PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS

1. Center of the Dihedral: The center $C(G)$ of a group G (discrete or continuous) is the set of elements that commute with every element of G :

$$
\begin{equation*}
C(G)=\{a \in G \mid a g=g a \forall g \in G\} . \tag{1}
\end{equation*}
$$

Now consider the Dihedral group D_{4} (symmetry group of the square) as an example:
(a) What is the center C of D_{4} ?
(b) What is the quotient group D_{4} / C ?
(c) Is D_{4} isomorphic to $\left(D_{4} / C\right) \otimes C$?
2. Equivalence Class of $S O(3)$: Show that $S O(3)$ rotations around different axes but with the same angle are equivalent, i.e. ${ }^{1}$

$$
\begin{equation*}
e^{-i \phi \hat{n}_{2} \cdot \vec{J}} e^{i \theta \hat{n}_{1} \cdot \vec{J}} e^{i \phi \hat{n}_{2} \cdot \vec{J}}=e^{i \theta \hat{n}_{3} \cdot \vec{J}}, \tag{2}
\end{equation*}
$$

where $\hat{n}_{3}=R\left(\hat{n}_{2}, \phi\right) \hat{n}_{1}$ and $R\left(\hat{n}_{2}, \phi\right)$ represents the $S O(3)$ rotation around the unit vector \hat{n}_{2} through an angle ϕ.
3. Electric Quadrupole: The components of the electric quadrupole operator \boldsymbol{D} are defined as

$$
\begin{equation*}
D_{i j}=3 r_{i} r_{j}-r^{2} \delta_{i j} \tag{3}
\end{equation*}
$$

where r_{i} (with $\left.i=1,2,3\right)$ are the spatial (x, y, z) coordinates of the electron.
(a) Determine the commutation relations $\left[J_{i}, D_{j k}\right]$, where J_{i} 's are the angular momentum operators.
(b) Show that there are only five independent components of \boldsymbol{D}, which transform under $S O(3)$ rotation as a $j=2$ representation.

[^0](c) For a single electron transition from one atomic orbital labeled by $|n, j, m\rangle$ to another labeled by $\left|n^{\prime}, j^{\prime}, m^{\prime}\right\rangle$ (which are eigenstates of J_{3} with eigenvalues m and m^{\prime} respectively) due to the application of \boldsymbol{D}, what are the selection rules for $\Delta j=j^{\prime}-j$ and $\Delta m=m^{\prime}-m ?$ (Hint: Use Wigner-Eckart theorem.)
4. $S U(2)$ Matrices: We argued that any 2×2 special unitary matrix can be written as a linear combination of the Pauli matrices. Let us demonstrate it in another way:
(a) Start with an arbitrary complex 2×2 matrix
\[

M=\left($$
\begin{array}{ll}
a & b \tag{4}\\
c & d
\end{array}
$$\right)
\]

Now impose the special unitarity condition that $M^{\dagger} M=\mathbb{1}$ and $\operatorname{det} M=1$. Show that it reduces the number of real parameters from 8 to just 3 .
(b) Call them (r, ϕ, φ). Show that M can be written as

$$
M=\left(\begin{array}{cc}
\sqrt{1-r^{2}} e^{i \phi} & r e^{i \varphi} \tag{5}\\
-r e^{-i \varphi} & \sqrt{1-r^{2}} e^{-i \phi}
\end{array}\right)
$$

(c) Show that Eq. (5) is the same as the more familiar $S U(2)$ element

$$
\begin{equation*}
U=e^{i \theta \hat{n} \cdot \vec{\sigma} / 2} \tag{6}
\end{equation*}
$$

where σ_{i} (with $i=1,2,3$) are the three Pauli matrices. Identify θ and \hat{n} in terms of r, ϕ, φ.

[^0]: ${ }^{1}$ Recall the definition that in a group G, two elements g and g^{\prime} are said to be equivalent if there exists another element f such that $g^{\prime}=f^{-1} g f$.

