise in the leptonic sector 4:

νL = Ul
LνL,

lL = Ul
LeL,

lR = Ul
ReR, (1.58)

where e and ν denote the mass eigenstates of the leptons. The unitary matrices U l
L and

Ul
R are chosen such that

Ul†
L MlUl

R = Me =





me 0 0
0 mµ 0
0 0 mτ



 (1.59)

If we define the Hermitian matrices
Hp ≡ Mp M†

p , and Hn ≡ MnM†
n (1.60)

then we realize that the unitary matrices Up
L and Un

L diagonalize Hp and Hn:

Up†
L HpUp

L = M2
u , and Un†

L HnUn
L = M2

d (1.61)

In the quark sector, the NC interaction mediated by the Z boson and the
photon is

L(q)
NC =

g2
2cW

Zµ(pLγµpL − nLγµnL) +

(

eAµ − g2s2
W

cW
Zµ
)

×
[

2
3 (pLγµpL + pRγµpR) − 1

3 (nLγµnL + nRγµnR)

]

(1.62)

4With the observation of non-zero neutrino masses and neutrino oscillations, this picture has to be
modified to allow a mixing matrix for the neutrinos.
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and the CC interaction mediated by the W± bosons is

L(q)
CC =

g2√
2
(W+µpLγµnL + W−µnLγµpL) (1.63)

In the leptonic sector, these interactions are

L(l)
NC =

g2
2cW

Zµ(νLγµνL − lLγµlL) +

(

eAµ +
g2s2

W
cW

Zµ
)

(lLγµlL + lRγµlR)

and L(l)
CC =

g2√
2
(W+µνLγµlL + W−µlLγµνL) (1.64)

Written in terms of the quark mass eigenstate, the CC interaction in Eq. (1.63) is

L(q)
CC =

g2√
2
((W+µuLγµVdL + W−µdLγµV†uL), (1.65)

where
V = Up†

L Un
L (1.66)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [8, 9]. The appearance of a non-trivial
CKM matrix in the CC reflects the fact that the Hermitian matrices Hp and Hn, defined
by Eqs. (1.60), are in general diagonalized by different unitary matrices. Thus, if we
start with u-type quarks being mass eigenstates, then in the d-type quark sector, the
current eigenstates |d′〉 and the mass eigenstates |d〉 are connected by a unitary trans-
formation 



|d′〉
|s′〉
|b′〉



 =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









|d〉
|s〉
|b〉



 (1.67)

The NC Lagrangian preserves the form in Eq. (1.62), with the weak eigen-
states pL,R and nL,R substituted by the mass eigenstates uL,R and dL,R, respectively.
This means that no mixing matrix analogous to V arises in the NC sector. This is the
GIM mechanism [10] which ensures a natural absence of flavor changing neutral currents
(FCNC) at tree-level in the SM.

In terms of the lepton mass eigenstates, both the CC and NC interactions in
Eqs. (1.64) preserve their form, with the weak eigenstates lL,R and νL substituted by
the mass eigenstates eL,R and νL, respectively. This is due to the fact that there is no
mass matrix for the neutrinos in the SM if neutrinos are assumed to be massless.

1.5 MASS AND COUPLINGS OF THE HIGGS BOSON

The kinetic part of the Higgs field, 1
2 (∂µH)2, comes from the covariant derivative-term

cf. Eq. (1.38), while the mass and self-interaction parts come from the scalar potential

VH(Φ) = µ2Φ†Φ+ λ(Φ†Φ)2
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=
1
2µ

2 ( 0 v + H
)
(

0
v + H

)

+
1
4λ
∣
∣
∣
∣

(
0 v + H

)
(

0
v + H

)∣
∣
∣
∣

2

= −1
2λv2(v + H)2 +

1
4λ(v + H)4 (1.68)

using the relation v2 = −µ2

λ . The corresponding Lagrangian is given by

LHiggs =
1
2 (∂µH)2 − VH

=
1
2 (∂µH)2 − 1

22λv2 H2 − λvH3 − λ

4 H4 (1.69)

From this Lagrangian, the Higgs boson mass simply reads

mH =
√

2λv =
√

−2µ2 (1.70)

The couplings of the Higgs boson to gauge bosons and fermions can be obtained from
the relevant terms in the Lagrangian cf. Eqs. (1.38) and (1.55):

LmV ∼ m2
V

(

1 +
H
v

)2
, Lm f ∼ −m f

(

1 +
H
v

)

(1.71)

The Feynman rules for Higgs boson couplings to gauge bosons and fermions are then
given by

gH f f = i
m f
v , gHVV = −2i m2

V
v (1.72)

As with the gauge bosons, the Higgs boson couples to fermions with a strength pro-
portional to their mass.

The VEV v is fixed in terms of the W boson mass mW or the Fermi constant
GF determined from muon decay:

mW =
1
2 g2v =

(√
2g2

2
8GF

)1/2

(1.73)

which implies that

v =
(√

2GF
)−1/2

∼ 246 GeV (1.74)

with GF = 1.16637 × 10−5GeV−2 [11].

The SM does not predict any value for the Higgs mass. However, the cou-
plings of the Higgs boson to all the SM particles are known precisely and since the
Higgs boson contributes to the radiative corrections to the high-precision electroweak
observables, the electroweak precision measurements allow rather stringent constraints
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on mH. There are also constraints from direct searches of the Higgs boson at colliders
and in particular at LEP [12]. Taking into account all the precision electroweak data,
one obtains the mass range of the SM Higgs boson at the 1σ level [12, 13]

mH = 114+69
−45 GeV (1.75)

leading to a 95% confidence level upper limit in the SM

mH < 260 GeV (1.76)

Direct searches, on the other hand, put the lower bound

mH ≥ 114.4 GeV (1.77)

Thus it appears that the high-precision data clearly favor a light Higgs boson with a
central value of mass that is very close to the present lower bound from direct searches.
This is indeed very encouraging for the next-generation collider experiments.

1.6 CP VIOLATION

CP violation is an intriguing subject and our current knowledge of it is rather limited,
both at the experimental and theoretical levels. Here we present a brief overview of the
phenomenon of CP violation. For detailed discussion on the subject, we refer to [14].

Before discussing CP violation, let us first define the discrete symmetry
transformations P, T and C:

• Parity (P) transformation consists of changing the sign of the space coordinates
x, y, and z which changes the handedness of the system.

• Time-reversal (T) transformation consists of changing the sign of the time coor-
dinate t while keeping the space coordinates unchanged.

• Charge-conjugation (C) transformation, contrary to P and T, does not have an
analogue in classical physics. This symmetry is related to the existence of an
antiparticle for every particle – a prediction of relativistic quantum field theory
which has been brilliantly confirmed by experiment. The C transformation con-
sists of changing the particle field ψ into a related field ψ† which has opposite
U(1) charges – electric charge, baryon and lepton number, and flavor quantum
numbers such as strangeness, the third component of isospin, and so on.

It turns out that the P and C symmetries are conserved in strong and electro-
magnetic interactions; but not in weak interaction. For the charged current of weak in-
teraction, parity violation is maximal; the charged current only couples to left-handed
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fermions and right-handed antifermions. The neutral weak current is partially parity
violating; it couples to left-handed and right-handed fermions and antifermions, but
with different strengths. Similarly, charge conjugation is also not a symmetry of the
weak interaction: when applied to a neutrino (which always comes as left-handed), C
gives a left-handed anti-neutrino, which does not exist.

On the other hand, the combined CP symmetry is preserved in most weak
interactions as cross sections and decay rates remain unchanged under the simultane-
ous C and P transformation. However in 1964, it was found that the CP symmetry is
minimally violated (1 part in 103) in neutral kaon decay [15].

1.6.1 CP VIOLATION IN NEUTRAL KAON DECAY

Neutral kaons are typically produced via strong interactions, in eigenstates of strangeness
(K0 and K0):

π+p → K0K+p, and π−p → K0Λ

as shown in Figure 1.3(a). But they decay via weak interactions into 2π and 3π modes
shown in Figure 1.3(b) which are CP eigenstates with eigenvalues +1 and −1 respec-
tively. The K0 and K0 are not themselves CP eigenstates, but we can form CP eigen-

(a) (b)

Figure 1.3: (a) Production and (b) decay modes of neutral kaons K0 and K0.

states by taking their linear combinations as follows:

|K1〉 =
1√
2
(|K0〉 − |K0〉) and |K2〉 =

1√
2
(|K0〉 + |K0〉)

with CP eigenvalues +1 and −1 respectively. Assuming CP is conserved in weak
interactions, K1 can only decay into two pions while K2 can only decay into three pions.
Now the 2π decay is much faster, because the energy released is greater. Hence if we
start with a beam of K0’s

|K0〉 =
1√
2
(|K1〉 + |K2〉)
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the K1 component will quickly decay away, leaving only a beam of pure K2’s. Two
such decay modes for K0 with very different lifetimes were indeed observed [16], and
experimentally, the two lifetimes were measured to be

τ(K0
S) = 0.89 × 10−10sec , and τ(K0

L) = 5.2 × 10−8sec

where the subscripts L and S stand for long and short due to their different lifetimes.
By using a long enough beam, we can produce an arbitrarily pure sample of the long-
lived species KL. If CP were a perfect symmetry, then we would expect KL to decay
only into 3π modes, and not into 2π modes. However, it was found that a tiny fraction
(roughly one in 500) of KL decays into the 2π mode [15], but this is an unmistakable
evidence of CP violation. Evidently the long-lived neutral kaon is not the perfect CP
eigenstate K2 after all, but contains a small admixture of K1:

|KL〉 =
1

√

1 + |ε|2
(|K2〉 +ε|K1〉)

The coefficient ε is a measure of the CP violation; experimentally its magnitude is
(2.284 ± 0.014) × 10−3 [11].

By now, CP violation has also been experimentally confirmed in B0 ↔ B0

system [17] and recently it was observed in D0 ↔ D0 system.

1.6.2 THE CKM MODEL

With the success of gauge theories in explaining the fundamental interactions, the
problem of constructing models which incorporate CP violation became more system-
atic and better defined. A pure gauge Lagrangian is necessarily CP-invariant [18]. The
scalar potential of the SM, in which only one Higgs doublet exists, automatically con-
serves CP. As a result, CP violation can only arise from the simultaneous presence of
Yukawa interactions and gauge interactions. The CKM model [8, 9] explicitly introduces
complex coefficients in the Yukawa Lagrangian (1.52) in order to have CP violation.

The basic idea behind the CKM model is that the flavor eigenstates are not
mass eigenstates for the down-type quarks. This idea was first used by Cabibbo [8]
to explain the semi-leptonic hadron decays which yield a smaller value for the weak
coupling than that obtained from muon decay life time. If a d-quark is transformed
into a u-quark, as in the β-decay of neutron, the coupling constant appears to be about
4% smaller as compared to that in muon decay. In processes in which an s-quark is
transformed into a u-quark, as in Λ0 decay, it even appears to be 20 times smaller.
Cabibbo proposed that quark transitions occur not only within a family but also, to a
lesser degree, from one family to another. For charged currents, the “partner” of the
flavor eigenstate |u〉 is therefore not the flavor eigenstate |d〉, but a linear combination



20 CHAPTER 1. INTRODUCTION

of |d〉 and |s〉. We call this combination |d′〉. Similarly we denote the partner of the |c〉
state as |s′〉. The coefficients of these linear combinations can be written as the cosine
and sine of an angle called the Cabibbo angle θC. The quark eigenstates |d′〉 and |s′〉 of
W exchange are related to the flavor eigenstates |d〉 and |s〉 of the strong interaction,
by a rotation through θC:

(
|d′〉
|s′〉

)

=

(
cosθC sinθC
− sinθC cosθC

)(
|d〉
|s〉

)

(1.78)

Experimentally, θC is determined by comparing the lifetimes and branching ratios of
the semi-leptonic and hadronic decays of various particles. This yields [11]:

sinθC ≈ 0.22 , and cosθC ≈ 0.98

The transitions c ↔ d and s ↔ u, as compared to c ↔ s and d ↔ u respectively, are
therefore suppressed by a factor of

sin2θC : cos2θC ≈ 1 : 20

Now adding the third generation of quarks, the 2 × 2 matrix of (1.78) is
replaced by the 3 × 3 matrix of (1.67). The CKM matrix V is complex, but some of
the phases in it do not have physical meaning. In the SM with ng generations V is an
ng × ng unitary matrix, cf. Eq. (1.66). It would, therefore, in general, be parametrized
by n2

g parameters. However, (2ng − 1) phases can be absorbed by rephasing all quark
fields. Therefore, the number of physical parameters in V is

Nparameter = n2
g − (2ng − 1) = (ng − 1)2 (1.79)

An ng × ng orthogonal matrix is parametrized by 1
2 ng(ng − 1) rotation angles, some-

times called the Euler angles. An unitary matrix is a complex extension of an orthogonal
matrix; therefore, out of the Nparameter parameters of V,

Nangle =
1
2 ng(ng − 1) (1.80)

should be identified with rotation angles. The remaining

Nphase = Nparameter − Nangle =
1
2 (ng − 1)(ng − 2) (1.81)

parameters of V are physical phases which can not be rotated away by redefinition.
According to Eqs. (1.80) and (1.81), there are three rotation angles and one physical
phase in V for ng = 3. CP violation in the SM is attributed to the existence of this
phase, as was first pointed out by Kobayashi and Maskawa [9]. They parametrized the
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CKM matrix by means of three Euler angles – the angles of three successive rotations
about different axes – and one phase:

V =





1 0 0
0 c2 −s2
0 s2 c2









c1 −s1 0
s1 c1 0
0 0 eiδ









1 0 0
0 c3 s3
0 s3 −c3





=





c1 −s1c3 −s1s3
s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ



 (1.82)

where ci and si are shorthands for cosθi and sinθi, respectively (i = 1, 2, 3). The phase
δ appears as a rephasing of the third generation; as the rephasing occurs in between
two rotations involving that generation, it is impossible to identify δ with a rephasing
of the quark fields.

Physically meaningful quantities must be invariant under a rephasing of the
fields. Experimentally, the simplest rephasing-invariant functions of the CKM matrix
that can be measured are the moduli of its matrix elements: |Vi j|. The allowed ranges
of the magnitudes of these moduli are [11]

(
|Vi j|

)
=





0.97383+0.00024
−0.00023 0.2272+0.0010

−0.0010 (3.96+0.09
−0.09) × 10−3

0.2271+0.0010
−0.0010 0.97296+0.00024

−0.00024 (42.21+0.10
−0.80) × 10−3

(8.14+0.32
−0.64) × 10−3 (41.61+0.12

−0.78) × 10−3 0.999100+0.000034
−0.000004



 (1.83)

All the observed CP violation so far can be completely explained in the CKM
picture [19].

1.7 PHYSICS BEYOND THE STANDARD MODEL

Except for the Higgs mass, all the parameters of the SM, viz. the three gauge coupling
constants, the masses of weak vector bosons and fermions as well as the quark mixing
angles, have been determined experimentally to an extremely high degree of accuracy
over the last two decades or so, reaching its high point in the precision measurements
at the CERN e+e− collider LEP [12]. However, there are strong conceptual as well as
experimental indications for physics beyond the SM [20]. In this section, we discuss
some of these points:

From the theoretical standpoint, CP violation can be incorporated in the
three-generation SM by introducing the CKM mixing matrix. However, we lack a fun-
damental understanding of the origin of CP violation. This is all the more important,
because CP violation is one of the crucial ingredients necessary to generate the ob-
served matter-antimatter asymmetry of the Universe [21]. It is now believed that it is
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not possible to generate a baryon asymmetry of the observed size exclusively with the
CP violation present in the SM [22]. A dynamically-generated matter-antimatter asym-
metry of the universe requires additional sources of CP violation, and such sources
naturally exist in the extensions of the SM.

One of the most crucial problems with the SM is the radiative instability of
the Higgs mass [23]. The one loop corrections to Higgs mass are quadratically diver-
gent, i.e. proportional to Λ2, with Λ being the cut-off scale of the theory ∼ 1019 GeV
(the Planck scale). The counter term necessary to cancel this divergence and to yield
results of order 100 GeV (the electroweak scale), requires a fine tuning of the Higgs
self-coupling to one part in 1034. Two loop correction to the mass would require fur-
ther fine tuning of the similar order. In other words, the self coupling of the Higgs
boson has to be fine-tuned for the Higgs mass to be of order O(100 GeV), or else the
Higgs mass would be raised to the cut-off scale by radiative corrections. This is called
the naturalness problem of the SM Higgs boson. This can be solved if we have logarith-
mic divergences instead of quadratic ones in an extension of the SM.

It is considered highly implausible that the origin of the electroweak sym-
metry breaking can be explained by the standard Higgs mechanism, without accom-
panying any new phenomena. This conclusion follows from an extrapolation of the
SM at very high energies. The computed behavior of the SM couplings with en-
ergy clearly points towards the unification of the electroweak and strong forces at
scales of energy MGUT ∼ 1015 GeV which are close to the scale of quantum gravity,
MPl ∼ 1019 GeV [24]. It seems unlikely that the SM without new physics will be valid
up to such large energies because the structure of the SM could not then naturally ex-
plain the relative smallness of the electroweak mass scale, set by the Higgs mechanism
at v ∼ 246 GeV, cf. Eq. (1.74), w.r.t. the unification mass scale ∼ 1015 GeV. This is the
so-called hierarchy problem and is related to the naturalness problem discussed in the
above paragraph.

There are certainly many more conceptual problems associated with the SM:
the proliferation of parameters, the non-trivial pattern of fermion masses and so on.
But while most of these problems can be postponed to the final theory that will take
over at Planck scale, the hierarchy problem requires a solution at relatively low en-
ergies. Several models have been put forward to address these issues and to explore
the new physics effects beyond the SM, albeit preserving all virtues of the SM. The
most common one is the Supersymmetric Standard Model which apart from curing the
hierarchy problem, also provides ready-made cold dark matter candidates [25].
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1.8 MOTIVATION AND PLAN FOR THE WORK

Although the SM has been a phenomenal success, its bosonic sector is not yet com-
pletely verified. So far there has been no direct experimental evidence of the phe-
nomenon of spontaneous symmetry breaking in the SU(2) ⊗ U(1) sector. With the
Higgs mechanism being considered a cornerstone of the SM and its various extensions,
search for the Higgs boson and study of its various properties are obviously the main
aims for all the current and next generation colliders [26]. The Large Hadron Collider
(LHC) is expected to be capable of searching for the Higgs boson in the entire mass
range allowed theoretically. Once the Higgs is detected at the LHC, the next genera-
tion Linear Collider (LC) can provide a wealth of precise experimental information on
its properties. One can study important synergistic effects arising from the interplay of
LHC and LC [27].

