PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS

1. Symplectic Groups:

(a) Prove that a $2 n \times 2 n$ matrix R satisfying the symplectic condition $R^{T} J R=J$ has determinant +1 . Here $J=\left(\begin{array}{cc}0 & \mathbb{1} \\ -\mathbb{1} & 0\end{array}\right)$, as we discussed.
(b) Show that the generator of the symplectic group, given by the $2 n \times 2 n$ Hermitian matrix H satisfying the condition $H^{T}=J H J$, can be written as a linear combination of the Hermitian traceless matrices $i A \otimes \mathbb{1}$ and $S_{i} \otimes \sigma_{i}$, where A is an arbitrary real $n \times n$ antisymmetric matrix, S_{i} (with $i=1,2,3$) are arbitrary real $n \times n$ symmetric matrices and σ_{i} are the usual 2×2 Pauli matrices.
2. Chevalley Basis for $S U(3)$: We can get rid of the pesky square root factors appearing in the roots of $S U(N)$ by going to what's called the Chevalley basis. Let's see this explicitly for $S U(3)$.
(a) Replace the last Gell-Mann matrix λ_{8} with $h^{2}=\operatorname{diag}(0,1,-1)$. Show that h^{2}, together with the appropriate raising and lowering matrices (calculate and call them e^{2} and $\left.\left(e^{2}\right)^{T}\right)$ in the 2-3 sector, forms an $S U(2)$ algebra. Do the same in the $1-2$ sector with $h^{1}=\operatorname{diag}(1,-1,0)$, which is same as λ_{3}. Call the corresponding raising and lowering matrices as e^{1} and $\left(e^{1}\right)^{T}$. Show that e^{1} and e^{2} represent the two simple roots of $S U(3)$ (without the factors of square root this time!).
(b) Show that $e^{3}=\left[e^{1}, e^{2}\right]$ gives the third positive root. Why can't we have more positive roots by taking double commutators, such as $\left[e^{1},\left[e^{1}, e^{2}\right]\right]$ or $\left[e^{2},\left[e^{1}, e^{2}\right]\right]$?
(c) From the above exercise, you can (hopefully) convince yourself that the eight matrices $h^{1}, h^{2}, e^{1},\left(e^{1}\right)^{T}, e^{2},\left(e^{2}\right)^{T}, e^{3},\left(e^{3}\right)^{T}$ (the 'new' Gell-Mann matrices) generate the $S U(3)$ algebra. But it comes with a price, i.e. $\operatorname{Tr}\left(h^{i} h^{j}\right) \neq \delta^{i j}$. Can you tell why it might be troublesome? (Hint: Think in terms of a metric.)

