PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS
Bhupal Dev
Homework 12 (last one, yay!)
Due: 04/27/17

1. Simple Roots: We discussed the positive and simple roots for the four families of Lie algebra. Let's verify those formulas explicitly for some example cases. Here e^{i} 's denote the unit vector in the i th direction.
(a) How many roots does $S O(6)$ have? Show that the positive roots $e^{1}-e^{3}, e^{1}+e^{3}$ and $e^{1}+e^{2}$ are not simple.
(b) How many roots does $S p(6)$ have? Show that the simple roots are $e^{1}-e^{2}, e^{2}-e^{3}$ and $2 e^{3}$, i.e. the other roots are not simple.
(c) Now do the same for $S O(7)$. Do you see any similarities with the $S p(6)$ case?
2. Mathematicians' Adjoint: For any two elements X and Y of a Lie algebra, consider the linear mapping $Y \rightarrow \operatorname{adj}(X) Y \equiv[X, Y]$. Then prove that $\operatorname{adj}([X, Y])=$ $[\operatorname{adj}(X), \operatorname{adj}(Y)]$. Hint: You might want to call Jacobi for help.
3. Root Diagram: Using the general restrictions on the angle between and length of different roots, show that a root diagram for any Lie algebra cannot contain more than two different lengths. This remarkable feature enabled Cartan to classify all Lie algebras based on their root diagrams.