1.8.1 IMPORTANCE OF STUDIES OF THE CP QUANTUM NUMBER OF
THE HIGGS BOSON

Just the discovery of the Higgs boson at the LHC will not anyway be sufficient to val-
idate the minimal SM. For one, the only fundamental neutral scalar in the SM is a
JCP = 0++ state arising from a SU(2)L doublet with hypercharge 1, while its vari-
ous extensions can have several Higgs bosons with different CP properties and U(1)
quantum numbers. The minimal supersymmetric standard model (MSSM), for ex-
ample, has two CP-even states and a single CP-odd one [25]. Thus should a neutral
spin-0 particle be detected at the LHC, a study of its CP-properties would be essential
to establish it as the SM Higgs boson [28]. Calculating the CP eigenvalue(s) for the
Higgs state(s) if CP is conserved, and measuring the mixing between the CP-even and
CP-odd states if it is not is a major aim of collider physics experiments. CP violation
in the Higgs sector is indeed an interesting option to generate CP violation beyond
the SM [29] which has important implications for cosmology, for instance, by possibly
helping to explain the observed baryon asymmetry in the universe.

1.8.2 IMPORTANCE OF TOP-QUARK IN STUDIES OF PROPERTIES OF
THE HIGGS BOSON

Top-quark is the heaviest fundamental particle detected so far [30]. Its large mass
(mt ∼ 175 GeV), being very close to the electroweak symmetry breaking scale (v ∼ 246
GeV), is expected to provide a probe to understand the dynamics of electroweak sym-
metry breaking. Further, due to its large mass, and hence, large decay width (Γt ∼ 1.5
GeV), its life time is much smaller than the typical hadronization time scale; hence
its decay occurs much before hadronization and the decay process is not influenced by
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fragmentation effects [31]. Thus its polarization can be studied through the energy and
angular distribution of its decay products. The angular distribution of the decay lep-
ton in particular is independent of any non-standard effects in the decay vertex, and
hence, is a true probe of these non-standard effects associated with the t-production
[32].

Within the SM, the three generations of fermions are treated identically.
Thus one expects the couplings of all the three generations of fermions to gauge bosons
to be same at tree level. Any difference at higher order is due to the differences in the
masses of the fermions. Due to the large difference between masses of the first two
and the third generation of fermions (which is still an unsolved mystery), some theo-
ries of dynamical electroweak symmetry breaking treat the third generation fermions
differently from the first two generations. Thus a precision study of t-quark mass and
couplings can verify such models of dynamical symmetry breaking. Moreover, since
the coupling of the Higgs boson to a tt̄ pair is proportional to mt, cf. Eq. (1.72), an
experimental verification of this fact will serve as a very good test of the Higgs mecha-
nism of SSB, whereas a deviation of the top quark Yukawa coupling from its SM value
would be a signal for new physics.

It has been shown [33] that the Kobayashi-Maskawa mechanism of CP vi-
olation predicts a negligibly small effect for processes involving the top quark in the
SM5, and thus, the standard CP-violation effects in top quark production and decays
will be unobservable in collider experiments. Therefore, the top quark system will be
sensitive and may serve as a powerful probe to CP-violation due to the New Physics
effects [34].

In the light of the above discussion, we re-state that our aim is to analyze
the CP properties of the Higgs boson. A pair of fermions can couple to CP-even and
-odd Higgs states with comparable strength, so can a pair of photons or gluons. Thus,
reactions involving these interactions are the best place to study the CP properties of a
Higgs boson. The case of massive weak bosons is, however, different. W and Z bosons
couple to the CP-even Higgs state at tree level and to the CP-odd state only at one loop
and higher level. Thus, reactions involving VVH couplings are less sensitive to the
possible CP-mixing in the Higgs sector though they can be utilized to study possible
anomalous couplings of Higgs boson [35]. Further, Higgs boson mixes the different
chiralities of fermions, while vectorial interactions preserve it. Thus the presence of
a Higgs boson can also be seen through the polarization of a heavy fermion like top
quark. In addition, the effects of new physics on various observables can be enhanced
by appropriately choosing the initial beam polarizations.

5This is primarily due to the fact that its large mass in comparison to other quarks renders the
GIM [10] cancellation particularly effective.



CHAPTER 2

ANOMALOUS HIGGS COUPLINGS

In order to identify the CP nature of a Higgs boson, we must probe the structure of
its couplings to known particles, in either its production or decay. The couplings of
the SM Higgs boson with other SM particles are determined by the quantum numbers
and masses of those particles. However, as we have discussed in §1.7, a first principle
understanding of the phenomenon of CP violation and the stabilization of Higgs mass
are some of the reasons which require us to look beyond the SM. Any such theory
beyond the SM, which tries to stabilize the Higgs mass and/or explain the emergence
of CP-violation, invariably introduces new particles. These new particles, if they have
anything to do with the electroweak symmetry breaking, could have large couplings
with the t-quark owing to its large mass.

Here we adopt a model-independent approach which entails uniting the most
general Higgs boson interactions with other SM particles consistent with various in-
variance principles. For example, at tree level, the most general Lorentz invariant form
of f f̄φ coupling for a neutral Higgs boson φ is given by:

g f f̄φ = −ig2
m f

2mW
(a + ibγ5) (2.1)

where a, b give the Yukawa coupling strengths relative to that of a SM Higgs boson.
In the SM, we have a purely CP-even Higgs with a = 1 and b = 0. For a purely
CP-odd Higgs boson, a = 0 and b 6= 0, with the magnitude of b depending on the
model. In CP-violating models, both a and b may be non-zero at tree level and may be
of comparable strengths.

Similarly, the most general form for the coupling of a Higgs boson with a
pair of gauge bosons can be expressed as

(gVVφ)µν = −igV

[

aV gµν +
bV
Λ2

V
(k1µk2ν − gµνk1 · k2) +

b̃V
Λ2

V
εµναβkα1 kβ2

]

, (2.2)

where ki denote the momenta of the two V’s, ΛV is some high energy scale which in-
duces the non-standard VVφ couplings in the low energy effective Lagrangian, gSM

W =

25
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e cotθWmZ and gSM
Z = g2mZ

cosθW
. In the context of the SM, at tree level, aSM

W = aSM
Z = 1

while all other couplings vanish identically. For the massless gauge bosons, viz. pho-
ton and gluon, the coupling aV remains zero even at higher loops. The anomalous
couplings bV and b̃V usually appear either at higher order in perturbative expansion of
a renormalizable theory [36] or even at tree level in some effective theory with higher
dimensional operators [37].

2.1 DIMENSION-SIX OPERATORS

Collider experiments have been used to search for the new particles predicted by var-
ious new physics (NP) models, but no such direct signal has been observed so far. So,
if NP indeed exists above the electroweak scale, it is very likely that the only observ-
able effects at energies not too far above the electroweak scale could be in the form of
new residual interactions affecting the couplings of the third-family quarks, and the
untested sectors of the Higgs and gauge bosons. In this spirit, the NP effects can be
expressed as non standard terms in an effective Lagrangian which contains the most
general interactions compatible with the symmetries that we would like to impose on
the model. Such interactions are of course non-renormalizable, but they must obey the
SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry as well as the Lorentz invariance.

Below the NP scale, the new residual interactions can be parametrized by
the effective non-renormalizable SU(3)C ⊗ SU(2)L ⊗U(1)Y gauge invariant Lagrangian
[38]

Le f f = LSM + ∑
n≥3

∑
i

Ci
Λ2(n−2)

O(2n)
i (2.3)

where in addition to the SM piece, we have introduced the higher order operators
Oi of dimension 2n. The coefficients Ci are constants which represent the coupling
strengths of Oi, and are expected to be of order of 1. Assuming the NP energy scale
to be larger than the accessible energy of the colliders, Λ ≥ O (1 TeV), the series in Eq
(2.3) can be truncated at n = 3 for energies in the vicinity of the electroweak symmetry
breaking scale (v ∼ 246 GeV). In this case, only the operators of dimension-6 need to
be considered in practice 1. These operators will not only contribute to the three-point
f f̄φ couplings, but will also induce new four-point couplings Z f f̄φ and γ f f̄φ which
are absent in the SM at tree level. The contributions of these operators can be viewed
as the corrections to the SM couplings.

We restrict ourselves to the case of t-quark only. Before electroweak sym-
metry breaking, the effective Lagrangian for Higgs couplings to a pair of t-quarks can

1The contributions of the operators with yet higher dimensions will be suppressed by additional
powers of v2/Λ2.
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be written as cf. Eq (2.3)

Le f f ( f f̄φ) = ∑
i

Ci
Λ2Oi + ∑

i

Ci
Λ2Oi (2.4)

where Oi and Oi are the CP-even and CP-odd operators respectively2. There are 14
such operators: seven Oi for CP-even [39] and seven Ōi for CP-odd [40], as listed
below. For a complete list of all possible dimension-6 CP conserving operators, see [41].

Ot1 =

(

φ†φ− v2

2

) [

q̄LtRφ̃+ φ̃† t̄RqL
]

(2.5)

Ot2 = i
[

φ†Dµφ− (Dµφ)†φ
]

t̄Rγ
µtR (2.6)

ODt = (q̄LDµtR) Dµφ̃+
(

Dµφ̃
)† (DµtRqL

)
(2.7)

OtWφ =
[(

q̄Lσ
µντ ItR

)

φ̃+ φ̃†
(

t̄Rσ
µντ IqL

)]

W I
µν (2.8)

OtBφ =
[

(q̄Lσ
µνtR) φ̃+ φ̃† (t̄Rσ

µνqL)
]

Bµν (2.9)

O(1)
φq = i

[

φ†Dµφ− (Dµφ)†φ
]

q̄Lγ
µqL (2.10)

O(3)
φq = i

[

φ†τ I Dµφ− (Dµφ)† τ Iφ
]

q̄Lγ
µτ IqL (2.11)

and

Ot1 = i
(

φ†φ− v2

2

) [

q̄LtRφ̃− φ̃† t̄RqL
]

(2.12)

Ot2 =
[

φ†Dµφ+ (Dµφ)†φ
]

t̄Rγ
µtR (2.13)

ODt = i
[

(q̄LDµtR) Dµφ̃−
(

Dµφ̃
)† (DµtRqL

)]

(2.14)

OtWφ = i
[(

q̄Lσ
µντ ItR

)

φ̃− φ̃†
(

t̄Rσ
µντ IqL

)]

W I
µν (2.15)

OtBφ = i
[

(q̄Lσ
µνtR) φ̃− φ̃† (t̄Rσ

µνqL)
]

Bµν (2.16)

O(1)
φq =

[

φ†Dµφ+ (Dµφ)†φ
]

q̄Lγ
µqL (2.17)

O(3)
φq =

[

φ†τ IDµφ+ (Dµφ)† τ Iφ
]

q̄Lγ
µτ IqL (2.18)

where φ is the Higgs doublet field and φ̃ = iτ2φ∗ its conjugate field. qL is the left-
handed third-family quark doublet:

qL =

(
tL
bL

)

, q̄L =
(
t̄L, b̄L

)

2For CP eigenstates, a pure Higgs scalar will be denoted by H and a pure pseudoscalar by A. Other-
wise the generic notation φ will be used for a Higgs boson of indeterminate CP parity.
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In order to shorten some of the expressions we shall use the following notation along
with those given in §1.1:

W±,0
µν = ∂µW±,3

ν − ∂νW±,3
µ (2.19)

Using this notation, we can simplify Eqs. (2.5)-(2.18) to obtain

Ot1 =
1

2
√

2
h (h + 2v) (h + v) (t̄t) (2.20)

Ot2 = −1
2 gZ (h + v)2 Zµ (t̄RγµtR) (2.21)

ODt =
1

2
√

2
(∂µh)

[

∂µ (t̄t) + t̄γ5 (∂µt) − (∂µ t̄)γ5t − i 4
3 g1Bµ (t̄γ5t)

]

− i
4
√

2
gZ (h + v) Zµ

[

t̄ (∂µt) − (∂µ t̄) t + ∂µ (t̄γ5t) − i 4
3 g1Bµ (t̄t)

]

− i
2 g2 (h + v) W−

µ

[

b̄L (∂µtR) − i 2
3 g1Bµ

(
b̄LtR

)
]

+
i
2 g2 (h + v) W+

µ

[

(∂µ t̄R) bL + i 2
3 g1Bµ (t̄RbL)

]

(2.22)

OtWφ =
1√
2

(h + v) (t̄σµνt)
[

W0
µν − ig2

(
W+
µ W−

ν −W−
µ W+

ν

)]

+ (h + v)
(
b̄Lσ

µνtR
) [

W−
µν − ig2

(

W−
µ W3

ν −W3
µW−

ν

)]

+ (h + v) (t̄Rσ
µνbL)

[

W+
µν − ig2

(

W3
µW+

ν −W+
µ W3

ν

)]

(2.23)

OtBφ =
1√
2

(h + v) (t̄σµνt) Bµν (2.24)

O(1)
φq = −1

2 gZ (h + v)2 Zµ
[
t̄Lγ

µtL + b̄Lγ
µbL
]

(2.25)

O(3)
φq =

1
2 gZ (h + v)2 Zµ

[
t̄Lγ

µtL − b̄Lγ
µbL
]

+
1√
2

g2 (h + v)2 [W+
µ (t̄Lγ

µbL) + W−
µ

(
b̄Lγ

µtL
)]

(2.26)

and

Ot1 =
i

2
√

2
h (h + 2v) (h + v) (t̄γ5t) (2.27)

Ot2 = (h + v) (∂µh) (t̄RγµtR) (2.28)

ODt =
i

2
√

2
(∂µh)

[

t̄ (∂µt) − (∂µ t̄) t + ∂µ (t̄γ5t) − i 4
3 g1Bµ (t̄t)

]

+
1

4
√

2
gZ (h + v) Zµ

[

∂µ (t̄t) + t̄γ5 (∂µt) − (∂µ t̄)γ5t − i 4
3 g1Bµ (t̄γ5t)

]
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+
1
2 g2 (h + v) W−

µ

[

b̄L (∂µtR) − i 2
3 g1Bµ

(
b̄LtR

)
]

+
1
2 g2 (h + v) W+

µ

[

(∂µ t̄R) bL + i 2
3 g1Bµ (t̄RbL)

]

(2.29)

OtWφ =
i√
2

(h + v) (t̄σµνγ5t)
[

W0
µν − ig2

(
W+
µ W−

ν −W−
µ W+

ν

)]

+i (h + v)
(
b̄Lσ

µνtR
) [

W−
µν − ig2

(

W−
µ W3

ν − W3
µW−

ν

)]

−i (h + v) (t̄Rσ
µνbL)

[

W+
µν − ig2

(

W3
µW+

ν −W+
µ W3

ν

)]

(2.30)

OtBφ =
i√
2

(h + v) (t̄σµνγ5t) Bµν (2.31)

O(1)
φq = (h + v) (∂µh)

[
t̄Lγ

µtL + b̄Lγ
µbL
]

(2.32)

O(3)
φq = − (h + v) (∂µh)

[
t̄Lγ

µtL − b̄Lγ
µbL
]

− i√
2

g2 (h + v)2 (W+
µ t̄Lγ

µbL −W−
µ b̄Lγ

µtL
)

(2.33)

The presence of derivatives induces an energy dependence of some of these
couplings which is summarized in Table 2.1. Except for Ot1, Ot1, Ot2, O(1)

φQ and O(3)
φQ,

all the other operators are energy dependent. It must, however, be mentioned here that
these energy dependences are not of so much importance for a given process as they
do not give any information on the magnitudes of the anomalous couplings.

Operator tt̄Z tt̄γ tt̄φ Ztt̄φ γtt̄φ
Ot1, Ot1 1

Ot2, O(1)
φQ, O(3)

φQ 1 1
v

Ot2, O(1)
φQ, O(3)

φQ
E
v

ODt, ODt
E
v

E2

v2
E
v2

E
v2

OtWφ, OtWφ, OtBφ, OtBφ
E
v

E
v

E
v2

E
v2

Table 2.1: The energy dependence of the dimension-6 operators for the anomalous
vertices. Here an overall normalization v2

Λ2 has been factored out

2.2 ANOMALOUS VERTICES

From the expressions (2.20) - (2.33) for the dimension-6 operators, the effective La-
grangians for the couplings tt̄Z, tt̄γ, tt̄φ, Ztt̄φ and γtt̄φ can be derived using Eq.(2.4),
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as follows 3: For CP-even operators, we have

Ltt̄Z =
1
Λ2

[

−Ct2vmZZµ t̄γµPRt + CDt

(−imZ
2
√

2

)

Zµ [∂µ (t̄γ5t) + t̄∂µt − (∂µ t̄)t]

+ CtWφv(
√

2 cosθW)(t̄σµνt)∂µZν − CtBφv(
√

2 sinθW)(t̄σµνt)∂µZν
− vmZ

(

C(1)
φq − C(3)

φq

)

Zµ(t̄γµPLt)
]

(2.34)

Ltt̄γ =
1
Λ2

[

CtWφv(
√

2 sinθW)(t̄σµνt)∂µAν

+ CtBφv(
√

2 cosθW)(t̄σµνt)∂µAν
]

(2.35)

Ltt̄H =
1
Λ2

[

Ct1
v2
√

2
h (t̄t) + CDt

1
2
√

2
(∂µh) [∂µ (t̄t) + t̄γ5 (∂µt) − (∂µ t̄)γ5t]

]

(2.36)

LZtt̄H =
1
Λ2

[

−Ct22mZhZµ (t̄PLγ
µt) + CDt

igZ
12

√
2
{8 sin2θW (∂µh) Zµ (t̄γ5t) − 3hZµ

[t̄(∂µ t) − (∂µ t̄)t + ∂µ(t̄γ5t)]} − CtWφ(
√

2 cosθW)h (t̄σµνt) (∂νZµ)
+ CtBφ(

√
2 sinθW)h (t̄σµνt) (∂νZµ) − C(1)

φq 2mZhZµ (t̄γµPLt)

+ C(3)
φq 2mZhZµ (t̄γµPLt)

]

(2.37)

Lγtt̄H =
1
Λ2

[

CDt

(

−i
√

2
3

)

gZ sinθW cosθW (∂µh) Aµ (t̄γ5t) − CtWφ
√

2h (t̄σµνt)

(sinθW∂νAµ) − CtBφ
√

2h (t̄σµνt) (cosθW∂νAµ)
]

(2.38)

while for CP-odd operators, we have

Ltt̄Z =
1
Λ2

[

CDt

( mZ
2
√

2

)

Zµ [∂µ(t̄t) − (∂µ t̄)γ5t + t̄γ5(∂µ t)]

+ iCtWφv(
√

2 cosθW)(t̄σµνγ5t)∂µZν
− iCtBφv(

√
2 sinθW)(t̄σµνγ5t)∂µZν

]

(2.39)

Ltt̄γ =
1
Λ2

[

iCtWφv(
√

2 sinθW)(t̄σµνγ5t)∂µAν

+ iCtBφv(
√

2 cosθW)(t̄σµνγ5t)∂µAν
]

(2.40)

Ltt̄A =
1
Λ2

[

Ct1
iv2
√

2
h (t̄γ5t) + Ct2v (∂µh) (t̄γµPRt) + CDt

i
2
√

2
(∂µh) [∂µ (t̄γ5t)

+ t̄ (∂µt) − (∂µ t̄) t] +
(

C(1)
φq − C(3)

φq
)

v (∂µh) (t̄γµPLt)
]

(2.41)

