PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS

1. Clebsch-Gordan decomposition: Using the Clebsch-Gordan (CG) decomposition of $j \otimes j^{\prime}$ in the form

$$
\begin{equation*}
|J, M\rangle=\sum_{m=-j}^{j} \sum_{m^{\prime}=-j^{\prime}}^{j^{\prime}}\left|j, j^{\prime}, m, m^{\prime}\right\rangle\left\langle j, j^{\prime}, m, m^{\prime} \mid J, M\right\rangle \tag{1}
\end{equation*}
$$

work out the CG coefficients for $j=1$ and $j^{\prime}=\frac{1}{2}$ and show that

$$
\begin{equation*}
1 \otimes \frac{1}{2}=\frac{3}{2} \oplus \frac{1}{2} \tag{2}
\end{equation*}
$$

In terms of the dimensions of the corresponding irreps [of $S U(2)$], this means

$$
\begin{equation*}
2 \otimes 3=4 \oplus 2 \tag{3}
\end{equation*}
$$

2. Another useful identity for determinants:
(a) Show that for any diagonalizable matrix M,

$$
\begin{equation*}
\operatorname{det} M=e^{\operatorname{Tr}(\log M)} \tag{4}
\end{equation*}
$$

We have used this identity to show that the generators of $S U(N)$ are traceless Hermitian matrices.
(b) Now if $M \rightarrow M+\delta M$, using Eq. (4) show that

$$
\begin{equation*}
\delta(\operatorname{det} M)=(\operatorname{det} M) \sum_{i j}\left(M^{-1}\right)_{i j}(\delta M)_{j i} \tag{5}
\end{equation*}
$$

This actually furnishes a formula for the inverse of a matrix.

3. Pauli and Gell-Mann:

(a) Using the Pauli and Gell-Mann matrices, calculate the structure constants for $S U(2)$ and $S U(3)$, respectively.
(b) Show that the Pauli and Gell-Mann matrices respectively satisfy the anticommutation relations

$$
\begin{align*}
\left\{\sigma_{j}, \sigma_{k}\right\} & =2 \delta_{j k} \tag{6}\\
\left\{\lambda_{a}, \lambda_{b}\right\} & =\frac{4}{3} \delta_{a b}+2 d_{a b c} \lambda_{c} \tag{7}
\end{align*}
$$

where $j, k=1,2,3$, and $a, b, c,=1,2, \cdots, 8$ and the d-symbols in Eq. (7) are a bunch of real numbers (evaluate them!). Can you tell the main difference between these $d_{a b c}$ and the $S U(3)$ structure constants $f_{a b c}$ (apart from the fact that they are not identical)?
(c) Using Eqs. (6) and (7), verify that the Pauli and Gell-Mann matrices satisfy

$$
\begin{align*}
\operatorname{Tr}\left(\frac{\sigma_{j}}{2} \frac{\sigma_{k}}{2}\right) & =\frac{1}{2} \delta_{j k} \tag{8}\\
\operatorname{Tr}\left(\frac{\lambda_{a}}{2} \frac{\lambda_{b}}{2}\right) & =\frac{1}{2} \delta_{a b} \tag{9}
\end{align*}
$$

In general, all $S U(N)$ generators T_{a} are normalized by $\operatorname{Tr}\left(T_{a} T_{b}\right)=\frac{1}{2} \delta_{a b}$.

