PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS

1. Jacobi Identity:

(a) Show that X, Y, Z being three matrices (or operators or generators)

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \tag{1}
\end{equation*}
$$

This is the Jacobi identity, which often comes in handy while dealing with Lie algebra, ${ }^{1}$ and sometimes even used as part of the definition of Lie algebra.
(b) (Bonus Question) The geometrical meaning of Jacobi identity is contained in a simple statement you learned in high-school math, namely, the three altitudes of a triangle intersect at one point. Prove it (if you can).

2. Determinant and Levi-Civita:

(a) Show that the determinant of an n-by- n matrix M can be written compactly in terms of the totally antisymmetric Levi-Civita tensor, as follows: ${ }^{2}$

$$
\begin{equation*}
\varepsilon^{p q r \cdots s} \operatorname{det} M=\varepsilon^{i j k \cdots n} M^{i p} M^{j q} M^{k r} \cdots M^{n s} . \tag{2}
\end{equation*}
$$

We used this in class to show that $\varepsilon^{i j k \cdots n}$ is an invariant tensor under rotation.
(b) Using Eq. (2), show that for the rotation matrix $R \in S O(N)$, we have

$$
\begin{equation*}
\varepsilon^{i j k \cdots n} R^{i p} R^{j q}=\varepsilon^{p q r \cdots s} R^{k r} \cdots R^{n s} \tag{3}
\end{equation*}
$$

3. $S O(3)$ is Special:

(a) If $A^{i j k}$ is a totally antisymmetric tensor of rank-3, where $i, j, k=1,2, \cdots, N$, then show that A has $N(N-1)(N-2) / 3$! components.
(b) For $N=3$, identify the one component of A. Show that it transforms as a scalar (i.e. remains the same) under rotation. This, together with the result we derived in class for the symmetric tensors, makes $S O(3)$ special among the $S O(N)$ groups.

[^0]
[^0]: ${ }^{1}$ In vector notation, Eq. (1) might look more familiar: $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0$.
 ${ }^{2}$ Remember that we are using the Einstein summation convention, i.e. repeated indices are always summed over, unless otherwise specified.