3Note that only those operators which contribute to the tt̄φ and tt̄Zφ vertex have been kept for tt̄Z
and tt̄γ, i.e. terms in Ltt̄γ and Ltt̄Z containing operators such as OqW etc. are not included.
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LZtt̄A =
1
Λ2

[

CDt
gZ

12
√

2
{−8 sin2θW (∂µh) Zµ (t̄t) + 3hZµ [∂µ (tt̄) + t̄γ5 (∂µt)

− (∂µ t̄)γ5t]} − CtWφi
√

2h (t̄σµνγ5t) (cosθW∂νZµ)
+ CtBφi

√
2h (t̄σµνγ5t) (sinθW∂νZµ)

]

(2.42)

Lγtt̄A =
1
Λ2

[

CDt

√
2

3 gZ sinθW cosθW (∂µh) Aµ (t̄t) − CtWφi
√

2h (t̄σµνγ5t)

(sinθW∂νAµ) − CtBφi
√

2h (t̄σµνγ5t) (cosθW∂νAµ)
]

(2.43)

From these Lagrangians, we can read off the Feynman rules for the various effective
three and four-point vertices. We choose the following momentum convention: For the
three-point vertices t̄(p1)-(p2)-φ(p3), t̄(p1)-t(p2)-Z(p3) and t̄(p1)-t(p2)-γ(p3), the mo-
menta p2 and p3 are incoming and p1 is outgoing so that ∂µ t̄ = ip1µ , ∂µt = −ip2µ , and
∂µh = −ip3µ . For the four-point vertices Zµ(p4)-t(p3)-t̄(p2)-φ(p1) and γµ(p4)-t(p3)-
t̄(p2)-φ(p1), the momenta p1, p3, p4 are incoming and p2 is outgoing so that ∂µ t̄ =
ip2µ , ∂µt = −ip3µ , ∂µh = −ip1µ , σµν∂µZν = −iσµνp4µ and σµν∂µγν = −iσµνp4µ .
Thus we have the following Feynman rules for the anomalous vertices:

gtt̄Zµ =
i
Λ2

[ mZ
2
√

2
(
CDt + iγ5CDt

)
{(p1µ − p2µ)γ5 − (p1µ + p2µ)}

− mZv
(

Ct2γµPR + (C(1)
φq − C(3)

φq )γµPL
)

+ i
√

2vpν3σµν
{
(CtWφ + iγ5CtWφ) cosθW − (CtBφ + iγ5CtBφ) sinθW)

}]
(2.44)

gtt̄γµ =
i
Λ2 i

√
2vpν3σµν

[
(CtWφ + iγ5CtWφ) sinθW + (CtBφ + iγ5CtBφ) cosθW)

]
(2.45)

gtt̄φ =
i
Λ2

[
v2
√

2
(
Ct1 + iγ5Ct1

)
+

1
2
√

2
(
CDt + iγ5CDt

)
(p1 · p3 − p2 · p3 −γ5 p2 · p3

−γ5 p1 · p3) − ivpµ3
{

Ct2γµPR +
(

C(1)
φq − C(3)

φq
)

γµPL
}]

(2.46)

gZµtt̄φ =
i
Λ2

[ gZ
12

√
2
(
CDt + iγ5CDt

) {

8γ5 p1µ sin2θW − 3(p2µ + p3µ) + 3γ5(p2µ − p3µ)
}

− 2mZ
(

Ct2γµPR + (C(1)
φq − C(3)

φq )γµPL
)

+ i
√

2σµνpν4
{
(CtWφ + iγ5CtWφ) cosθW − (CtBφ + iγ5CtBφ) sinθW)

}]
(2.47)

gγµ tt̄φ =
i
Λ2

[

−
√

2
3 gZ cosθW sinθW

(
CDt + iγ5CDt

)
γ5p1µ + i

√
2σµνpν4

{
(CtWφ + iγ5CtWφ) sinθW + (CtBφ + iγ5CtBφ) cosθW)

}]
(2.48)

All the vertices given in Eqs. (2.56) - (2.59) were derived by us using the convention
described in §1.1 which is consistent with standard textbooks and reviews [1, 23].
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These expressions for anomalous vertices have been derived earlier by Han
et al. [42]; however, we have figured out certain errors in their expressions. Whisnant
et al. in Ref.[39] use the notation τ I = σ I

2 for the SU(2) generators, where σ ’s are
the usual Pauli matrices; and then write their dimension-6 operators in terms of the
τ ’s. As a result, the vertices derived from their operators and written down by Han
et al., assuming that their notation is consistent, had factors of 2 and 4 wrong in the
terms involving τ I. Moreover, if we take the τ ’s in the operators written by Whisnant
et al. to be actually the Pauli matrices, then the operators turn out to be consistent
with those obtained by other authors like Gounaris et al. [41]. In that case, many of
the discrepancies noted by us go away. In spite of this, there seem to be some errors in
the vertices written down by Han et al. in the terms involving the operators OtWφ and
OtBφ, which couldn’t be traced out. However, as we will see in the next section, we are
not going to use these operators because their coefficients are constrained to be small.

2.3 PRESENT BOUNDS ON SOME OF THE ANOMALOUS
COUPLINGS OF THE HIGGS BOSON

As mentioned earlier, the various operators contribute to the electroweak precision
observables and are thus constrained by the present data [38]. The CP-even operators
O(1)
φQ and O(3)

φQ enter the Zbb̄ vectorial and axial couplings at the tree level and their
coefficients are therefore constrained by precise measurements of the observable Rb at
the Z pole which is calculated as [42]

Rb ≡
Γ(Z → bb̄)

Γ(Z → hadrons)

One obtains, at the 1σ level,

5 × 10−5 ≤ v2

Λ2 C(1)
φq or v2

Λ2 C(3)
φq ≤ 3.9 × 10−5 (2.49)

The operators Ot1, Ot2, ODt, OtWφ and Otbφ do not enter the Zbb̄ vertex
at the tree level, and hence, are not constrained by Rb. However, at one-loop level
they contribute to gauge boson self-energies, and thus rather loose bounds exist [41]
with significant uncertainties. The upper bounds obtained on the coefficients are as
follows [41]:

|Ct1| ' 16π
3
√

2

(
Λ

v

)

, |Ct2| ' 8π
√

3, (2.50)

CDt ' 10.4 for CDt > 0, CDt ' − 6.4 for CDt < 0, (2.51)
|CtWφ| ' 2.5, |CtBφ| ' 2.5. (2.52)
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As to the NP scale, it is plausible to envision that Λ ≈ 1 - 3 TeV, but we will keep v2

Λ2 as
a free parameter. The ranges of the upper bounds on various coefficients for Λ ' 3 - 1
TeV are then given as follows:

|Ct1|
v2

Λ2 ' 1.0 - 3.0, |Ct2|
v2

Λ2 ' 0.29 - 2.6, (2.53)

CDt
v2

Λ2 ' 0.07 - 0.63 for CDt > 0, CDt
v2

Λ2 ' −(0.04 - 0.40) for CDt < 0,(2.54)

|CtWφ|
v2

Λ2 ' 0.02 - 0.15, |CtBφ|
v2

Λ2 ' 0.02 - 0.15. (2.55)

Obviously, collider experiments have to reach a sensitivity on these couplings below
this level to be useful.

Currently, there are no significant experimental constraints on the CP-odd
couplings involving the t-quark sector.

Since it is impossible to include all dimension-6 operators simultaneously
in the Feynman amplitudes containing the anomalous vertices, it is prudent to choose
a subset for which the coefficients are not already constrained to be too small. As can
be seen from Eqs. (2.54) - (2.55), for Λ ' 1 TeV, the coefficients CtWφ and CtBφ are about
1 order smaller in magnitude than Ct1, Ct2 and CDt. Moreover, the operators O(1)

φq and
O(3)
φq can be safely excluded from further discussion as their coefficients are sufficiently

smaller than the rest, cf. Eq. (2.49). Hence, we have decided to use only the operators
Ot1, Ot2 and ODt (together with their CP-odd counterparts) for further analysis.

Thus we shall use the following effective anomalous vertices in our future
analysis:

geff
tt̄Zµ =

i
Λ2

[ mZ
2
√

2
(
CDt + iγ5CDt

)
{(p1µ − p2µ)γ5 − (p1µ + p2µ)}

− mZvCt2γµPR] (2.56)

geff
tt̄φ =

i
Λ2

[ v2
√

2
(
Ct1 + iγ5Ct1

)
+

1
2
√

2
(
CDt + iγ5CDt

)

× (p1 · p3 − p2 · p3 − γ5p2 · p3 −γ5 p1 · p3) − ivpµ3 Ct2γµPR
]

(2.57)

geff
Zµtt̄φ =

i
Λ2

[ gZ
12

√
2
(
CDt + iγ5CDt

) {

8γ5 p1µ sin2θW

− 3(p2µ + p3µ) + 3γ5(p2µ − p3µ)} − 2mZCt2γµPR] (2.58)

geff
γµ tt̄φ =

i
Λ2

[

−
√

2
3 gZ cosθW sinθW

(
CDt + iγ5CDt

)
γ5p1µ

]

(2.59)

We note that all the terms in the anomalous vertex tt̄γ are small, and hence, can be
dropped.



CHAPTER 3

THE PROCESS e−e+ → tt̄φ

In §1.8.2, we have already discussed the importance of top-quark in Higgs studies. In
connection with the t-quark sector, the most promising process to study will be the
Higgs boson and t-quark pair associated production [43, 44]

e−e+ → tt̄φ (3.1)

which provides a direct way to determine the t-quark Yukawa coupling [45]. By scru-
tinizing this process in detail, one would hope to understand the nature of the Higgs
boson interactions with t-quark and hopefully gain some insight for physics beyond
the SM.

Here we takeφ to be a neutral spin-zero boson of unknown CP property. In
this chapter, We derive the expressions for the helicity amplitudes and the production
cross section for individual helicity states. These results will be used later to calculate
the polarization asymmetry of the top quark with both unpolarized and polarized ini-
tial beams, which will then be used as an observable to probe the CP property of the
Higgs boson.

3.1 FEYNMAN DIAGRAMS FOR THE PROCESS

At the tree level, the process

e−(p1)e+(p2) → t(p3)t̄(p4)φ(p5) (3.2)

receives contributions from six Feynman diagrams as shown in Figure 3.1. This pro-
cess was discussed earlier in literature as a possible source of Higgs particles at low
energies where only the photon exchange diagrams, Figures 3.1(a) and 3.1(b), had to
be taken into account [43]. At high energies the Z exchange diagrams, Figures 3.1(c)
and 3.1(d), lead to an axial vector contribution different from the vectorial γ amplitude.

34
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An additional contribution also comes from the Higgs bremsstrahlung off the Z boson,
as shown in Figure 3.1(e). We will see, however, that the last mentioned will however
prove to be of minor importance [44] so that the Higgs-top Yukawa coupling can still
be measured directly in the process (3.2). 1.

These first five diagrams add up to make the SM amplitude for the pro-
cess (3.2) at the tree level and have been studied in detail [44]. QED corrections due to
initial state radiation effects have also been studied [45]. The first order QCD correc-
tions to this process, which turn out to be important near the tt̄ threshold, have been
computed including only γ exchange in Ref.[46] and with the complete γ and Z contri-
butions in Ref.[47]. The electroweak corrections to this process are also important and
have been computed by three groups [48] which are, incidentally, the first example of
electroweak corrections for a 2 → 3 process.
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Figure 3.1: The Feynman diagrams for the process (3.2) at the tree level.

However, not much is known about the last diagram. The effective vertex
in this diagram may be arising from contributions of loops including the effects of NP
beyond the SM. If we allow φ to be a CP-non- eigenstate, we are already including
the effects of NP beyond the SM. Hence, for consistency, all the six diagrams must be
taken into account if we want to do the most general calculation of cross section at tree

1As we will see later, the effect of Z exchange is only a few percent correction, in particular at low
energies, and hence the cross section is directly proportional to g2

ttφ.
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level for the process (3.2). Here we take a model-independent approach to include the
non-standard couplings derived in §2.2 for calculating the production cross section for
the process (3.2). The calculation for total cross section has been done in Ref.[42]; but
we make detailed studies in terms of the helicity structure by calculating the analytical
expressions for individual helicity amplitudes and squared amplitudes, and then cal-
culating the corresponding cross sections for individual helicity states. This approach
has the advantage of being able to make analysis of the polarization asymmetry which
can then be used to probe the non-standard effects.

A very interesting feature of the process (3.2) is that it exhibits a CP asym-
metry at the tree level. Such an effect arises from interference of the Higgs emission
from t or t̄ leg with the Higgs emission from the Z boson. Being a tree level effect the
resulting asymmetry is quite large. Moreover, this asymmetry may get enhanced due
to addition of the non-standard coupling terms. Also, this asymmetry can be detected
easily through a CP-odd, T̃-odd observable2. Such CP-violating observables have been
constructed for the process e+e− → tt̄H0 in the context of the THDM, for instance, in
Ref.[49].

3.2 MATRIX ELEMENTS

Feynman rules used in writing down the matrix elements are summarized in Ap-
pendix A.1. At this stage, we introduce the general tt̄φ and ZZφ vertices only; hence
we exclude the last diagram in Figure 3.1. This diagram along with the other anoma-
lous couplings will be included in our analysis at a later stage.

While dealing with the massive propagators, we have to include their finite
decay widths; thus the Z and t propagators will be modified to

−i
q2 − m2

Z + imZΓZ + iε

(

gµν −
qµqν

m2
Z + iε

)

, and i( 6 p + m)

p2 − m2
t + imtΓt + iε

,

respectively. In this particular case, however, we will deal with energies much higher
than the Z and t-poles; hence it hardly makes any difference whether we add the decay
width part or not.

We note that in the expression for the gauge-boson propagator, the term
carrying the gauge index is proportional to qµqν; hence for the first four diagrams in
which one end of the propagator is always connected to the e−e+ vertex, when inserted
in the expression for the amplitude, it becomes proportional to m2

e (by Dirac equation)
and hence can be neglected. However, this is not so for the second Z propagator in the

2T̃ is the naive time-reversal operator defined by replacing time with its negative without switching
the initial and final states.
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fifth diagram which is attached to the tt̄ vertex; we must include the qµqν term for this
propagator. In the unitary gauge, the matrix elements corresponding to the Feynman
diagrams in Figures 3.1(a)-(e) are as follows:

iM(a) = [v(p2)(−ieγµ)u(p1)]

( −igµν
k2 + iε

) [

u(p3)

( −iemt
mZ sin 2θW

(a + ibγ5)

)

i( 6k− 6 p4 + mt)

(k − p4)2 − m2
t + imtΓt + iε

(
2
3 ieγν

)

v(p4)

]

(3.3)

iM(b) = [v(p2)(−ieγµ)u(p1)]

( −igµν
k2 + iε

) [

u(p3)

(
2
3 ieγν

)

i( 6k− 6 p3 + mt)

(k − p3)2 − m2
t + imtΓt + iε

( −iemt
mZ sin 2θW

(a + ibγ5)

)

v(p4)

]

(3.4)

iM(c) =

[

v(p2)

( ie
sin 2θW

γµ(−PL + 2 sin2θW)

)

u(p1)

] ( −igµν
k2 − m2

Z + imZΓZ + iε

)

[

u(p3)

( −iemt
mZ sin 2θW

(a + ibγ5)

) i( 6k− 6 p4 + mt)

(k − p4)2 − m2
t + imtΓt + iε

( ie
sin 2θW

γν(PL −
4
3 sin2θW)

)

v(p4)

]

(3.5)

iM(d) =

[

v(p2)

( ie
sin 2θW

γµ(−PL + 2 sin2θW)

)

u(p1)

] ( −igµν
k2 − m2

Z + imZΓZ + iε

)

[

u(p3)

( ie
sin 2θW

γν(PL −
4
3 sin2θW)

) i( 6k− 6 p3 + mt)

(k − p3)2 − m2
t + imtΓt + iε

( −iemt
mZ sin 2θW

(a + ibγ5)

)

v(p4)

]

(3.6)

iM(e) =

[

v(p2)

( ie
sin 2θW

γµ
(

−PL + 2 sin2θW
))

u(p1)

]( −igµα
k2 − m2

Z + imZΓZ + iε

)

(−icg2mZgαβ
cosθW

){ −i
k′2 − m2

Z + imZΓZ + iε

(

gβν −
k′βk′ν
m2

Z

)}

[

u(p3)

( ie
sin 2θW

γν
(

PL −
4
3 sin2θW

))

v(p4)

]

(3.7)

with k = p1 + p2, k′ = p3 + p4; p1, p2 being the initial four-momenta of e−, e+ and
p3, p4 the final four-momenta of t, t̄ respectively. Eqs. (3.3) - (3.7) can be written in a
compact form if the coupling of gauge bosons to fermions is written in a general form:
eγµ(acPL + bcPR). Then the diagrams (a) & (c) and (b) & (d) in Figure 3.1 can be added
as shown in Figure 3.2 with some appropriate weights. Then Eqs. (3.3) - (3.6) are of the
form

M(i) ∼ − [v(p2)(eγµ)(acPL + bcPR)u(p1)]
1
ξ2

[

u(p3)

( emt
sin 2θWmZ

(a + ibγ5)

)
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Figure 3.2: The combined diagrams (a) & (c) and (b) & (d).

