PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS

1. Spherical harmonics: This warm-up exercise is to refresh your memory on orbital angular momentum operators in quantum mechanics. ${ }^{1}$
(a) Applying the Heisenberg prescription $\vec{p} \rightarrow-i \hbar \vec{\nabla}$ to the classical angular momentum $\vec{L}=\vec{x} \times \vec{p}$, we can write it as a differential operator: $\vec{L}=-i \hbar \vec{x} \times \vec{\nabla}$. Write down the explicit forms of $L_{z}, L_{ \pm}=L_{x} \pm i L_{y}$ and \vec{L}^{2} in spherical polar coordinates (r, θ, ϕ).
(b) The eigenvalue equations for L_{z} and \vec{L}^{2} can be written in terms of the spherical harmonics $Y_{l}^{m}(\theta, \phi)=\langle\theta, \phi \mid l, m\rangle$:

$$
\begin{align*}
L_{z} Y_{l}^{m}(\theta, \phi) & =m \hbar Y_{l}^{m}(\theta, \phi) \tag{1}\\
\vec{L}^{2} Y_{l}^{m}(\theta, \phi) & =l(l+1) \hbar^{2} Y_{l}^{m}(\theta, \phi) \tag{2}
\end{align*}
$$

where $l=0,1,2, \cdots$ is a non-negative integer ${ }^{2}$ and $m=-l,-l+1, \cdots, l-$ $1, l$. Using Eq. (1) and the results from part (a), show that the appropriately normalized eigenfunctions $Y_{l}^{m}(\theta, \phi)$ are given by ${ }^{3}$

$$
\begin{equation*}
Y_{l}^{m}(\theta, \phi)=(-1)^{m}\left[\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}\right]^{1 / 2} P_{l}^{m}(\cos \theta) e^{i m \phi} \tag{3}
\end{equation*}
$$

for $m \geq 0$ and $Y_{l}^{-m}=(-1)^{m}\left(Y_{l}^{m}\right)^{*}$. Here $P_{l}^{0}(\cos \theta) \equiv P_{l}(\cos \theta)$ are the Legendre polynomials and $P_{l}^{m}(\cos \theta)$ are the associated Legendre polynomials, given by (for $-l \leq m \leq l)$

$$
\begin{equation*}
P_{l}^{m}(u)=\frac{\left(1-u^{2}\right)^{m / 2}}{2^{l} l!}\left(\frac{d}{d u}\right)^{l+m}\left(u^{2}-1\right)^{l} . \tag{4}
\end{equation*}
$$

You might find it useful (for the next problem) to list a few of these explicitly!
${ }^{1}$ Those who have never seen this stuff before, please refer to any undergrad quantum mechanics textbook, e.g. D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall (1995).
${ }^{2}$ Teaser: What happens if we include half-odd integers, i.e. $l=1 / 2,3 / 2, \cdots$?
${ }^{3}$ Hint: This involves several steps: (i) Use separation of variables and operate by L_{z} to extract the ϕ dependence; (ii) use $L_{ \pm} Y_{l}^{ \pm l}(\theta, \phi)=0$ to extract the θ dependence; (iii) use the normalization condition $\left\langle Y_{l}^{m} \mid Y_{l}^{m}\right\rangle=1$ to fix the integration constant.

2. Why do we care so much about symmetric traceless tensors?

(a) Consider the symmetric traceless tensors $S_{i_{1} i_{2} \cdots i_{l}}$ of rank l which are invariant under rotations about an axis, say z-axis (azimuthal symmetry). One way to construct them is by taking the product $\hat{z}_{i_{1}} \hat{z}_{i_{2}} \cdots \hat{z}_{i_{l}}$, where \hat{z} is the unit-vector in the z-direction (i.e. $\hat{z}_{i}=\delta_{i 3}$ is the i 'th component of \hat{z}), and subtracting the trace to make the product traceless. Denote this symmetric traceless tensor by $S_{i_{1} i_{2} \cdots i_{l}} \equiv\left\{\hat{z}_{i_{1}} \hat{z}_{i_{2}} \cdots \hat{z}_{i_{l}}\right\}$. Show that the function

$$
\begin{equation*}
F_{l}(\hat{n})=\left\{\hat{z}_{i_{1}} \hat{z}_{i_{2}} \cdots \hat{z}_{i_{l}}\right\} \hat{n}_{i_{1}} \hat{n}_{i_{2}} \cdots \hat{n}_{i_{l}} \tag{5}
\end{equation*}
$$

is nothing but the Legendre polynomial $P_{l}(\cos \theta)$ (upto some normalization constant). Here \hat{n}_{i} 's (with $i=1,2,3$) are the components of the general unit vector

$$
\begin{equation*}
\hat{n}(\theta, \phi)=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} \tag{6}
\end{equation*}
$$

(b) Now consider the general case when there is no azimuthal symmetry. Construct the symmetric traceless tensors and the function analogous to Eq. (7) (for $m>0$):

$$
\begin{equation*}
F_{l}^{m}(\hat{n})=\left\{\hat{u}_{i_{1}}^{+} \cdots \hat{u}_{i_{m}}^{+} \hat{z}_{i_{m+1}} \cdots \hat{z}_{i_{l}}\right\} \hat{n}_{i_{1}} \cdots \hat{n}_{i_{l}} \tag{7}
\end{equation*}
$$

where $\hat{u}^{ \pm}=\frac{1}{\sqrt{2}}(\hat{x} \pm i \hat{y})$. Show that $F_{l}^{m}(\hat{n})$'s are nothing but the spherical harmonics $Y_{l}^{m}(\theta, \phi)$, again upto a normalization constant.

This neat connection between tensors and spherical harmonics can be understood from the general solution to Laplace's equation, which is the underlying basis for multipole expansion, a widely used technique in physics.
3. Creating states from vacuum: In class, we discussed the Hermitian number operator $N \equiv a^{\dagger} a$ (where a, a^{\dagger} are the creation and annihilation operators, respectively) and its eigenvectors $|n\rangle$ with non-negative integer eigenvalues n.
(a) Show that

$$
\begin{equation*}
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle, \tag{8}
\end{equation*}
$$

where $|0\rangle$ is the ground (vacuum) state such that $a|0\rangle=0$. Eq. (8) is very useful in quantum mechanics, and we have already seen one application in the Jordan-Schwinger construction of the angular momentum algebra.
(b) Using Eq. (8), show that $\left[a,\left(a^{\dagger}\right)^{n}\right]=n\left(a^{\dagger}\right)^{n-1}$.

