Syllabus for PHYSICS 590 II (Spring 2017) GROUP THEORY AND SYMMETRIES IN PHYSICS

Instructor: Dr. Bhupal Dev (bdev@wustl.edu)
Lecture Hours: 3 hours per week (Tuesdays and Thursdays 1.00-2.30 PM), 14 weeks total.
Office Hours: Wednesdays $2.00-4.00 \mathrm{PM}$ or by appointment.
Homework: Problem sets will be handed out in class (and posted online) every Thursday. These are expected to be solved and returned before the following Thursday 1 PM.

Exams: A mid-term (just before Spring Break) and a final (end of April). Both will be take-home exams.

Grading: 50\% homework, 20% mid-term and 30% final.
Textbook: I will mostly follow Group Theory: A Physicist's Survey by P. Ramond (Cambridge University Press, 2010) and Group Theory in a Nutshell for Physicists by A. Zee (Princeton University Press, 2016). For some specific topics, I will also use Lie Algebras in Particle Physics by H. Georgi (Westview Press, 1999). In addition, I might occasionally refer to other books and/or publicly available lecture notes/reviews (will give you the references, when needed).

Schedule: Here is a tentative list of topics we plan to cover (might vary depending on the time and class interest):

Week $1[1 / 17,1 / 19]$: General properties of groups (definition, subgroups, Lagrange's theorem, quotient group, isomorphism, cojugate); finite groups; multiplication table.

Week $2[1 / 24,1 / 26]$: Representation theory; Schur's lemma; orthogonality theorem; conjugacy class, character table; direct sums and tensor products; Young tableaux.

Week 3 [1/31, 2/2]: Classification of finite groups; examples and applications in real life. Week $4[2 / 7,2 / 9]$: Examples of continuous groups from elementary physics: $S O(N), S U(N)$. Week $5[2 / 14,2 / 16]$: Lie groups; Jacobi identity; Cartan-Weyl basis; classification of simple Lie algebras.

Week $6[2 / 21,2 / 23]$: Roots and weights; Dynkin diagrams.

Week 7 [2/28, 3/2]: Representation theory of Lie algebra; Casimir operators; ClebschGordan coefficients; Wigner-Eckart theorem.

Week $8[3 / 7,3 / 9]$: Spinor representations; Clifford algebra; Dirac matrices.
Spring Break [3/12-3/18].
Week $9[3 / 21,3 / 23]$: Charge conjugation (C) symmetry; Weyl, Dirac and Majorana spinors; some physics applications (Dirac equation, Kitaev chain).

Week $10[3 / 28,3 / 30]$: Space-time symmetries: parity (P) and time-reversal $(T), C P T$ theorem, matter-antimatter asymmetry; translation and rotation, Lorentz and Poincaré groups. Week $11[4 / 4,4 / 6]$: Conformal symmetry, supersymmetry and superalgebra.

Week $12[4 / 11,4 / 13]$: Gauge symmetries: Abelian and non-Abelian; symmetries of the Standard Model.

Week 13 [4/18, 4/20]: Grand Unification: $S U(5), S O(10)$ and more.
Week 14 [4/25, 4/27]: Exceptional groups; left-over topics and/or revision.