6 p1+ 6 p2− 6 p4 + mt
(p1 + p2 − p4)2 − m2

t + imtΓt + iε
eγµ(ccPL + dcPR)v(p4)

]

(3.8)

M(ii) ∼ − [v(p2)(eγµ)(acPL + bcPR)u(p1)]
1
ξ2 [u(p3)eγµ(ccPL + dcPR)

− 6 p1− 6 p2+ 6 p3 + mt
(−p1 − p2 + p3)2 − m2

t + imtΓt + iε

( emt
sin 2θWmZ

(a + ibγ5)

)

v(p4)

]

(3.9)

where we will denote the couplings with γ and Z and the propagators by putting the
appropriate subscripts:

ξ2
γ = k2 + iε, ξ2

Z = k2 − m2
Z + imZΓZ + iε

aγ = bγ = −1, cγ = dγ =
2
3

aZ =
−1 + 2 sin2θW

sin 2θW
, bZ =

2 sin2θW
sin 2θW

cZ =
1 − 4

3 sin2θW
sin 2θW

, dZ =
− 4

3 sin2θW
sin 2θW

With these identifications, the matrix elements in Eqs. (3.8) and (3.9) can be written as

M(i) =
−e3mt

mZ sin 2θW
(
q2

1 − m2
t + imtΓt + iε

)

[(

aγcγ
ξ2
γ

+
aZcZ
ξ2

Z

)

[v(p2)γ
µPLu(p1)] gµν [u(p3)(a + ibγ5)( 6q1 + mt)γ

νPLv(p4)]

+

(

aγdγ
ξ2
γ

+
aZdZ
ξ2

Z

)

[v(p2)γ
µPLu(p1)] gµν [u(p3)(a + ibγ5)( 6q1 + mt)γ

νPRv(p4)]

+

(

bγcγ
ξ2
γ

+
bZcZ
ξ2

Z

)

[v(p2)γ
µPRu(p1)] gµν [u(p3)(a + ibγ5)( 6q1 + mt)γ

νPLv(p4)]

+

(

bγdγ
ξ2
γ

+
bZdZ
ξ2

Z

)

[v(p2)γ
µPRu(p1)] gµν [u(p3)(a + ibγ5)( 6q1 + mt)γ

νPRv(p4)]

]
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≡ A1[AcLLF1LL + AcLRF1LR + AcRLF1RL + AcRRF1RR] (3.10)

M(ii) =
−e3mt

mZ sin 2θW
(
q2

2 − m2
t + imtΓt + iε

)

[(

aγcγ
ξ2
γ

+
aZcZ
ξ2

Z

)

[v(p2)γ
µPLu(p1)] gµν [u(p3)γ

νPL( 6q2 + mt)(a + ibγ5)v(p4)]

+

(

aγdγ
ξ2
γ

+
aZdZ
ξ2

Z

)

[v(p2)γ
µPLu(p1)] gµν [u(p3)γ

νPR( 6q2 + mt)(a + ibγ5)v(p4)]

+

(

bγcγ
ξ2
γ

+
bZcZ
ξ2

Z

)

[v(p2)γ
µPRu(p1)] gµν [u(p3)γ

νPL( 6q2 + mt)(a + ibγ5)v(p4)]

+

(

bγdγ
ξ2
γ

+
bZdZ
ξ2

Z

)

[v(p2)γ
µPRu(p1)] gµν [u(p3)γ

νPR( 6q2 + mt)(a + ibγ5)v(p4)]

]

≡ A2[AcLLF2LL + AcLRF2LR + AcRLF2RL + AcRRF2RR] (3.11)

with q1 = p1 + p2 − p4, q2 = −p1 − p2 + p3,

A1 =
−e3mt

mZ sin 2θW
(
q2

1 − m2
t + imtΓt + iε

) , A2 =
−e3mt

mZ sin 2θW
(
q2

2 − m2
t + imtΓt + iε

) ,

(3.12)

AcLL =
aγcγ
ξ2
γ

+
aZcZ
ξ2

Z
= AgLL + AzLL,

AcLR =
aγdγ
ξ2
γ

+
aZdZ
ξ2

Z
= AgLR + AzLR,

AcRL =
bγcγ
ξ2
γ

+
bZcZ
ξ2

Z
= AgRL + AzRL,

AcRR =
bγdγ
ξ2
γ

+
bZdZ
ξ2

Z
= AgRR + AzRR, (3.13)

Fnab = (Jea)
µgµν(Jtnb)

ν (n = 1, 2; a, b = L, R), (3.14)

(Jea)
µ = v(p2)γ

µPau(p1), (3.15)
(Jt1a)

µ = u(p3)(a + ibγ5)( 6q1 + mt)γ
µPav(p4), (3.16)

(Jt2a)
µ = u(p3)γ

µPa( 6q2 + mt)(a + ibγ5)v(p4) (3.17)

Similarly, Eq. (3.7) can be rewritten as follows:

M(e) ≡ M(iii) = A3 [AzLLF3LL + AzLRF3LR + AzRLF3RL + AzRRF3RR] (3.18)

where Az’s are defined in Eq. (3.13). F3ab is given by

F3ab = (Jea)
µgµαgαβ

(

gβν −
k′βk′ν
m2

Z

)

(Jt3b)
ν (a, b = L, R), (3.19)
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where Jea is given by Eq. (3.15) and Jt3a is
(Jt3a)

µ = u(p3)γ
µPav(p4) (a = L, R) (3.20)

A3 =
−ce32mZ

sin 2θW
(
k′2 − m2

Z + imZΓZ + iε
) (3.21)

Thus the total Feynman amplitude is given by
Mtot = M(i) +M(ii) +M(iii) (3.22)

3.3 HELICITY AMPLITUDES

If we denote the helicity states of the spin- 1
2 particles e−, e+, t and t̄ as λ1, λ2, λ3 and λ4

respectively, then the Feynman amplitude for individual helicity states can be written
as
Mtot(h1 , h2, h3, h4) = M(i)(h1 , h2, h3, h4) +M(ii)(h1 , h2, h3, h4) +M(iii)(h1, h2, h3, h4)

(3.23)
where hi = 2λi = ±1 (i = 1, ..4) is twice the spin- 1

2 particle helicity. In general, there are
16 individual helicity states for this process. However, we know that in the massless
limit, the amplitude vanishes unless the electron and positron have opposite helicity, or
equivalently, unless their spinors have the same helicity 3. This can be seen easily from
the current structure (3.15) and using the fact that the projection operators PL and PR
are orthogonal to each other: PLPR = 0 = PRPL. Thus the current Jea vanishes for the
two combinations (+ 1

2 ,− 1
2 ) and (− 1

2 , + 1
2 ). This is, of course, true only for massless

spinors for which the helicity states are equivalent to the chirality states. The helicity
states for a massive spinor will be a mixture of left- and right- chirality states, and
hence, all possible combinations of helicity states, viz. (+ 1

2 , + 1
2 ), (+ 1

2 ,− 1
2 ), (− 1

2 , + 1
2 )

and (− 1
2 ,− 1

2 ), contribute to the Feynman amplitude.

In our case, the energy scale involved is of the order of top-mass, mt which
is about 5 orders of magnitude larger than the electron mass, me. Hence, practically we
can take me to be zero for our analysis. Then only 8 out of 16 helicity combinations will
contribute to the Feynman amplitude (3.22).

In order to calculate the production cross section, we need the squared am-
plitude

|Mtot|2 = M∗
totMtot = ∑

h1 ,h2 ,h3 ,h4=±1
|Mtot(h1, h2, h3, h4)|2 (3.24)

We have calculated the squared amplitudes for individual helicity states in
two completely independent ways.

3Note that an antiparticle state with helicity +(−) 1
2 is denoted by the spinor state vL(vR), not vR(vL)

unlike the case of a particle spinor where the helicity +(−) 1
2 is denoted by uR(uL).
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3.3.1 HELICITY METHOD

This is the direct method in which we calculate the helicity amplitudes (3.23) by using
the explicit forms for spinors in the Dirac representation (See Appendix 1) [50]:

u[θ,φ, p, Ep , h, m] =












√

(Ep + m) e−iφ
2
[

(1+h)
2 cos

(
θ
2
)
− (1−h)

2 sin
(
θ
2
)]

√

(Ep + m) e iφ
2
[

(1−h)
2 cos

(
θ
2
)
+ (1+h)

2 sin
(
θ
2
)]

h p√
Ep+m e−iφ

2
[

(1+h)
2 cos

(
θ
2
)
− (1−h)

2 sin
(
θ
2
)]

h p√
Ep+m e iφ

2
[

(1−h)
2 cos(θ2 ) + (1+h)

2 sin
(
θ
2
)]












v[θ,φ, p, Ep , h, m] =












−h p√
Ep+m e−iφ

2
[

(1−h)
2 cos

(
θ
2
)
− (1+h)

2 sin
(
θ
2
)]

−h p√
Ep+m e iφ

2
[

(1+h)
2 cos

(
θ
2
)
+ (1−h)

2 sin
(
θ
2
)]

√

(Ep + m) e−iφ
2
[

(1−h)
2 cos

(
θ
2
)
− (1+h)

2 sin
(
θ
2
)]

√

(Ep + m) e iφ
2
[

(1+h)
2 cos

(
θ
2
)
+ (1−h)

2 sin
(
θ
2
)]












(3.25)

and for conjugate spinors: u = u†γ0 , v = v†γ0.

The explicit expressions of the F’s obtained in this way using the MATHEMATICA
package are given in Appendix B. The matrix elements and squared matrix elements
are then calculated using these expressions.

3.3.2 BOUCHIAT-MICHEL METHOD

This method, along with the trace technique, is used for evaluating the squared ampli-
tudes and is well suited for scattering processes in which the initial state consists of
two equal mass fermions. We introduce three four-vectors Sa

µ , a = 1, 2, 3 such that the
Sa and the four-momentum p = (E, p) form an orthonormal set of four-vectors [51].
That is,

p · Sa = 0,
Sa · Sb = −δab,
Sa
µSa
ν = −gµν +

pµpν
m2 (3.26)

A convenient choice for the sa is

S1µ = (0; cosθ cosφ, cosθ sinφ, − sinθ),
S2µ = (0; − sinφ, cosφ, 0), and

S3µ =
1
m (|p|; Ep̂) (3.27)
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in a coordinate system where p̂ = (sinθ cosφ, sinθ sinφ, cosθ). S3 is identified as the
positive helicity spin vector S which is defined as

Sµ = (2λ) 1
m (|p|; Ep̂) (3.28)

These helicity spinors satisfy

γ5 6Sau(p, λ′) = τ a
λλ′u(p, λ),

γ5 6Sav(p, λ′) = τ a
λ′λv(p, λ) (3.29)

where the τ a are the Pauli matrices. For a = 3, we note that the helicity spinors satisfy
the Dirac equation and are eigenstates of γ5 6S with unit eigenvalue. That is, we have

6 pu(p, λ) = mu(p, λ) , γ5 6Su(p, λ) = u(p, λ),
6 pv(p, λ) = −mv(p, λ) , γ5 6Sv(p, λ) = v(p, λ) (3.30)

Using Eqs. (3.29), one can derive the following formula first introduced by
Bouchiat and Michel [52] for spin- 1

2 particles of mass m:

u(p, λ′)u(p, λ) =
1
2 [δλλ′ +γ5 6Saτ a

λλ′ ]( 6 p + m),

v(p, λ′)v(p, λ) =
1
2 [δλ′λ +γ5 6Saτ a

λ′λ]( 6 p − m) (3.31)

For λ = λ′ and using 2λS3 = S, cf. Eq. (3.28), we can reduce Eqs. (3.31) to those for the
helicity projection operators:

u(p, λ)u(p, λ) =
1
2 (1 +γ5 6S)( 6 p + m),

v(p, λ)v(p, λ) =
1
2 (1 +γ5 6S)( 6 p − m) (3.32)

We use Eqs. (3.32) in our calculation for squared amplitudes. To apply this formula
to the massless case, we note from Eq. (3.28) that in the m → 0 limit, S = 2λp

m +
O
(m

E
)
. Inserting this result in Eqs. (3.30), it follows that the massless helicity spinors

are eigenstates of γ5:

γ5u(p, λ) = 2λu(p, λ) , γ5v(p, λ) = −2λv(p, λ) (3.33)

Applying the same limiting procedure to Eqs. (3.32) and using the mass-shell condition
( 6 p 6 p = p2 = m2), we obtain the helicity projection operators for a massless spin- 1

2
particle:

u(p, λ)u(p, λ) =
1
2 (1 + 2λγ5) 6 p,

v(p, λ)v(p, λ) =
1
2 (1 − 2λγ5) 6 p (3.34)
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In order to evaluate the squared amplitudes in the trace method, we go back
to Eqs. (3.3) - (3.7) and rewrite them as follows:

M1 = C1
[
v(p2)Gµe1 u(p1)

]
gµν

[
u(p3)(a + ibγ5)( 6q1 + mt)Gνt1 v(p4)

]
(3.35)

M2 = C2
[
v(p2)Gµe2 u(p1)

]
gµν

[
u(p3)Gνt2( 6q2 + mt)(a + ibγ5)v(p4)

]
(3.36)

M3 = C3
[
v(p2)Gµe3 u(p1)

]
gµν

[
u(p3)(a + ibγ5)( 6q1 + mt)Gνt3 v(p4)

]
(3.37)

M4 = C4
[
v(p2)Gµe4 u(p1)

]
gµν

[
u(p3)Gνt4( 6q2 + mt)(a + ibγ5)v(p4)

]
(3.38)

M5 = C5
[
v(p2)Gµe5 u(p1)

]
gµαgαβ

(

gβν −
k′βk′ν
m2

Z

)

[
u(p3)Gνt5 v(p4)

]
(3.39)

and their conjugate amplitudes:

M∗
1 = C∗

1

[

u(p1)Gµ
′

e1 v(p2)
]

gµ′ν′
[

v(p4)Gν′t1 ( 6q1 + mt)(a + ibγ5)u(p3)
]

(3.40)

M∗
2 = C∗

2

[

u(p1)Gµ
′

e2 v(p2)
]

gµ′ν′
[

v(p4)(a + ibγ5)( 6q2 + mt)Gν′t2 u(p3)
]

(3.41)

M∗
3 = C∗

3

[

u(p1)Gµ
′

e3 v(p2)
]

gµ′ν′
[

v(p4)Gν′t3 ( 6q1 + mt)(a + ibγ5)u(p3)
]

(3.42)

M∗
4 = C∗

4

[

u(p1)Gµ
′

e4 v(p2)
]

gµ′ν′
[

v(p4)(a + ibγ5)( 6q2 + mt)Gν′t4 u(p3)
]

(3.43)

M∗
5 = C∗

5

[

u(p1)Gµ
′

e5 v(p2)
]

gµ′α′gα′β′
(

gβ′ν′ −
k′β′k′ν′

m2
Z

)
[

v(p4)Gν′t5 u(p3)
]

(3.44)

where the vertices are given by (with n = 1, ...5)

Gµen =
1
2γ [len(1 −γ5) + ren(1 +γ5)] , Gµtn =

1
2γ [ltn(1 −γ5) + rtn(1 +γ5)] (3.45)

For our process (3.2),

le1 = −1 = le2 , re1 = −1 = re2 ,
le3 = −1 + 2 sin2θW = le4 = le5 , re3 = 2 sin2θW = re4 = re5 ,

lt1 =
2
3 = lt2 , rt1 =

2
3 = rt2 ,

lt3 = 1 − 4
3 sin2θW = lt4 = lt5 , rt3 = −4

3 sin2θW = rt4 = rt5 , (3.46)

C1 =
e3mt

mZ sin(2θW)(q2
1 − m2

t )s
, C2 =

e3mt
mZ sin(2θW)(q2

2 − m2
t )s

,

C3 =
e3mt

mZ sin3(2θW)(q2
1 − m2

t )(s − m2
Z)

, C4 =
e3mt

mZ sin3(2θW)(q2
2 − m2

t )(s − m2
Z)

,

C5 =
2e3mZc

sin3(2θW)(k′2 − m2
Z)(s − m2

Z)
(3.47)
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Here we have not included the decay width parts; hence, all the C’s are real except C5
which can be complex due to the parameter c of the anomalous ZZφ vertex. For our
parametrization described in Chapter 4, all the three parameters a, b and c are taken to
be real; hence, all the Ci’s are real in this case.

Now the squared amplitudes for individual helicity states are given by

|Mtot(h1 , h2, h3, h4)|2 =

∣
∣
∣
∣
∣

5
∑

n=1
Mn(h1, h2, h3, h4)

∣
∣
∣
∣
∣

2

=
5
∑

n=1
|Mn|2 + 2 · Re [M∗

1M2

+M∗
1M3 +M∗

1M4 +M∗
1M5 + M∗

2M3 +M∗
2M4

+M∗
2M5 +M∗

3M4 +M∗
3M5 + M∗

4M5] (3.48)

All the 15 terms in Eq. (3.48) are calculated, as functions of (h1, h2, h3, h4), by the trace
method:

M∗
1M1 = C2

1 gµν gµ′ν′ Tr
[

Gµ
′

e1 Pev(h2)Gµe1 Peu(h1)
]

·

Tr
[

Gν′t1 ( 6q1 + mt)(a + ibγ5)Ptu(h3)(a + ibγ5)( 6q1 + mt)Gνt1 Ptv(h4)
]

M∗
2M2 = C2

2 gµν gµ′ν′ Tr
[

Gµ
′

e2 Pev(h2)Gµe2 Peu(h1)
]

·

Tr
[

(a + ibγ5)( 6q2 + mt)Gν′t2 Ptu(h3)Gνt2( 6q2 + mt)(a + ibγ5)Ptv(h4)
]

M∗
3M3 = C2

3 gµν gµ′ν′ Tr
[

Gµ
′

e3 Pev(h2)Gµe3 Peu(h1)
]

·

Tr
[

Gν′t3 ( 6q1 + mt)(a + ibγ5)Ptu(h3)(a + ibγ5)( 6q1 + mt)Gνt3 Ptv(h4)
]

M∗
4M4 = C2

4 gµν gµ′ν′ Tr
[

Gµ
′

e4 Pev(h2)Gµe4 Peu(h1)
]

·

Tr
[

(a + ibγ5)( 6q2 + mt)Gν′t4 Ptu(h3)Gνt4( 6q2 + mt)(a + ibγ5)Ptv(h4)
]

M∗
5M5 = C2

5 gµα gµ′α′ gαβ gα′β′
(

gβν −
k′βk′ν
m2

Z

)(

gβ′ν′ −
k′
β′k′ν′
m2

Z

)

·

Tr
[

Gµ
′

e5 Pev(h2)Gµe5 Peu(h1)
]

· Tr
[

Gν′t5 Ptu(h3)Gνt5 Ptv(h4)
]

M∗
1M2 = C1C2 gµν gµ′ν′ Tr

[

Gµ
′

e1 Pev(h2)Gµe2 Peu(h1)
]

·

Tr
[

Gν′t1 ( 6q1 + mt)(a + ibγ5)Ptu(h3)Gνt2( 6q2 + mt)(a + ibγ5)Ptv(h4)
]

M∗
1M3 = C1C3 gµν gµ′ν′ Tr

[

Gµ
′

e1 Pev(h2)Gµe3 Peu(h1)
]

·

Tr
[

Gν′t1 ( 6q1 + mt)(a + ibγ5)Ptu(h3)(a + ibγ5)( 6q1 + mt)Gνt3 Ptv(h4)
]

M∗
1M4 = C1C4 gµν gµ′ν′ Tr

[

Gµ
′

e1 Pev(h2)Gµe4 Peu(h1)
]

·

Tr
[

Gν′t1 ( 6q1 + mt)(a + ibγ5)Ptu(h3)Gνt4( 6q2 + mt)(a + ibγ5)Ptv(h4)
]
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M∗
1M5 = C1C5 gµα gαβ

(

gβν −
k′βk′ν
m2

Z

)

gµ′ν′ · Tr
[

Gµ
′

e1 Pev(h2)Gµe5 Peu(h1)
]

·

Tr
[

Gν′t1 ( 6q1 + mt)(a + ibγ5)Ptu(h3)Gνt5 Ptv(h4)
]

M∗
2M3 = C2C3 gµν gµ′ν′ Tr

[

Gµ
′

e2 Pev(h2)Gµe3 Peu(h1)
]

·

Tr
[

(a + ibγ5)( 6q2 + mt)Gν′t2 Ptu(h3)(a + ibγ5)( 6q1 + mt)Gνt3 Ptv(h4)
]

M∗
2M4 = C2C4 gµν gµ′ν′ Tr

[

Gµ
′

e2 Pev(h2)Gµe4 Peu(h1)
]

·

Tr
[

(a + ibγ5)( 6q2 + mt)Gν′t2 Ptu(h3)Gνt4( 6q2 + mt)(a + ibγ5)Ptv(h4)
]

M∗
2M5 = C2C5 gµα gαβ

(

gβν −
k′βk′ν
m2

Z

)

gµ′ν′ · Tr
[

Gµ
′

e2 Pev(h2)Gµe5 Peu(h1)
]

·

Tr
[

(a + ibγ5)( 6q2 + mt)Gν′t2 Ptu(h3)Gνt5 Ptv(h4)
]

M∗
3M4 = C3C4 gµν gµ′ν′ Tr

[

Gµ
′

e3 Pev(h2)Gµe4 Peu(h1)
]

·

Tr
[

Gν′t3 ( 6q1 + mt)(a + ibγ5)Ptu(h3)Gνt4( 6q2 + mt)(a + ibγ5)Ptv(h4)
]

M∗
3M5 = C3C5 gµα gαβ

(

gβν −
k′βk′ν
m2

Z

)

gµ′ν′ · Tr
[

Gµ
′

e3 Pev(h2)Gµe5 Peu(h1)
]

·

Tr
[

Gν′t3 ( 6q1 + mt)(a + ibγ5)Ptu(h3)Gνt5 Ptv(h4)
]

M∗
4M5 = C4C5 gµα gαβ

(

gβν −
k′βk′ν
m2

Z

)

gµ′ν′ · Tr
[

Gµ
′

e4 Pev(h2)Gµe5 Peu(h1)
]

·

Tr
[

(a + ibγ5)( 6q2 + mt)Gν′t4 Ptu(h3)Gνt5 Ptv(h4)
]

(3.49)

where

Peu(h1) =
1
2 (1 + h1γ5) 6 p1 , Pev(h2) =

1
2 (1 − h2γ5) 6 p2 ,

Ptu(h3) =
1
2 (1 + h3γ5 6S′

3)( 6 p3 + mt), Ptv(h4) =
1
2 (1 + h4γ5 6S′

4)( 6 p4 − mt)(3.50)

from Eqs. (3.32) and (3.34). The four-vectors S′
3 and S′

4 are defined as in Eq (3.28), but
omitting the helicity term which has already been factored out in Eqs. (3.50):

S′
3 =

1
mt

(

|p3|;
E3p3
|p3|

)

, S′
4 =

1
mt

(

|p4|;
E4p4
|p4|

)

(3.51)

The analytical expressions for the helicity states (3.48) have been obtained
using a combination of the packages FORM and MATHEMATICA; however, the expressions
are too lengthy to be included here.
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3.4 THE PRODUCTION CROSS SECTION

In this section, we calculate the differential and total production cross section for the
process (3.2). The analytical expressions for the SM case were first obtained in Ref.[44].
We extend the calculation to the general case, including the anomalous couplings.
Then the calculation becomes quite involved due to the complicated structure of am-
plitude. Hence, we do the integration numerically using the Monte Carlo method.

3.4.1 THE DIFFERENTIAL CROSS SECTION

Differential cross section of the 3-body final state (3.2) is given by [53]

dσ =
(2π)4

2I |M f i|2dR3(P; p3 , p4, p5) (3.52)

where
I =

√

[s − (m1 + m2)2] [s − (m1 − m2)2] = s

as m1 = m2 = me → 0 and
|M f i|2 =

3
4 |Mtot|2

( 1
4 for average over initial beam polarizations and 3 for the color factor of the quarks).

Thus in the center-of-mass (c.o.m.) frame, we have

dσ =
(2π)4

2s |M f i|2dR3(P; p3 , p4, p5) (3.53)

where P = (
√

s; 0, 0, 0) and

dR3(P; p3 , p4, p5) =
d3p3
(2π)3

1
2E3

d3p4
(2π)3

1
2E4

d3p5
(2π)3

1
2E5

δ(4)(P − p3 − p4 − p5) (3.54)

where p1 + p2 = P = p3 + p4 + p5 in the c.o.m. frame.

In order to express Eq. (3.54) in a simple form, we split the 3-body decay
into a set of two 2-body decays [54] as shown in Figure 3.3. Then we can do the 3-body
kinematics in terms of two 2-body problems: one in the c.o.m. frame with momenta p3
and pK while the other in the K-rest frame with p′4 and p′5. Thus we have

P = (
√

s; 0, 0, 0) = p3 + pK (in the c.o.m. frame)

pK = (mK ; 0, 0, 0) = p′4 + p′5 (in the K-rest frame)
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PSfrag replacements p1

p2

p3

p4

p5

P

pK

Figure 3.3: A 3-body decay split into a set of two 2-body decays in the c.o.m. frame.

p′4 and p′5 are then to be boosted and rotated into the c.o.m. frame to yield the values
p4 and p5 respectively4.

Separating these two parts and inserting the identity

1 =
∫

dK2
∫ d3pK

2EK
δ(4)(pK − p′4 − p′5)

where E2
K = p2

K + m2
K and m2

K = K2. We can write Eq. (3.54) as

dR3 = (2π)3dK2

c.o.m. frame
︷ ︸︸ ︷

d3pK
(2π)3

1
2EK

d3p3
(2π)3

1
2E3

δ(4)(P − pK − p3) ·

d3p4
(2π)3

1
2E4

d3p5
(2π)3

1
2E5

δ(4)(pK − p′4 − p′5)
︸ ︷︷ ︸

K−rest frame

(3.55)

It can be easily shown that

d3pK
(2π)3

1
2EK

d3p3
(2π)3

1
2E3

δ(4)(P − pK − p3) =
1

4(2π)6 d(cosθ3)dφ3
|p3|
Ecm

,

d3p4
(2π)3

1
2E4

d3p5
(2π)3

1
2E5

δ(4)(pK − p′4 − p′5) =
1

4(2π)6 d(cosθ′4)dφ′
4
|p′

4|
mK

Without any loss of generality, we can assume φ3 = 0 so that we can replace
∫

dφ3 by
2π straightaway. Then Eq. (3.53) becomes

dσ =
1

29π4 dφ′
4 d(cosθ3) d(cosθ′4)d(K2)

(bs
s

)

|M f i|2 (3.56)

4In practice, we need to boost and rotate only one of the two momenta as the other one will be fixed
by four-momentum conservation.
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where
bs =

|p3|√
s
|p′

4|
mK

(3.57)

is the phase-space volume.

3.4.2 ROTATION AND BOOST

In the K-rest frame, the four vector p′4 is defined as

p′4 = (E′
4; |p′

4| sinθ′4 cosφ′
4 , |p′

4| sinθ′4 sinφ′
4, |p′

4| cosθ′4) (3.58)

First it has to be boosted along the z-axis by the boost operator

Bz =







γ 0 0 γβ

0 1 0 0
0 0 1 0
γβ 0 0 γ







(3.59)

where γ = EK
mK

and γβ = |pK|
mK

. Then (3.58) has to be rotated about the y-axis by an angle
θ′ = π −θ3 followed by a rotation about the z-axis by an angle φ′ = π −φ3 = π (as
we have chosen φ3 = 0) by the rotation operators given by

Ry =







1 0 0 0
0 cosθ′ 0 sinθ′
0 0 1 0
0 − sinθ′ 0 cosθ′







=







1 0 0 0
0 − cosθ3 0 sinθ3
0 0 1 0
0 − sinθ3 0 − cosθ3







(3.60)

and

Rz =







1 0 0 0
0 cosφ′ − sinφ′ 0
0 sinφ′ cosφ′ 0
0 0 0 1







=







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1







(3.61)

respectively. Thus the total transformation matrix is given by

T = Rz · Ry · Bz =







γ 0 0 γβ

−γβ sinθ3 cosθ3 0 −γ sinθ3
0 0 −1 0

−γβ cosθ3 − sinθ3 0 −γ cosθ3







(3.62)

Thus the four-vector p4 in the c.o.m. frame is given by

p4 = (E4 ; |p4| sinθ4 cosφ4, |p4| sinθ4 sinφ4 , |p4| cosθ4) = T · p′4 (3.63)
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We define p3 as
p3 = (E3 ; |p3| sinθ3, , |p3| cosθ3) (3.64)

Then p5 becomes fixed by four-momentum conservation:

p5 = (Ecm − E3 − E4;−p3 − p4) (3.65)

The following relations will be useful in the numerical integration:

E3 =
1

2Ecm
(E2

cm + m2
t − m2

K) ,

E′
4 =

1
2mK

(m2
K + m2

t − m2
H) (3.66)

3.4.3 THE TOTAL CROSS SECTION

The total production cross section is obtained by integrating the expression (3.56):

σtot =
1

29π4

∫ 2π

0
dφ′

4

∫ +1

−1
d(cosθ3)

∫ +1

−1
d(cosθ′4)

∫ (s−mt)2

(mH+mt)2
d(K2)

(bs
s

)

|M f i|2

(3.67)
Before proceeding to analyze the general case including the non-standard parts, we
first verify the known results for the SM case in which a = 1 = c and b = 0 in the tt̄φ
and ZZφ couplings. The integrated cross sections are shown in Figure 3.4 for various
cases 5. As already observed in Ref.[44], the dominant mode is the Higgs radiation off
the top quarks. The contribution from the Higgs emission off Z boson is always less
than a few percent in the whole range of energy shown here. Hence, this process pro-
vides a chance for direct measurement of the ttφ Yukawa coupling [45]. Also we note
that the Z exchange contribution for the Higgs emission off t is considerably smaller
(roughly by a factor of sin2θW) as compared to that for γ exchange, as already noted
in [46].

In Figure 3.5, we show the variations of cross section with c.o.m. energy
for some representative values of Higgs mass and with Higgs mass for some fixed
c.o.m. energy values. From Figure 3.5(a), we see that at a given c.o.m. energy, the
cross section decreases with increase in the Higgs mass; this is due to the reduction
of available phase space. On the other hand, it can be seen from Figure 3.5(b) that
with increase in the c.o.m. energy, the cross section decreases slightly for small Higgs
masses, a consequence of scaling, while they fall off less steeply for large Higgs masses.

5We use the CompHEP values (See Appendix E) for all the SM parameters used in our calculation
unless otherwise specified, in order to be able to make a direct and authentic check of our results.
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Figure 3.4: Total cross section for tt̄φ for mt = 174.3 GeV and mH = 115 GeV, as a
function of the c.o.m. energy. In (a) the contribution coming only from the photon
exchange is shown. In (b) both the γ and Z exchange contributions for Higgs emission
off t is shown. The total SM cross section, including the contribution coming from the
Higgs emission off Z, is illustrated in (c).

We can also obtain the polarized cross sections for individual helicity states
by plugging in the appropriate squared matrix element in the expression (3.67):

σ(h1, h2, h3, h4) =
1

29π4

∫ 2π

0
dφ′

4

∫ +1

−1
d(cosθ3)

∫ +1

−1
d(cosθ′4)

∫ (s−mt)2

(mH+mt)2
d(K2)

(bs
s

)

·

|M f i(h1, h2, h3, h4)|2 (3.68)

where |M f i(h1, h2, h3, h4)|2 = 3|Mtot(h1, h2, h3, h4)|2. Note that here we do not have
the 1

4 factor as we have fixed the initial helicity states. The cross sections for all the 8
helicity combinations are shown in Figure 3.6 as a function of the c.o.m. energy. We
observe that the cross section values are the same when both the t and t̄ are produced
with the same helicity for a given initial state. We will discuss more about the polarized
cross sections in Chapter 4 while constructing the polarization asymmetries both with
and without initial beam polarizations.
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Figure 3.5: Total cross section (a) as a function of the c.o.m. energy for four values of
the Higgs mass mH = 80, 120, 150, and 180 GeV, and (b) as a function of the Higgs
boson mass for three energy values Ecm = 800, 1000 and 1500 GeV, with the SM Higgs
mass shown as a vertical line at 115 GeV.
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CHAPTER 4

PROBE OF THE HIGGS PSEUDO-SCALAR
COUPLING PARAMETER

CP violation allows simultaneous existence of terms in the interaction Lagrangian with
opposite CP transformation properties. The neutral Higgs sector is unique in the sense
that a single Higgs boson coupling to a massive fermion is enough to manifest CP
violation as long as the Yukawa coupling contains both scalar and pseudo-scalar com-
ponents. Therefore, this CP-violating aspect is the most interesting part of the Higgs
physics beyond the SM once a neutral Higgs boson is identified.

In Chapter 2, we have introduced the most general Lorentz invariant form
of the tt̄φ Yukawa coupling (2.1):

gtt̄φ = ig2
mt

2mW
(a + iγ5b)

We parametrize this coupling with |a|2 + |b|2 = 1, keeping in mind that for the SM
case, we have a = 1, b = 0. Similarly, the ZZφ coupling (2.2):

gZZφ = c g2mZ
cW

gµν

can be parametrized with c = a so that for the SM case c = 1. Here we have taken the
three parameters a, b, c to be real and to be related to each other in a natural model-
independent way, because a CP-mixed state of the Higgs is expected to reduce the
scalar coupling from the SM value by exactly the same amount for both the vertices.
Due to this particular way of parametrization (in which we have only one independent
real parameter), the only possible CP violating term in the squared matrix element
will be ab. However, if we treat a, b, and c as independent parameters [55], then we
will have an additional CP-violating term bc. In principle, one may indeed have a, b
and c unrelated to each other in a particular model, e.g. in THDM [49]. Thus the
parametrization we have adopted, though model-independent, is not the most general.

In this chapter, we study the sensitivity of the Higgs pseudo-scalar coupling
parameter b to both cross section and polarization asymmetry measurements. In the

52
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following two sections, we study the variation of cross section and polarization asym-
metry with b, which we take to be the independent parameter.

4.1 UNPOLARIZED INITIAL BEAMS

We define the final state polarization asymmetry Pt as

Pt =
σ(tL) −σ(tR)

σ(tL) +σ(tR)
, (4.1)

where σ(tL,R) are the cross sections for producing t with left- and right-handed helici-
ties, respectively.
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Figure 4.1: Variation of (i) σtot and (ii) Pt with Ecm for b = 0 and b = 1.

Figure 4.1 (i) shows the variation of the total production cross section,σtot =
σ(tL) +σ(tR), with the c.o.m. energy for a scalar (b = 0) as well as a pseudo-scalar
(b = 1) Higgs boson. Figure 4.1 (ii) shows the variation of top polarization asymmetry
Pt with the c.o.m. energy. It is clear from these figures that the two cases (b = 0 and
b = 1) yield remarkably different values for cross section as well as the top polarization
asymmetry. Hence, in principle, both these measurements can be used for determina-
tion of the CP property of the Higgs boson. However, in practice, the cross section
values can change due to higher order radiative corrections coming from various sec-
tors while the polarization asymmetry is insensitive to these corrections. Therefore, the
polarization asymmetry can be a very useful observable for CP studies of the Higgs bo-
son.

Figures 4.2 (i) and (ii) show the variations of σtot and Pt respectively with
the pseudo-scalar coupling parameter b for a fixed c.o.m. energy Ecm = 800 GeV. As
we can see from this Figure, though the asymmetry values are quite different for the
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Figure 4.2: (i) Variation of (i) σtot and (ii) Pt with b for Ecm = 800 GeV.

two cases [Pt(b = 0) ' 3.5Pt(b = ±1)], and hence, can be clearly distinguished from
each other by measurements, it is not so sensitive to the variation of b unless b is very
close to 1. Therefore, it may not be a good observable to determine a CP-mixed state
of the Higgs boson, as we will see later.

As can be seen from Figure 4.2(i), the unpolarized cross section (after being
integrated over the whole phase space) varies quadratically with b:

σtot = [xt − ytb2]fb (4.2)

At Ecm = 800 GeV, xt = 2.8355 and yt = 2.4354. Similarly for all the helicity states,we
find

σ1 ≡ σ [1,−1, 1, 1] = [0.6591 − 0.4613 b2]fb ,
σ2 ≡ σ [1,−1, 1,−1] = [1.7695 − 1.6904 b2]fb ,
σ3 ≡ σ [1,−1,−1, 1] = [0.4364 − 0.4122 b2]fb ,
σ4 ≡ σ [1,−1,−1,−1] = [0.6591 − 0.4613 b2]fb ,
σ5 ≡ σ [−1, 1, 1, 1] = [1.4658 − 1.0276 b2]fb ,
σ6 ≡ σ [−1, 1, 1,−1] = [1.2584 − 1.1941 b2]fb ,
σ7 ≡ σ [−1, 1,−1, 1] = [3.6279 − 3.4675 b2]fb ,
σ8 ≡ σ [−1, 1,−1,−1] = [1.4658 − 1.0276 b2]fb (4.3)

Now σ(tL) and σ(tR) are respectively given by

σ(tL) =
1
4 [σ3 +σ4 +σ7 +σ8] = [1.5473 − 1.3421 b2]fb,

σ(tR) =
1
4 [σ1 +σ2 +σ5 +σ6] = [1.2882 − 1.0933 b2]fb (4.4)
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The variation of Pt with b is given by cf. Eq. (4.1)

Pt =
xlr − ylrb2

xt − ytb2 (4.5)

where xlr = 0.2591 and ylr = 0.2488 at Ecm = 800 GeV.

Here we make one important observation: Numerically, the coefficient of
the CP-odd term ab vanishes altogether for individual helicity states when integrated
over the whole phase space. Of course, this is expected to be zero in the total cross sec-
tion as it is an CP-even function. However, as we are interested in the CP-odd term ab,
we want to have a partial cross section in which this term is non-zero. We have figured
out that there is an underlying symmetry w.r.t. the azimuthal angle φ′

4, i.e. up-down
symmetry due to which the ab term vanishes when integrated over the whole range of
φ′

4 from 0 to 2π . In other words, the contribution for φ′
4 from 0 to π is equal in magni-

tude and opposite in sign to that for φ′
4 from π to 2π . As in our parametrization, the

only CP-odd term is ab, neither the cross section nor the polarization asymmetry can
be a good observable to probe the CP-mixed state of the Higgs boson. This observation
will be justified when we make sensitivity studies later in this chapter. An up-down
asymmetry of the t̄ production w.r.t. the e−-t plane, on the other hand, will provide an
excellent probe of CP violating combination ab.

4.2 LONGITUDINALLY POLARIZED INITIAL BEAMS

If we have longitudinally polarized electron beams, the polarized cross section can be
written as [56]

σPe−Pe+
=

1
4 {(1 + Pe−)(1 + Pe+)σRR + (1 − Pe−)(1 − Pe+)σLL

+(1 + Pe−)(1 − Pe+)σRL + (1 − Pe−)(1 + Pe+)σLR} , (4.6)

where σRL stands for the cross section of the process when both the electron and the
positron beam are 100% polarized in right-handed e− and left-handed e+;σLL,σRR and
σLR are defined analogously. Pe± denote the longitudinal polarizations of the initial
e± beams and their values range between -1 and +1; we use the right-handed helicity
basis, so that Pe± < 0 means that the beam is left-handed polarized.

In the case of e+e− annihilation into a vector particle (in our case γ/Z0) with
total angular momentum J = 1 only the two configurations σRL and σLR contribute.
The cross section for arbitrary beam polarization is then given by

σPe−Pe+
≡ σ e

t =
1 + Pe−

2
1 − Pe+

2 σRL +
1 − Pe−

2
1 + Pe+

2 σLR
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= (1 − Pe−Pe+)
σLR +σRL

4

[

1 − Pe− − Pe+

1 − Pe−Pe+

σLR −σRL
σLR +σRL

]

= (1 − Pe−Pe+) σ0 [1 − Pe f f ALR], (4.7)

with the unpolarized cross section : σ0 =
σLR +σRL

4 , (4.8)

the left − right asymmetry : ALR =
σLR −σRL
σLR +σRL

, (4.9)

and the effective polarization : Pe f f =
Pe− − Pe+

1 − Pe−Pe+
(4.10)

The collision cross sections can be enhanced if both beams are polarized and if Pe−
and Pe+ have opposite sign, cf. Eq (4.7). The realistic values of Pe− and Pe+ for which
the effective luminosity (i.e. the fraction of interacting particles) is maximum, are -0.8
and +0.6, respectively [56]. Hence, we have chosen these values for our analysis with
polarized initial beams.

We can define the final state polarization asymmetry Pt exactly as in Eq. 4.1:

Pe
t =

σ e
t (tL) −σ e

t (tR)

σ e
t (tL) +σ e

t (tR)
, (4.11)

In Figure 4.3 we have shown the variation of |Pe
t | with Ecm for three representative

sets of initial beam configurations: one with the electron beam completely left-handed
(Pe− = −1) and the positron beam right-handed (Pe+ = +1), the second with the spin
directions reversed and the third one with realistic values: Pe− = −0.8 and Pe+ = +0.6.
In the second case, Pe

t turns out to be -ve, so we have taken its absolute value in the plot.
For comparison, the unpolarized case is also shown here. As expected, the polarization
asymmetry gets enhanced due to initial beam polarizations. We also note that the
polarization asymmetry is maximum if the electron beam completely right-handed
and the positron beam left-handed.

As a function of b, σ e
t and Pe

t at Ecm = 800 GeV are calculated as follows:

σLR = σ5 +σ6 +σ7 +σ8 = [7.8179 − 6.7167 b2]fb ,
σRL = σ1 +σ2 +σ3 +σ4 = [3.5242 − 3.0251 b2]fb (4.12)

Hence using Eq. (4.7) we get for Pe− = −0.8 and Pe+ = 0.6,

σ e
t = [xe

t − ye
t b2]fb (4.13)

where xe
t = 5.6994 and ye

t = 4.8966. Further,

σLR(tL) = σ7 +σ8 = [5.0937 − 4.4951 b2]fb
σLR(tR) = σ5 +σ6 = [2.7242 − 2.2216 b2]fb
σRL(tL) = σ3 +σ4 = [1.0956 − 0.8734 b2]fb
σRL(tR) = σ1 +σ2 = [2.4286 − 2.1517 b2]fb (4.14)
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Figure 4.3: (i) Variation of |Pe
t | with Ecm for (i) b = 0 and (ii) b = 1.

Then Eq. (4.13) can be split into two parts:

σ e
t (tL) = [3.6894 − 3.2539 b2]fb
σ e

t (tR) = [2.0100 − 1.6426 b2]fb (4.15)

Then using Eq. (4.11) we get

Pe
t =

xe
lr − ye

lr b2

xe
t − ye

t b2 (4.16)

where xe
lr = 1.6794 and ye

lr = 1.6113.

4.3 SENSITIVITY

If one wishes to test the hypothesis that the value b = b0 is the real value of b, one needs
to demand that the change ∆(b) in an observable O as b0 is changed to b0 ±∆b0 is more
than the statistical fluctuation in O(b), i.e. we would say that ∆b is the sensitivity at
b = b0 if

|O(b) − O(b0)| = ∆O(b0) (4.17)
for |b − b0| < ∆b. Now applying this condition to our observables, namely the cross
section and polarization asymmetry, we must have

|σ(b) −σ(b0)| = ∆σ(b0) (4.18)
|Pt(b) − Pt(b0)| = ∆Pt(b0) (4.19)

to say that b = b0 is sensitive to these measurements. The sensitivity limits can be
obtained by solving these equations for ∆b.
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At a luminosity L, the statistical fluctuations in the measurements of cross
section and polarization asymmetry at a confidence level f are respectively given by

∆σ = f
√
σ

L (4.20)

∆Pt =
f√
σL

√

1 − P2
t (4.21)

For unpolarized initial beams, the only physically acceptable solution for
|∆b|, as obtained from Eq. (4.18) using Eq. (4.2), is

∆b = −b0 +
√

b2
0 + c f (4.22)

where c f = ∆σt(b0)
yt

. This is plotted in Figure 4.4(a) for 1σ , 2σ and 3σ C.L. Here we
have taken the luminosity L to be 500fb−1. Similarly, for polarized initial beams, using
Eq. (4.13) we get the solution as given by Eq. (4.22), but with c f =

∆σ e
t (b0)
ye

t
. This is

plotted in Figure 4.4(b) for 1σ , 2σ and 3σ C.L.
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Figure 4.4: Sensitivity plots for b using cross section for (a) unpolarized initial beams
and (b) polarized beams with Pe− = −0.8, Pe+ = 0.6.

Similarly, using polarization asymmetry as the observable, we obtain the
following acceptable solution from Eq. (4.19) using Eq. (4.5) for unpolarized initial
beam:

∆b = −b0 +

√

∆Pt(b0)xt(xt − b2
0 yt) + b2

0(xtylr − xlryt)

(xt(ylr + ∆Pt(b0)yt) − yt(xlr + b2
0∆Pt(b0)yt))

(4.23)

This is plotted in Figure 4.5(a) for 1σ , 2σ and 3σ C.L.. For polarized initial beams, we
use Eq. (4.16) to obtain the solution

∆b = −b0 +

√

∆Pe
t (b0)xe

t(xe
t − b2

0 ye
t) + b2

0(xe
t ye

lr − xe
lrye

t)

(xe
t(ye

lr +∆Pe
t (b0)ye

t ) − ye
t(xe

lr + b2
0∆Pe

t (b0)ye
t))

(4.24)
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This is plotted in Figure 4.5(b) for 1σ , 2σ and 3σ C.L..
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Figure 4.5: Sensitivity plots for b using polarization asymmetry of the top quark for (a)
unpolarized initial beams and (b) polarized beams with Pe− = −0.8, Pe+ = 0.6.

We thus find that neither the cross section nor the polarization asymmetry
measurement is very sensitive to b except for b values close to 1, although initial beam
polarization enhances the sensitivity by some amount, as shown in Figure 4.6.
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Figure 4.6: Comparison of sensitivity plots at 3σ C.L. for unpolarized and polarized
initial beams with Pe− = −0.8, Pe+ = 0.6 : (a) in cross section measurement and (b) in
polarization asymmetry measurements.

Nevertheless, the polarization asymmetry is a very good observable to dis-
tinguish a purely CP-even state of the Higgs from a purely CP-odd state. This is,
anyway, useful because in a model in which both these states have the same mass,
the CP-odd state can not be determined in other conventional ways such as the Higgs
decay to W or Z bosons [57] because a pure CP-odd state does not couple to vector
bosons. In this case, for instance, the polarization asymmetry measurement can in-
stead be used to determine the pure CP-odd state of the Higgs.



CHAPTER 5

HEAVY QUARK DECAY

A direct consequence of weak interactions is the decay of the heavier leptons and
quarks into lighter particles. Decays are important not only as a test of the SM model
but also as a means to detect new physics effects in experiments. In this chapter, we
discuss the two possible decay modes of a heavy quark depending on its mass. This
work is not directly relevant for the main project work discussed earlier. However, we
plan to study, at a later stage, the energy and angular distributions of the top quark
which are extremely useful probes of non-standard effects, as we have already dis-
cussed in §1.8.2; hence it is instructive to know the details of a heavy quark decay in
general. In particular, this work was done to get a feel for the time-scale involved in
top decay and to make a comparison with the hadronization time scale to see that the
former is indeed much smaller than the latter.

We have studied the decay width of a heavy-quark as a function of its mass.
The situation for charged-current heavy-quark decay depends on whether mQ < mW
or mQ > mW. In the former case, Q decays in the usual 3-body manner through a
virtual W; in the latter case, it decays into a real W and a lighter quark. Because of the
nearly-diagonal character of quark mixing matrix (1.83), the most favored route for a
heavy quark charged-current decay is either to the same generation (e.g. t → b) or –
if this is kinematically impossible – to the nearest generation (e.g. b → c). As a result,
heavy quark decays go preferentially via a cascade:

c → s ,
b → c → s ,
t → b → c → s ,

with real or virtual W emission at each stage. These cascade decays have many inter-
esting experimental consequences [58].
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5.1 QUARK DECAYS TO REAL W BOSONS

A heavy quark with mass mQ > mW + mq will decay into a real W boson and a lighter
quark q, as illustrated in Figure 5.1. Denoting the four-momenta by particle labels, thePSfrag replacements

Q

q
W

ε∗µ

Figure 5.1: Charged-current weak decay of a heavy quark Q for mQ > mW.

matrix element for this decay is

M = −i g2
2
√

2
VQq [u(q)γµ(1 −γ5)u(Q)]ε∗µW (5.1)

where VQq is the CKM mixing element for QqW vertex, and εµW is the W polarization
vector. The spin-averaged matrix element squared is given by

|M|2 =
1
2 ∑ |M|2

=
g2

2
16 |VQq|2 ∑

spins
[u(q)γµ(1 − γ5)u(Q)] [u(Q)γν(1 −γ5)u(q)] ∑

polarizations
ε
∗µ
Wε

ν
W

=
g2

2
16 |VQq|2 · Tr

[
( 6q + mq)γµ(1 −γ5)( 6Q + mQ)γν(1 −γ5)

]

(

−gµν +
WµWν

m2
W

)

=
g2

2
16 |VQq|2 × 8

[

qµQν + Qµqν − gµν(q · Q) − iερµλνqρQλ
]
(

−gµν +
WµWν

m2
W

)

=
g2

2
2 |VQq|2

[

q · Q +
2(q ·W)(Q ·W)

m2
W

]

(5.2)

The decay rate for this process is given by

Γ2(Q → qW) =
1

2EQ

∫ d3q
(2π)32Eq

d3W
(2π)32EW

(2π)4δ4(Q − W − q) × |M|2 (5.3)

Using the delta function (i.e. four-momentum conservation), the dot products in Eq.
(5.2) can be expressed in terms of the masses of the on-shell particles:

q ·Q =
1
2
(

m2
Q + m2

q − m2
W

)

, q ·W =
1
2
(

m2
Q − m2

q − m2
W

)

, Q ·W =
1
2
(

m2
Q − m2

q + m2
W

)
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Thus Eq. (5.2) becomes

|M|2 =
g2

2
4m2

W
|VQq|2

[

(m2
Q − m2

q)
2 + m2

W(m2
Q + m2

q) − 2m4
W

]

(5.4)

To take into account the running of couplings with the mass scale, which is mW in this
case, we introduce α(m2

W):

G =
g2

2
√

2
8m2

W
=

πα(m2
W)√

2xW(m2
W)m2

W)
(5.5)

with the numerical values α(m2
W) ≈ 1

128 and xW(m2
W) ≈ 0.23 [11]. Thus Eq. (5.4)

becomes
|M|2 = G

√
2|VQq|2

[

(m2
Q − m2

q)
2 + m2

W(m2
Q + m2

q) − 2m4
W

]

(5.6)

Now Eq. (5.3) can be written as

Γ2 =
1

2EQ
|M|2(2π)4R2 (5.7)

where the Lorentz invariant phase space (LIPS) is given by 1 [54]

R2 =
1

(2π)6
π

2 λ
1
2

(

1,
m2

W
m2

Q
,

m2
q

m2
Q

)

(5.8)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca. In the Q rest frame we obtain from
Eq. (5.7)

Γ2 =
Gm3

Q
8π

√
2
|VQq|2λ

1
2

(

1,
m2

W
m2

Q
,

m2
q

m2
Q

)



(

1 −
m2

q
m2

Q

)2

+
m2

W
m2

Q

(

1 +
m2

q
m2

Q

)

− 2
m4

W
m4

Q



 (5.9)

For m2
q � m2

Q, this simplifies to

Γ2 =
Gm3

Q

8π
√

2
|VQq|2

(

1 − m2
W

m2
Q

)2(

1 +
2m2

W
m2

Q

)

(5.10)

from which we conclude that Γ2 ∼ m3
Q for mQ � mW . this results from the longitudinal

part of the W polarization tensor [59].
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Figure 5.2: Charged-current weak decay of a heavy quark Q for mQ < mW.

5.2 QUARK DECAYS TO VIRTUAL W BOSONS

The matrix element for this process is given by

M =

(−ig2
2
√

2

)2
VQq [u(q)γµ(1 − γ5)u(Q)]

{

−i
W2 − m2

W

(

gµν − kµkν
m2

W

)}

·

[u(q1)γν(1 −γ5)u(q2)] (5.11)

where k = Q − q. Hence the spin-averaged matrix element squared is given by

|M|2 =
1
2 ∑ |M|2 =

1
2

(

g2
2

8

)2 |VQq|2
(W2 − m2

W)2 ∑
spins

[u(q)γµ(1 − γ5)u(Q)]

[
ū(q1)γµ′(1 − γ5)u(q2)

]
[ū(Q)γν(1 − γ5)u(q)] [ū(q2)γν′(1 −γ5)u(q1)]

(

gµµ′ − kµkµ′

m2
W

)(

gνν′ − kνkν′

m2
W

)

=
1
2

(

Gm2
W√
2

)2 |VQq|2
(W2 − m2

W)2 · Tr
[
( 6q + mq)γµ(1 −γ5)( 6Q + mQ)γν(1 − γ5)

]
·

Tr
[
6q1γµ′(1 −γ5) 6q2γν′(1 − γ5)

]

(

gµµ′ − kµkµ′

m2
W

)(

gνν′ − kνkν′

m2
W

)

=
1
2

(

Gm2
W√
2

)2 |VQq|2
(W2 − m2

W)2 × 256(Q · q1)(q · q2)

=
64G2|VQq|2
(

1 − W2

m2
W

)2 (Q · q1)(q · q2) (5.12)

where we have assumed that the masses of q1, q2 are much smaller than mW and hence
negligible. In the rest frame of Q, we have

Q · q1 = mQE1 , and q · q2 =
1
2 (m2

Q − m2
q − 2mQE1) (5.13)

1The matrix element does not have any momentum dependence in this case; hence we are able to
take it outside the phase space integral.
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Hence Eq. (5.12) becomes

|M|2 =
32G2mQ|VQq|2
(

1 − W2

m2
W

)2 E1[m2
Q − m2

q − 2mQE1] (5.14)

The differential decay rate for the process is given by

dΓ3 =
1

2EQ
|M|2(2π)4dR3 , (5.15)

where the differential LIPS is given by

dR3 =
d3q

(2π)32Eq

d3q1
(2π)32E1

d3q2
(2π)32E2

δ4(Q − q − q1 − q2)

=
1

8(2π)8
dE1 d3q
Eq |q|

I (5.16)

where
I =

∫ p+

p−
δ(mQ − p − Eq − E1)dp, (5.17)

and p± = |q| ± |q1|. Hence

I =

{
1 if p− < mQ − Eq − E1 < p+

0 otherwise (5.18)

This also defines the range of the E1 integral:

E± =
m2

Q + m2
q − 2mQEq

2(mQ − Eq ∓ |q|) (5.19)

Now Eq. (5.15) becomes

dΓ3 =
1

(2π)4
2G2

(

1 − W2

m2
W

)2
d3q

Eq|q|
J(Eq) (5.20)

where using Eq. (5.19), we get

J(Eq) =
∫ E+

E−
dE1 E1

[

m2
Q − m2

q − 2mQE1
]

=
|q|
6
(

3m2
QEq + 3m2

qEq − 4mQE2
q − 2mQm2

q
)

(5.21)
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Now using d3q = |q|EqdEqdΩ, Eq. (5.20) can be written as

dΓ3 =
|VQq|2
(2π)3

2G2
(

1 − W2

m2
W

)2
|q|
6
(

3m2
QEq + 3m2

qEq − 4mQE2
q − 2mQm2

q
)

dEq (5.22)

Introducing the variables x ≡ 2Eq/mQ and a ≡ (mQ/mW)2, we rewrite (5.22) in the
form given in Ref.[59]

dΓ3
dx =

(
G2m5

Q
192π3

)

|VQq|2
2x2(3 − 2x)

[(1 − a) + ax]2
(5.23)

We have assumed that q1 q̄2 are leptons; if they are quarks, then Eq (5.23) is multiplied
by a color factor of 3.

Integrating Eq (5.23) over the interval 0 ≤ x ≤ 1 we get

Γ3
Γ0

= F(a) = −2
a +

6
a4

[

2a − a2 + 2(1 − a) ln(1 − a)
]

(5.24)

where Γ0 =
G2m5

Q
192π3 |VQq|2. For small enough a (or, equivalently, mQ � mW), we have

F(a) ' 1 +
3
5 a +

2
5 a2 + ... (5.25)

Thus we conclude that Γ3 ∼ m5
Q for mQ � mW.

5.3 THE GENERAL CASE

Near W threshold the expression for decay width has to be modified due to the finite
W width which provides a smooth transition to the conventional weak 3-body decay
below W threshold. To derive an expression for the total decay width of a heavy quark
as a function of its mass, we consider the sequential decay where the W may be either

PSfrag replacements
Q W + q

F f̄

real or virtual. The matrix element for this transition is given by the four-fermion
effective interaction, multiplied by a W propagation factor [58]

M = M(mW −→ ∞)
−m2

W
W2 − m2

W + imWΓW
(5.26)
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where W is the virtual mass and ΓW is the finite width of the W decay. Denoting the
four-momenta by particle labels as before, we get

M = −i
VQqm2

W
W2 − m2

W + imWΓW

G√
2

[u(q)γµ(1 −γ5)u(Q)] ·

[u(F)γν(1 −γ5)v( f )]
(

−gµν +
WµWν

m2
W

)

(5.27)

where
G =

πα(W2)√
2xW(W2)m2

W
(5.28)

Squaring Eq (5.27) and summing over the spin states, we get

|M|2 =
1
2 ∑ |M|2 =

|VQq|2m4
W

(W2 − m2
W)2 + m2

WΓ
2
W

G2

4 × 64

×
[

4(F · q)( f · Q) +
2

m2
W

[

q2(F2(Q · f ) + f 2(Q · F) − Q2(F2(q · f ) + f 2(q · F))
]

+
1

m4
W

[

(F2 + f 2)(F · f ) + 2F2 f 2
] [

(Q2 + q2)(Q · q) − 2q2Q2
]
]

(5.29)

The differential decay rate is given by

dΓ =
1

2mQ
|M|2 1

(2π)5 δ
4(Q − q − F − f ) ∏

i

d3pi
2Ei

(5.30)

We define the following dimensionless quantities [60]:

x =
W2

Q2 , w =
m2

W
Q2 , γ =

Γ 2
W

Q2 , α =
F2

Q2 , β =
f 2

Q2 , δ =
q2

Q2 (5.31)

Integrating Eq (5.30) first over the F, f phase space and then over the q, W phase space,
we obtain the differential decay rate

dΓ
dx = Γ0

w2

(x − w)2 + wγλ
1
2 (1, δ, x)λ

1
2 (x,α,β)

×
[

2
x2λ(x,α,β)(1 + δ− x) +

2
x3

[

x(x +α+β) − 2(α −β)2
]

(1 − δ− x)(1 + x − δ)

+
3

x2w2 (x − 2w)
[

(α+β)x − (α−β)2
] [

(1 − δ)2 − (1 + δ)x
]]

(5.32)
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where λ(a, b, c) and Γ0 are defined earlier. The limits on the variable x are

(
√
α+

√

β)2 ≤ x ≤ (1 −
√
δ)2 (5.33)

In the limiting caseα = β = γ = 0, Eq (5.32) reproduces the results stated earlier.

We are interested in the effects of finite ΓW ; hence we keep the γ term in Eq
(5.32). However, for simplicity and without any loss of generality, we can putα = β =
0. Then Eq (5.32) can be written as [53]

Γ = Γ0F
(

m2
Q

m2
W

,
m2

q
m2

Q
,
Γ 2

W
m2

W

)

(5.34)

where
F(a, b, c) = 2

∫ (1−
√

b)2

0
dx fQ(b, x)

√

1 + b2 + x2 − 2(b + bx + x)

[(1 − ax)2 + c] (5.35)

and
fQ(x, y) = (1 − x)2 + (1 + x)y − 2y2 (5.36)

Putting mq = 0, we get

F(a, 0, c) = 2
∫ 1

0
dx ft(0, x)

√
1 + x2 − 2x

[(1 − ax)2 + c]

= 2
∫ 1

0
dx1 − 3x2 + 2x3

X (5.37)

where X = (1 − ax)2 + c. Eq (5.37) contains some standard integrals involving X =
a0x2 + b0x + c0 and can be evaluated analytically [61]. Substituting the expressions for
these integrals, we get

F(a, 0, c) =
2
a4

[

A[c − 3(1 − a)] + 2a(2 − a) − Ba
[

3c(2 − a) − (2 + a)(1 − a)2
]]

(5.38)
where

A = ln c + 1
c + (1 − a)2 , B =

1
a
√

c

[

tan−1
(

1√
c

)

− tan−1
(

1 − a√
c

)]

(5.39)

Hence the decay width (5.34) is given by

Γ = Γ0
2
a4

[

A[c − 3(1 − a)] + 2a(2 − a) − Ba
[

3c(2 − a) − (2 + a)(1 − a)2
]]

(5.40)

with a =
m2

Q
m2

W
, c =

Γ 2
W

m2
W

. This function is plotted in Figure 5.3. We have taken G = GF =
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Figure 5.3: Dependence of partial decay width for Q → q + W∗ on mQ.

1.16 × 10−5 GeV−2, mW = 80.4 GeV and ΓW = 2.1 GeV [11]. The change from the m5
Q

dependence for mQ < mW + mq to the m3
Q dependence for mQ > mW + mq is evident.

Now as the mass of top-quark mt = 174.3 GeV is much larger than the W-
boson mass mW = 80.4 GeV, the decay mode of the top-quark will be a 2-body decay to
a real W-boson along with another down-type quark. The most dominant decay mode
is t → W + b as |Vtb|2 ' 1. Plugging in the mass values in Eq. 5.10 we get

Γt→Wb ∼ 1.5 GeV (5.41)

The life-time of the top-quark is then given by Γ−1
t→Wb which is of the order of 10−25 sec.

This is about 2 orders of magnitude smaller than the typical hadronization time-scale
(∼ 10−23 sec). Hence, the top-quark decay occurs much before hadronization.



CHAPTER 6

CONCLUSIONS AND FUTURE PROSPECTS

The major part of our work was calculating the analytical expressions of the individual
helicity amplitudes as well as squared amplitudes for general tt̄φ and ZZφ vertices.
With these expressions at our hand, we can do a lot of interesting physics studies of
the anomalous Higgs couplings. So far we have been able to calculate the polarization
asymmetry with the hope that it would be a good observable to probe the CP structure
of the Higgs boson.

As we have seen from the sensitivity studies in Chapter 4, the polarization
asymmetry is indeed a good observable to distinguish a purely CP-even Higgs state
from a purely CP-odd one. It is, however, not sensitive to CP-mixing as it is not influ-
enced by the CP-violating term ab. Hence, in order to probe a CP-mixed state of Higgs,
we have to think of some other asymmetry which depends on the ab term. We have
thought of one such asymmetry, namely the up-down asymmetry constructed out of
the azimuthal angleφ4. This angle can be related directly to some cross product of the
various momenta which can be measured directly in experiments. Our next aim is to
do the sensitivity studies with this asymmetry. We have already noted one interest-
ing feature that this asymmetry is non-zero only for the cases in which the final states
have the same helicity, i.e. (t̄L, tL) and (t̄R , tR). So we can enhance this asymmetry by
suitably choosing the initial beam polarizations. Later we also plan to construct other
CP-odd observables out of the cross products of various momenta1.

We can introduce another CP-odd term into the analysis by choosing a dif-
ferent parametrization of the coupling parameters a, b and c. As the contribution com-
ing from the ZZφ diagram is fairly small, by choosing only c to be different we may
not get a much improved sensitivity. Hence, we plan to choose all the three parameters
a, b and c to be independent, as in Ref.[55], and then to probe the sensitivities of all the
parameters to our observables. Also, there are specific predictions for a, b and c in the

1A similar approach was taken by Bernreuther et al. [62] to investigate the top-quark spin correla-
tions at hadron collider. However, experimentally it is very difficult to measure the spins of the particles
unlike their momenta.
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framework of CP-violating MSSM [63]; we wish to evaluate numerical results for this
case.

We can also include the other anomalous couplings derived in Chapter 2
which have momentum dependence in them. The coefficients of these additional terms
in the anomalous vertices are expected to be sensitive enough for our observables.

From practical point of view, the most important study would be to include
the top decay part and then to calculate the angular distributions of the decay products
which are known to be true probes of the non-standard effects in the production of t
quark.
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APPENDIX A

CONVENTION AND PARAMETERS USED

A.1 THE FEYNMAN RULES

External Leg Contractions
PSfrag replacements

= 1

= us(p)

= vs(k)

= 1

= us(p)

= vs(k)

φφ

ff

f̄f̄

pp

kk

Propagators
PSfrag replacements

= i
q2−m2

φ
+iε = i( 6p+m)

p2−m2
f +iε

q

q p

= −i
q2−m2+iε

(

gµν − (1 − ζ) qµqν
q2−ζm2+iε

)

= −i
q2−m2+iε

(

gµν − qµqν
m2+iε

)

(in unitary gauge ζ → ∞)
µ ν
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Vertices

PSfrag replacements

tt̄φ = −ig2
mt

2mW
(a + ibγ5)

Γγ f f̄ = ieQ fγµ

ΓZ f f̄ = ig2
2 cosθW

γµ[(1 − γ5)T3L
f − 2Q f sin2θW)] + geff

f f̄φ

ΓZZφ = −igµνc g2mZ
cosθW

µ

µ

γ

Z

Z

φ

φ

φ

k1
k2
k3
k4

γ/Z

t̄

t

ΓZtt̄φ = geff
Ztt̄φ & Γγtt̄φ = geff

γtt̄φ

A.2 THE COMPHEP PARAMETERS

We have used the following CompHEP parameters in our numerical calculations:

mt = 174.3 GeV
mZ = 91.1876 GeV
mH = 115.0 GeV
ΓZ = 2.43631 GeV
Γt = 1.54688 GeV

sinθW = 0.48076
e = 0.31345
π = 4 tan−1(1)



APPENDIX B

THE FEYNMAN AMPLITUDES OBTAINED
BY HELICITY METHOD

F1RL[1,-1,1,1] =

(((-2*I)*E1*(E4 + mt + ptb)*Cos[thtb/2]*(Cos[phtb/2] + I*Sin[phtb/2])*(Cos[tht/2]*(a*(E3 + mt)*

(2*E1 - E4 + mt) - a*(-2*E1 + E4 + mt)*pt + I*b*(-2*E1*E3 + E3*E4 - 2*E1*mt + E3*mt + E4*mt + mt^2 -

2*E1*pt + E4*pt - mt*pt) + (a - I*b)*(E3 + mt + pt)*ptb*Cos[thtb]) + (a - I*b)*(E3 + mt + pt)*ptb*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1RL[1,-1,1,-1] =

((2*E1*(E4 + mt - ptb)*(Cos[phtb/2] + I*Sin[phtb/2])*Sin[thtb/2]*(Cos[tht/2]*(-(b*(E3 + mt)*

(-2*E1 + E4 + mt)) + 2*b*E1*pt - b*E4*pt + b*mt*pt - I*a*((E4 - mt)*(E3 + mt) + (E4 + mt)*pt -

2*E1*(E3 + mt + pt)) + (I*a + b)*(E3 + mt + pt)*ptb*Cos[thtb]) + (I*a + b)*(E3 + mt + pt)*ptb*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1RL[1,-1,-1,1] =

((2*E1*(E4 + mt + ptb)*Cos[thtb/2]*(Cos[phtb/2] + I*Sin[phtb/2])*(I*(a*(E3 + mt)*(2*E1 - E4 + mt) +

a*(-2*E1 + E4 + mt)*pt + I*b*(-2*E1*E3 + E3*E4 - 2*E1*mt + E3*mt + E4*mt + mt^2 + 2*E1*pt - E4*pt + mt*pt) +

(a - I*b)*(E3 + mt - pt)*ptb*Cos[thtb])*Sin[tht/2] + (a - I*b)*(E3 + mt - pt)*ptb*Cos[tht/2]*((-I)*

Cos[phtb] + Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1RL[1,-1,-1,-1] =

((2*E1*(E4 + mt - ptb)*(Cos[phtb/2] + I*Sin[phtb/2])*Sin[thtb/2]*((-I)*(a*(E3 + mt)*(2*E1 - E4 + mt) +

a*(-2*E1 + E4 + mt)*pt + I*b*(-2*E1*E3 + E3*E4 - 2*E1*mt + E3*mt + E4*mt + mt^2 + 2*E1*pt - E4*pt + mt*pt) +

(a - I*b)*(E3 + mt - pt)*ptb*Cos[thtb])*Sin[tht/2] + (I*a + b)*(E3 + mt - pt)*ptb*Cos[tht/2]*

(Cos[phtb] + I*Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1RR[1,-1,1,1] =

(((-2*I)*E1*(E4 + mt - ptb)*Cos[thtb/2]*(Cos[phtb/2] + I*Sin[phtb/2])*(Cos[tht/2]*(a*(E3 + mt)*

(2*E1 - E4 + mt) + a*(-2*E1 + E4 + mt)*pt - I*b*(-2*E1*E3 + E3*E4 - 2*E1*mt + E3*mt + E4*mt + mt^2 +

2*E1*pt - E4*pt + mt*pt) - (a + I*b)*(E3 + mt - pt)*ptb*Cos[thtb]) - (a + I*b)*(E3 + mt - pt)*ptb*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1RR[1,-1,1,-1] =

((2*E1*(E4 + mt + ptb)*(Cos[phtb/2] + I*Sin[phtb/2])*Sin[thtb/2]*(Cos[tht/2]*(b*(E3 + mt)*

(-2*E1 + E4 + mt) + 2*b*E1*pt - b*E4*pt + b*mt*pt - I*a*((-2*E1 + E4 - mt)*(E3 + mt) -

(-2*E1 + E4 + mt)*pt) + ((-I)*a + b)*(E3 + mt - pt)*ptb*Cos[thtb]) + ((-I)*a + b)*(E3 + mt - pt)*ptb*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1RR[1,-1,-1,1] =

((2*E1*(E4 + mt - ptb)*Cos[thtb/2]*(Cos[phtb/2] + I*Sin[phtb/2])*((b*(E3 + mt)*(-2*E1 + E4 + mt) -

2*b*E1*pt + b*E4*pt - b*mt*pt - I*a*((E4 - mt)*(E3 + mt) + (E4 + mt)*pt - 2*E1*(E3 + mt + pt)) +

((-I)*a + b)*(E3 + mt + pt)*ptb*Cos[thtb])*Sin[tht/2] + I*(a + I*b)*(E3 + mt + pt)*ptb*Cos[tht/2]*

(Cos[phtb] + I*Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1RR[1,-1,-1,-1] =

((2*E1*(E4 + mt + ptb)*(Cos[phtb/2] + I*Sin[phtb/2])*Sin[thtb/2]*((-(b*(E3 + mt)*(-2*E1 + E4 + mt)) +
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2*b*E1*pt - b*E4*pt + b*mt*pt + I*a*((E4 - mt)*(E3 + mt) + (E4 + mt)*pt - 2*E1*(E3 + mt + pt)) +

I*(a + I*b)*(E3 + mt + pt)*ptb*Cos[thtb])*Sin[tht/2] + (a + I*b)*(E3 + mt + pt)*ptb*Cos[tht/2]*((-I)*

Cos[phtb] + Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RL[1,-1,1,1] =

((2*E1*(E3 + mt - pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*((-I)*(a*(2*E1 - E3 + mt)*(E4 + mt) +

a*(-2*E1 + E3 + mt)*ptb + I*b*(-((-2*E1 + E3 + mt)*(E4 + mt)) - 2*E1*ptb + E3*ptb - mt*ptb) -

(a + I*b)*pt*(E4 + mt - ptb)*Cos[tht])*Cos[thtb/2]*(Cos[phtb] + I*Sin[phtb]) +

I*(a + I*b)*pt*(E4 + mt - ptb)*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RL[1,-1,1,-1] =

((2*E1*(E3 + mt - pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*(I*(a + I*b)*pt*(E4 + mt + ptb)*Cos[thtb/2]*

Sin[tht] + (-2*b*E1*E4 + b*E3*E4 - 2*b*E1*mt + b*E3*mt + b*E4*mt + b*mt^2 - 2*b*E1*ptb + b*E3*ptb -

b*mt*ptb + I*a*(2*E1*E4 - E3*E4 + 2*E1*mt - E3*mt + E4*mt + mt^2 + 2*E1*ptb - E3*ptb - mt*ptb) + ((-I)*

a + b)*pt*(E4 + mt + ptb)*Cos[tht])*(Cos[phtb] + I*Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RL[1,-1,-1,1] =

((2*E1*(E3 + mt + pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*(((E4 + mt)*((2*I)*a*E1 - 2*b*E1 - I*a*E3 +

b*E3 + I*a*mt + b*mt) - (2*I)*a*E1*ptb + 2*b*E1*ptb + I*a*E3*ptb - b*E3*ptb + I*a*mt*ptb + b*mt*ptb +

((-I)*a + b)*pt*(E4 + mt - ptb)*Cos[tht])*Cos[thtb/2]*(Cos[phtb] + I*Sin[phtb]) + ((-I)*a + b)*

pt*(E4 + mt - ptb)*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RL[1,-1,-1,-1] =

((2*E1*(E3 + mt + pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*(((-I)*a + b)*pt*(E4 + mt + ptb)*

Cos[thtb/2]*Sin[tht] + (-(b*(-2*E1 + E3 + mt)*(E4 + mt)) + 2*b*E1*ptb - b*E3*ptb + b*mt*ptb -

I*a*(2*E1*E4 - E3*E4 + 2*E1*mt - E3*mt + E4*mt + mt^2 + 2*E1*ptb - E3*ptb - mt*ptb) + I*(a + I*b)*pt*

(E4 + mt + ptb)*Cos[tht])*(Cos[phtb] + I*Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RR[1,-1,1,1] =

((2*E1*(E3 + mt + pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*((-2*b*E1*E4 + b*E3*E4 - 2*b*E1*mt + b*E3*

mt + b*E4*mt + b*mt^2 - 2*b*E1*ptb + b*E3*ptb - b*mt*ptb - I*a*(2*E1*E4 - E3*E4 + 2*E1*mt - E3*mt + E4*mt +

mt^2 + 2*E1*ptb - E3*ptb - mt*ptb) + ((-I)*a - b)*pt*(E4 + mt + ptb)*Cos[tht])*Cos[thtb/2]*(Cos[phtb] +

I*Sin[phtb]) + ((-I)*a - b)*pt*(E4 + mt + ptb)*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RR[1,-1,1,-1] =

((2*E1*(E3 + mt + pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*(((-I)*a - b)*pt*(E4 + mt - ptb)*Cos[thtb/2]*

Sin[tht] + (b*(2*E1 - E3 - mt)*(E4 + mt) - 2*b*E1*ptb + b*E3*ptb - b*mt*ptb + I*a*(2*E1*E4 - E3*E4 +

2*E1*mt - E3*mt + E4*mt +mt^2 - 2*E1*ptb + E3*ptb + mt*ptb) + (I*a + b)*pt*(E4 + mt - ptb)*Cos[tht])*

(Cos[phtb] + I*Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RR[1,-1,-1,1] =

((2*E1*(E3 + mt - pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*((-(b*(-2*E1 + E3 + mt)*(E4 + mt)) +

2*b*E1*ptb - b*E3*ptb + b*mt*ptb + I*a*(2*E1*E4 - E3*E4 + 2*E1*mt - E3*mt + E4*mt + mt^2 + 2*E1*ptb -

E3*ptb - mt*ptb) + (I*a + b)*pt*(E4 + mt + ptb)*Cos[tht])*Cos[thtb/2]*(Cos[phtb] + I*Sin[phtb]) +

(I*a + b)*pt*(E4 + mt + ptb)*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2RR[1,-1,-1,-1] =

((2*E1*(E3 + mt - pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*((I*a + b)*pt*(E4 + mt - ptb)*

Cos[thtb/2]*Sin[tht] + (a*(2*E1 - E3 + mt)*(E4 + mt) + a*(-2*E1 + E3 + mt)*ptb -

I*b*(-((-2*E1 + E3 + mt)*(E4 + mt)) - 2*E1*ptb + E3*ptb - mt*ptb) + (a - I*b)*pt*(E4 + mt - ptb)*

Cos[tht])*((-I)*Cos[phtb] + Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F3RL[1,-1,1,1] =

(((I/2)*E1*(E3 + mt - pt)*(E4 + mt + ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*(-2*Cos[tht/2]*Cos[thtb/2]*

(2*mz^2 + (pt - ptb)*(E3 + E4 + pt - ptb) + (E3 + E4 + pt - ptb)*(-(pt*Cos[tht]) + ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb]) + 2*(E3 + E4 + pt - ptb)*(pt + pt*Cos[tht] - ptb*(1 + Cos[thtb])*(Cos[2*phtb] +

I*Sin[2*phtb]))*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3RL[1,-1,1,-1] =

(((I/2)*E1*(E3 + mt - pt)*(E4 + mt - ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*((E3 + E4 + pt + ptb)*

Cos[thtb/2]*((pt - 2*ptb*(-1 + Cos[thtb])*(Cos[2*phtb] + I*Sin[2*phtb]))*Sin[tht/2] + pt*Sin[(3*tht)/2]) +

2*Cos[tht/2]*(2*mz^2 + (pt + ptb)*(E3 + E4 + pt + ptb) + (E3 + E4 + pt + ptb)*(-(pt*Cos[tht]) +

ptb*Cos[thtb]))*(Cos[phtb] + I*Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3RL[1,-1,-1,1] =
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(((-I/2)*E1*(E3 + mt + pt)*(E4 + mt + ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*(-2*Cos[thtb/2]*(2*mz^2 -

(E3 + E4 - pt - ptb)*(pt + ptb) + (E3 + E4 - pt - ptb)*(-(pt*Cos[tht]) + ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2] + 2*(E3 + E4 - pt - ptb)*Cos[tht/2]*(pt - pt*Cos[tht] +

ptb*(1 + Cos[thtb])*(Cos[2*phtb] + I*Sin[2*phtb]))*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3RL[1,-1,-1,-1] =

(((-I/2)*E1*(E3 + mt + pt)*(E4 + mt - ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*(-2*(E3 + E4 - pt + ptb)*

Cos[tht/2]*Cos[thtb/2]*(-pt + pt*Cos[tht] - ptb*(-1 + Cos[thtb])*(Cos[2*phtb] + I*Sin[2*phtb])) +

2*(2*mz^2 - (pt - ptb)*(E3 + E4 - pt + ptb) + (E3 + E4 - pt + ptb)*(-(pt*Cos[tht]) + ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3RR[1,-1,1,1] =

(((-I/2)*E1*(E3 + mt + pt)*(E4 + mt - ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*(2*Cos[tht/2]*Cos[thtb/2]*

(2*mz^2 - (pt - ptb)*(E3 + E4 - pt + ptb) + (E3 + E4 - pt + ptb)*(pt*Cos[tht] - ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb]) + 2*(E3 + E4 - pt + ptb)*(pt + pt*Cos[tht] - ptb*(1 + Cos[thtb])*(Cos[2*phtb] +

I*Sin[2*phtb]))*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3RR[1,-1,1,-1] =

(((I/2)*E1*(E3 + mt + pt)*(E4 + mt + ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*(-2*(E3 + E4 - pt - ptb)*

Cos[thtb/2]*(pt + pt*Cos[tht] - ptb*(-1 + Cos[thtb])*(Cos[2*phtb] + I*Sin[2*phtb]))*Sin[tht/2] +

2*Cos[tht/2]*(2*mz^2 - (E3 + E4 - pt - ptb)*(pt + ptb) + (E3 + E4 - pt - ptb)*

(pt*Cos[tht] - ptb*Cos[thtb]))*(Cos[phtb] + I*Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3RR[1,-1,-1,1] =

(((I/2)*E1*(E3 + mt - pt)*(E4 + mt - ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*(2*Cos[thtb/2]*(2*mz^2 +

(pt + ptb)*(E3 + E4 + pt + ptb) + (E3 + E4 + pt + ptb)*(pt*Cos[tht] - ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2] + 2*(E3 + E4 + pt + ptb)*Cos[tht/2]*(pt - pt*Cos[tht] +

ptb*(1 + Cos[thtb])*(Cos[2*phtb] +I*Sin[2*phtb]))*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3RR[1,-1,-1,-1] =

(((I/2)*E1*(E3 + mt - pt)*(E4 + mt + ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*(-2*(E3 + E4 + pt - ptb)*

Cos[tht/2]*Cos[thtb/2]*(-pt + pt*Cos[tht] - ptb*(-1 + Cos[thtb])*(Cos[2*phtb] + I*Sin[2*phtb])) -

2*(2*mz^2 + (pt - ptb)*(E3 + E4 + pt - ptb) + (E3 + E4 + pt - ptb)*(pt*Cos[tht] - ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F1LL[-1,1,1,1] =

((2*E1*(E4 + mt + ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[thtb/2]*((b*(E3 + mt)*(-2*E1 + E4 + mt) -

2*b*E1*pt + b*E4*pt - b*mt*pt + I*a*((E4 - mt)*(E3 + mt) + (E4 + mt)*pt - 2*E1*(E3 + mt + pt)) +

(I*a + b)*(E3 + mt + pt)*ptb*Cos[thtb])*Sin[tht/2] - (a - I*b)*(E3 + mt + pt)*ptb*Cos[tht/2]*

(I*Cos[phtb] + Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1LL[-1,1,1,-1] =

((2*E1*(E4 + mt - ptb)*Cos[thtb/2]*(Cos[phtb/2] - I*Sin[phtb/2])*((b*(E3 + mt)*(-2*E1 + E4 + mt) -

2*b*E1*pt + b*E4*pt - b*mt*pt + I*a*((E4 - mt)*(E3 + mt) + (E4 + mt)*pt - 2*E1*(E3 + mt + pt)) +

(I*a + b)*(E3 + mt + pt)*ptb*Cos[thtb])*Sin[tht/2] - (a - I*b)*(E3 + mt + pt)*ptb*Cos[tht/2]*

(I*Cos[phtb] + Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1LL[-1,1,-1,1] =

((2*E1*(E4 + mt + ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[thtb/2]*(Cos[tht/2]*(b*(E3 + mt)*

(-2*E1 + E4 + mt) + 2*b*E1*pt - b*E4*pt + b*mt*pt + I*a*((-2*E1 + E4 - mt)*(E3 + mt) -

(-2*E1 + E4 + mt)*pt) + (I*a + b)*(E3 + mt - pt)*ptb*Cos[thtb]) + (I*a + b)*(E3 + mt - pt)*ptb*

(Cos[phtb] - I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1LL[-1,1,-1,-1] =

((2*E1*(E4 + mt - ptb)*Cos[thtb/2]*(Cos[phtb/2] - I*Sin[phtb/2])*(Cos[tht/2]*(b*(E3 + mt)*

(-2*E1 + E4 + mt) + 2*b*E1*pt - b*E4*pt + b*mt*pt + I*a*((-2*E1 + E4 - mt)*(E3 + mt) -

(-2*E1 + E4 + mt)*pt) + (I*a + b)*(E3 + mt - pt)*ptb*Cos[thtb]) + (I*a + b)*(E3 + mt - pt)*ptb*

(Cos[phtb] - I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1LR[-1,1,1,1] =

((2*E1*(E4 + mt - ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[thtb/2]*((-I)*(a*(E3 + mt)*(2*E1 - E4 + mt) +

a*(-2*E1 + E4 + mt)*pt - I*b*(-2*E1*E3 + E3*E4 - 2*E1*mt + E3*mt + E4*mt + mt^2 + 2*E1*pt - E4*pt + mt*pt) +

(a + I*b)*(E3 + mt - pt)*ptb*Cos[thtb])*Sin[tht/2] + (a + I*b)*(E3 + mt - pt)*ptb*Cos[tht/2]*

(I*Cos[phtb] + Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))
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F1LR[-1,1,1,-1] =

((2*E1*(E4 + mt + ptb)*Cos[thtb/2]*(Cos[phtb/2] - I*Sin[phtb/2])*((-I)*(a*(E3 + mt)*(2*E1 - E4 + mt) +

a*(-2*E1 + E4 + mt)*pt - I*b*(-2*E1*E3 + E3*E4 - 2*E1*mt + E3*mt + E4*mt + mt^2 + 2*E1*pt - E4*pt + mt*pt) +

(a + I*b)*(E3 + mt - pt)*ptb*Cos[thtb])*Sin[tht/2] + (a + I*b)*(E3 + mt - pt)*ptb*Cos[tht/2]*

(I*Cos[phtb] + Sin[phtb])*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1LR[-1,1,-1,1] =

(((-2*I)*E1*(E4 + mt - ptb)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[thtb/2]*(Cos[tht/2]*(a*(E3 + mt)*

(2*E1 - E4 + mt) - a*(-2*E1 + E4 + mt)*pt + I*b*(-((E3 + mt)*(E4 + mt)) - E4*pt + mt*pt +

2*E1*(E3 + mt + pt)) + (a + I*b)*(E3 + mt + pt)*ptb*Cos[thtb]) + (a + I*b)*(E3 + mt + pt)*ptb*(Cos[phtb] -

I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F1LR[-1,1,-1,-1] =

(((-2*I)*E1*(E4 + mt + ptb)*Cos[thtb/2]*(Cos[phtb/2] - I*Sin[phtb/2])*(Cos[tht/2]*(a*(E3 + mt)*

(2*E1 - E4 + mt) - a*(-2*E1 + E4 + mt)*pt + I*b*(-((E3 + mt)*(E4 + mt)) - E4*pt + mt*pt +

2*E1*(E3 + mt + pt)) + (a + I*b)*(E3 + mt + pt)*ptb*Cos[thtb]) + (a + I*b)*(E3 + mt + pt)*ptb*(Cos[phtb] -

I*Sin[phtb])*Sin[tht/2]*Sin[thtb]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LL[-1,1,1,1] =

(((2*I)*E1*(E3 + mt - pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*((a + I*b)*pt*(E4 + mt - ptb)*

Cos[thtb/2]*(Cos[phtb] + I*Sin[phtb])*Sin[tht] - (a*(2*E1 - E3 + mt)*(E4 + mt) + a*(-2*E1 + E3 + mt)*ptb +

I*b*(-((-2*E1 + E3 + mt)*(E4 + mt)) - 2*E1*ptb + E3*ptb - mt*ptb) + (a + I*b)*pt*(E4 + mt - ptb)*Cos[tht])*

Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LL[-1,1,1,-1] =

((2*E1*(E3 + mt - pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*((-(b*(-2*E1 + E3 + mt)*(E4 + mt)) +

2*b*E1*ptb - b*E3*ptb + b*mt*ptb - I*a*(2*E1*E4 - E3*E4 + 2*E1*mt - E3*mt + E4*mt + mt^2 + 2*E1*ptb -

E3*ptb - mt*ptb) + ((-I)*a + b)*pt*(E4 + mt + ptb)*Cos[tht])*Cos[thtb/2] + ((-I)*a + b)*pt*(E4 + mt + ptb)*

(Cos[phtb] + I*Sin[phtb])*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LL[-1,1,-1,1] =

(((2*I)*E1*(E3 + mt + pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*((a + I*b)*pt*(E4 + mt - ptb)*

Cos[thtb/2]*(Cos[phtb] + I*Sin[phtb])*Sin[tht] - (a*(2*E1 - E3 + mt)*(E4 + mt) + a*(-2*E1 + E3 + mt)*ptb +

I*b*(-((-2*E1 + E3 + mt)*(E4 + mt)) - 2*E1*ptb + E3*ptb - mt*ptb) + (a + I*b)*pt*(E4 + mt - ptb)*Cos[tht])*

Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LL[-1,1,-1,-1] =

((2*E1*(E3 + mt + pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*((-(b*(-2*E1 + E3 + mt)*(E4 + mt)) +

2*b*E1*ptb - b*E3*ptb + b*mt*ptb - I*a*(2*E1*E4 - E3*E4 +2*E1*mt - E3*mt + E4*mt + mt^2 + 2*E1*ptb -

E3*ptb - mt*ptb) + ((-I)*a + b)*pt*(E4 + mt + ptb)*Cos[tht])*Cos[thtb/2] + ((-I)*a + b)*pt*(E4 + mt + ptb)*

(Cos[phtb] + I*Sin[phtb])*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LR[-1,1,1,1] =

((2*E1*(E3 + mt + pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*(((-I)*a - b)*pt*(E4 + mt + ptb)*Cos[thtb/2]*

(Cos[phtb] + I*Sin[phtb])*Sin[tht] + (-2*b*E1*E4 + b*E3*E4 - 2*b*E1*mt + b*E3*mt + b*E4*mt + b*mt^2 -

2*b*E1*ptb + b*E3*ptb -b*mt*ptb - I*a*(2*E1*E4 - E3*E4 + 2*E1*mt - E3*mt + E4*mt + mt^2 + 2*E1*ptb -

E3*ptb - mt*ptb) + (I*a + b)*pt*(E4 + mt + ptb)*Cos[tht])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LR[-1,1,1,-1] =

((2*E1*(E3 + mt + pt)*(Cos[phtb/2] - I*Sin[phtb/2])*Sin[tht/2]*(((E4 + mt)*((-2*I)*a*E1 - 2*b*E1 + I*a*E3 +

b*E3 - I*a*mt + b*mt) + (2*I)*a*E1*ptb + 2*b*E1*ptb - I*a*E3*ptb - b*E3*ptb - I*a*mt*ptb + b*mt*ptb +

(I*a + b)*pt*(E4 + mt - ptb)*Cos[tht])*Cos[thtb/2] + (I*a + b)*pt*(E4 + mt - ptb)*

(Cos[phtb] + I*Sin[phtb])*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LR[-1,1,-1,1] =

((2*E1*(E3 + mt - pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*(((-I)*a - b)*pt*(E4 + mt + ptb)*Cos[thtb/2]*

(Cos[phtb] + I*Sin[phtb])*Sin[tht] + (-2*b*E1*E4 + b*E3*E4 - 2*b*E1*mt + b*E3*mt + b*E4*mt + b*mt^2 -

2*b*E1*ptb + b*E3*ptb - b*mt*ptb - I*a*(2*E1*E4 - E3*E4 + 2*E1*mt - E3*mt + E4*mt + mt^2 + 2*E1*ptb -

E3*ptb - mt*ptb) + (I*a + b)*pt*(E4 + mt + ptb)*Cos[tht])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))

F2LR[-1,1,-1,-1] =

((2*E1*(E3 + mt - pt)*Cos[tht/2]*(Cos[phtb/2] - I*Sin[phtb/2])*(((E4 + mt)*((-2*I)*a*E1 - 2*b*E1 + I*a*E3 +

b*E3 - I*a*mt + b*mt) + (2*I)*a*E1*ptb + 2*b*E1*ptb - I*a*E3*ptb - b*E3*ptb - I*a*mt*ptb + b*mt*ptb +

(I*a + b)*pt*(E4 + mt - ptb)*Cos[tht])*Cos[thtb/2] + (I*a + b)*pt*(E4 + mt - ptb)*

(Cos[phtb] + I*Sin[phtb])*Sin[tht]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]))
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F3LL[-1,1,1,1] =

(((I/2)*E1*(E3 + mt - pt)*(E4 + mt + ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*(-2*(E3 + E4 + pt - ptb)*

Cos[tht/2]*Cos[thtb/2]*(ptb - ptb*Cos[thtb] + pt*(-1 + Cos[tht])*(Cos[2*phtb] + I*Sin[2*phtb])) -

2*(2*mz^2 + (pt - ptb)*(E3 + E4 + pt - ptb) + (E3 + E4 + pt - ptb)*(pt*Cos[tht] - ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3LL[-1,1,1,-1] =

(((-I/2)*E1*(E3 + mt - pt)*(E4 + mt - ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*(2*Cos[thtb/2]*

(2*mz^2 + (pt + ptb)*(E3 + E4 + pt + ptb) + (E3 + E4 + pt + ptb)*(pt*Cos[tht] - ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2] + 2*(E3 + E4 + pt + ptb)*Cos[tht/2]*(ptb + ptb*Cos[thtb] -

pt*(-1 + Cos[tht])*(Cos[2*phtb] + I*Sin[2*phtb]))*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3LL[-1,1,-1,1] =

(((I/2)*E1*(E3 + mt + pt)*(E4 + mt + ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*(2*(E3 + E4 - pt - ptb)*

Cos[thtb/2]*(ptb - ptb*Cos[thtb] + pt*(1 + Cos[tht])*(Cos[2*phtb] + I*Sin[2*phtb]))*Sin[tht/2] +

2*Cos[tht/2]*(-2*mz^2 + (E3 + E4 - pt - ptb)*(pt + ptb) + (E3 + E4 - pt - ptb)*(-(pt*Cos[tht]) +

ptb*Cos[thtb]))*(Cos[phtb] + I*Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3LL[-1,1,-1,-1] =

(((I/2)*E1*(E3 + mt + pt)*(E4 + mt - ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*(-2*Cos[tht/2]*Cos[thtb/2]*

(2*mz^2 - (pt - ptb)*(E3 + E4 - pt + ptb) + (E3 + E4 - pt + ptb)*(pt*Cos[tht] - ptb*Cos[thtb]))*(Cos[phtb] +

I*Sin[phtb]) - 2*(E3 + E4 - pt + ptb)*(-ptb - ptb*Cos[thtb] + pt*(1 + Cos[tht])*

(Cos[2*phtb] + I*Sin[2*phtb]))*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3LR[-1,1,1,1] =

(((-I/2)*E1*(E3 + mt + pt)*(E4 + mt - ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*(-2*(E3 + E4 - pt + ptb)*

Cos[tht/2]*Cos[thtb/2]*(ptb - ptb*Cos[thtb] + pt*(-1 + Cos[tht])*(Cos[2*phtb] + I*Sin[2*phtb])) +

2*(2*mz^2 - (pt - ptb)*(E3 + E4 - pt + ptb) + (E3 + E4 - pt + ptb)*(-(pt*Cos[tht]) + ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3LR[-1,1,1,-1] =

(((-I/2)*E1*(E3 + mt + pt)*(E4 + mt + ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*(2*Cos[thtb/2]*

(2*mz^2 - (E3 + E4 - pt - ptb)*(pt + ptb) + (E3 + E4 - pt - ptb)*(-(pt*Cos[tht]) + ptb*Cos[thtb]))*

(Cos[phtb] + I*Sin[phtb])*Sin[tht/2] + 2*(E3 + E4 - pt - ptb)*Cos[tht/2]*(-ptb - ptb*Cos[thtb] +

pt*(-1 + Cos[tht])*(Cos[2*phtb] + I*Sin[2*phtb]))*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3LR[-1,1,-1,1] =

(((-I/2)*E1*(E3 + mt - pt)*(E4 + mt - ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*((E3 + E4 + pt + ptb)*

Cos[thtb/2]*(-2*ptb*(-1 + Cos[thtb])*Sin[tht/2] + pt*(Cos[2*phtb] + I*Sin[2*phtb])*(Sin[tht/2] +

Sin[(3*tht)/2])) + 2*Cos[tht/2]*(2*mz^2 + (pt + ptb)*(E3 + E4 + pt + ptb) + (E3 + E4 + pt + ptb)*

(-(pt*Cos[tht]) + ptb*Cos[thtb]))*(Cos[phtb] + I*Sin[phtb])*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))

F3LR[-1,1,-1,-1] =

(((I/2)*E1*(E3 + mt - pt)*(E4 + mt + ptb)*(Cos[(3*phtb)/2] - I*Sin[(3*phtb)/2])*(-2*Cos[tht/2]*Cos[thtb/2]*

(2*mz^2 + (pt - ptb)*(E3 + E4 + pt - ptb) + (E3 + E4 + pt - ptb)*(-(pt*Cos[tht]) + ptb*Cos[thtb]))*

(Cos[phtb] +I*Sin[phtb]) + 2*(E3 + E4 + pt - ptb)*(-ptb - ptb*Cos[thtb] + pt*(1 + Cos[tht])*(Cos[2*phtb] +

I*Sin[2*phtb]))*Sin[tht/2]*Sin[thtb/2]))/(Sqrt[E3 + mt]*Sqrt[E4 + mt]*mz^2))


